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Cross-stream migration of a droplet in an incipient flow turns out to be of outstanding
importance in several emerging applications encompassing chemistry, engineering and
biology. Here, we bring out the confluence of confinement, oscillatory axial pressure
gradient and steady axial electric field towards controlling spatiotemporal characteristics
of cross-stream migration of droplets in a micro-confined fluidic environment, bearing
immense implications in in vitro modelling of bio-analytical procedures. Under the sole
influence of an oscillatory axial pressure gradient, the time taken by a droplet to achieve
a steady-state transverse position is significantly long and the direction of the droplet’s
motion cannot be altered at will. However, confinement-modulated electrohydrodynamic
interactions enable overcoming this constraint, even when the applied electric field is
orthogonal to the intended direction of droplet migration, a proposition that is not
feasible in an unbounded domain. Our results reveal that depending on the relative
electrical properties of the droplet and the carrier phases and a competing influence
of electrical, viscous and capillary stresses, the rate of transverse migration can be
controlled by effectively modulating the axial oscillations in its cross-stream motion.
Beyond a threshold value of the applied electric field, simultaneous enhancement in
the droplet migration rate and reversal in the direction of its lateral migration become
possible, which cannot otherwise be achieved by the oscillatory pressure field alone.
Furthermore, the oscillatory characteristics in the droplet migration can be dampened
out completely by exploiting the addressed physical interplay. Results from in-house
experiments corroborate our theoretical conjecture.

Key words: drops and bubbles

1. Introduction

Precise manipulation and sorting of soft entities in microfluidic systems have received
remarkable attention in contemporary research, as attributable to their diverse applications
in physical, biological and engineering systems (Sibillo et al. 2006; Seč et al. 2012;
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Dangla, Kayi & Baroud 2013; Wioland et al. 2013; Huerre et al. 2015). These perspectives
often include material transport and rapid as well as efficient mixing in a technologically
advanced platform, in vitro diagnostics, drug discovery and targeted drug delivery
(Schwabe et al. 1992; Stone, Stroock & Ajdari 2004; Teh et al. 2008; Capretto et al. 2011;
Casadevall i Solvas & DeMello 2011). In many of these applications, the fundamental
scientific premise that stands out as crucial is an assessment of the cross-stream motion of
soft entities (such as droplets, vesicles and cells) in a confined fluidic environment.

Several reported studies pointed out that the migration characteristic of a droplet can
be modulated by altering the deformability of the interface (Goldsmith & Mason 1962;
Chaffey, Brenner & Mason 1965; Haber & Hetsroni 1971; Wohl & Rubinow 1974; Stan
et al. 2011; Mandal et al. 2015a), fluid properties (Chan & Leal 1979; Mukherjee &
Sarkar 2013, 2014; Hazra, Mitra & Sen 2019), flow inertia (Ho & Leal 1974; Mortazavi &
Tryggvason 2000; Chen et al. 2014) and the nature of flow (steady or oscillatory)(Graham
& Higdon 2000a, 2002; Chaudhury, Mandal & Chakraborty 2016). In addition to these
factors, mutual interactions between electric forcing and domain confinement can also
be used as a means of fine-tuning the modulation of the droplet’s motion (Deshmukh &
Thaokar 2012; Esmaeeli 2016; Zhang et al. 2016; Brosseau & Vlahovska 2017; Nath et al.
2018; Santra, Mandal & Chakraborty 2018b, 2019a; Poddar et al. 2019a).

In the presence of a steady background flow (plane Poiseuille, extensional, simple shear,
etc.), numerous studies have been conducted on the motion and deformation dynamics of
the droplet (Chan & Leal 1977, 1979; Leal 1980; Mortazavi & Tryggvason 2000; Li &
Pozrikidis 2002; Sessoms et al. 2009; Carlson, Do-Quang & Amberg 2010; Chung et al.
2010; Afkhami, Leshansky & Renardy 2011; Mukherjee & Sarkar 2013). However, the
implications of a time-varying flow field on the migration characteristics of a droplet have
only been explored to a limited extent (Lovalenti & Brady 1993; Graham & Higdon 2000b;
Sarkar & Schowalter 2001a,b). Such time-varying flow pulsations, nevertheless, offer
several advantages that may turn out to be of immense benefit in practical microfluidic
applications. For instance, this enables efficient manipulation and sorting of rigid and
deformable entities at very low Reynolds number, which is otherwise unfeasible in
conventional steady-flow microfluidic systems (Mutlu, Edd & Toner 2018; Asghari et al.
2020). Furthermore, owing to the low particle Reynolds number, the shear stress acting on
the suspended entities in the microchannel is minimized, which permits the manipulation
of cellular entities under physiologically relevant conditions.

The time-varying flow field in a microfluidic channel often involves a time-dependent
imposed pressure gradient that causes the temporal alteration in the hydrodynamic forces.
When a droplet is placed in a time-varying flow field, its shape evolves with time, along
with a time-dependent inertial response. In a related study, Chaudhury et al. (2016) have
analysed the migration characteristics of a droplet in an oscillatory microflow. They have
shown that, under a sinusoidal time-variant pressure gradient, the droplet moves to the
centreline in a helical pathway. Possibly, the most important finding from their study
delineates that the droplet shifts to the centreline without any net axial displacement when
the frequency of oscillation is beyond a threshold limit.

Irrespective of the obvious pertinence to physiologically relevant processes, an
important limitation of oscillatory-flow-driven droplet manipulation turns out to be the
fact that the time taken by the droplet to achieve a steady-state transverse position
(termed as the focus time in microfluidic technologies) is significantly large and the
direction of the droplet’s motion cannot be changed at will. In an effort to overcome
these limits, electric-field-induced flow manipulation holds the potential to offer a viable
alternative. When an electric field is applied on a leaky dielectric droplet suspended in
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another leaky dielectric medium, the disparity in the electrical properties gives rise to
net tangential and normal electric stresses at the interface that create circulatory motion
inside and outside of the droplet and leads to its prolate (in direction of electric field) or
oblate deformation (perpendicular to the direction of electric field). This phenomenon is
classically addressed by Taylor’s (1966) ‘leaky-dielectric theory’. Later, this theory was
further developed by Melcher & Taylor (1969) and others (Torza, Cox & Mason 1971;
Vizika & Saville 1992; Saville 1997). Two important assumptions of this model are: the
fluids have weak but finite conductivities and the charge relaxation time scale is much
shorter than the convective time scale. The former assumption considers the aggregation
of free charges in the interface and the latter allows us to decouple the electric field
equation from the momentum conservation equation for considerable simplification of the
mathematical model. In his pioneering work, Taylor (1966) unravelled that the direction
of electric shear-driven circulatory flow inside and outside of the droplet in the sole
presence of electric field depends on the relative magnitude of conductivity ratio (R) and
permittivity ratio (S) of the leaky dielectric system. To infer the sense of deformation, he
further established a discriminating function (ΩT) comprising the parameters: viscosity
ratio λ = μi/μe, conductivity ratio R = σi/σe and permittivity ratio S = εi/εe, where the
subscript ‘i’ refers to properties of the droplet and the subscript ‘e’ refers to the properties
of the carrier fluid, respectively; the viscosity, conductivity and the permittivity being
denoted by μ, σ , and ε, respectively. As per Taylor’s theory, the discriminating function is
defined as ΩT = R2 + 1 − 2S + 3(R − S)(3λ+ 2)/5(λ+ 1). Taylor showed that droplet
deforms into a prolate (or oblate) configuration for ΩT > 0 (or ΩT < 0). Notably, this
theory had been essentially premised on the consideration of an unbounded domain.

Motivated by the classical work of Taylor (1966), several studies have been reported on
electrically modulated morpho-dynamics of droplets in an external flow (Hase, Watanabe
& Yoshikawa 2006; Ristenpart et al. 2009; Mhatre & Thaokar 2013; Zhang et al. 2016;
Brosseau & Vlahovska 2017; Poddar et al. 2018, 2019b; Behera et al. 2019; Santra et al.
2018b, 2019a; Santra, Das & Chakraborty 2020). Mandal, Bandopadhyay & Chakraborty
(2016) studied the cross-stream migration of the droplet in unbounded plane Poiseuille
flow under uniform electric field. They have shown that the droplet can migrate toward the
centreline or wall electrode, depending on the relative electrical parameters. However, one
important conclusion drawn from their study is that the cross-stream motion is possible
only when the electric field makes an angle with the flow direction. Hence, an axial electric
field has no effect on the droplet’s cross-stream motion in an unbounded domain. In a
recent study, Santra et al. (2018b) have introduced the effect of domain confinement in
electrohydrodynamics of droplets and obtained that the essential conditions of oblate
and prolate deformation become reversed below a critical relative dimension of the
domain confinement. This study has opened up the possibility of altering the established
features of electrohydrodynamic manipulation of droplets in unbounded domains via
confinement-mediated interactions.

Here, we unveil the migration characteristics of a leaky dielectric droplet under
the combined confluence of a steady axial electric field, domain confinement and
oscillatory pressure-driven flow, from both computational and experimental perspectives.
In sharp contrast to reported theory (Mandal et al. 2016) that depicts the possibility of
cross-stream migration of a droplet only if subjected to a tilted electric field, we show
that confinement-induced electrohydrodynamic interactions enable the spatiotemporal
characteristics of lateral motion of a droplet to be controlled even in the presence of an
electrical field that is orthogonal to the direction of the droplet migration. In addition,
we offer insights on controlling and stabilizing the oscillatory characteristics of transverse
migration of the droplet before its eventual settling, along with a simultaneous reversal
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FIGURE 1. (a) Schematic of the rectangular computational domain. The length and width are
L* and H*, respectively. The numerical set-up is bounded by the top and bottom bounding walls
(BT , BB) and the left and right boundaries (BL, BR). The initial distance of the droplet from the
lower electrode is denoted by the Y∗

d . (b) Time sequence of the velocity profile, where t∗6 > t∗5 >
t∗4 > t∗3 > t∗2 > t∗1.

in its direction of migration, which has not been addressed earlier. Our results further
illustrate the establishment of an explicit control over the time taken by the droplet
to achieve a steady-state transverse position, under the combined influence of confined
oscillatory hydrodynamics and axial electrical forcing. Experimental investigations
support these essential findings. Results from the present study may find important
applications (Dey, Chakraborty & Chakraborty 2011; Goswami & Chakraborty 2011;
Bakli & Chakraborty 2012; Bandopadhyay & Chakraborty 2012a,b; Yavari et al. 2012;
Rana et al. 2014) in rapid and controlled focusing of soft and deformable entities at will, in
various physical, chemical and biological processes having inherent limitations associated
with their finite length and focus time.

2. Numerical methodology

The two-dimensional (2-D) computational domain is shown in figure 1, where a
neutrally buoyant leaky dielectric droplet is suspended in another leaky dielectric medium
under the combined governance of oscillatory pressure-driven background flow and
uniform axial electric field. As the computations are planar (2-D), the undeformed droplet
is circular in shape. The computational domain is bounded by the top wall boundary (BT),
bottom wall boundary (BB), inlet left-side boundary (BL) and the outlet right-side boundary
(BR). The radius of the droplet is denoted by a. The initial location of the droplet from the
bottom wall boundary is Y∗

d . The electrodes are located at the side boundaries (BL and BR).
Thus, an axial electric field, E* acts on the droplet. In this study, a Cartesian coordinate
system is adopted, which is fixed at the bottom wall boundary, as depicted in figure 1.

2.1. Numerical simulation: phase field method
For computational modelling of the physical problem described previously, we adapt
the phase field method (Jacqmin 1999; Badalassi, Ceniceros & Banerjee 2003; Mandal
et al. 2015b). In previously reported studies (Wang, Qian & Sheng 2008; Mandal et al.
2015b; Chaudhury et al. 2016), several authors mentioned the utility of this method in
capturing the interfacial dynamics of a two-fluid system. It is important to mention that
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the method is premised on the minimization of the total energy of the system and is
thermodynamically consistent (Chakraborty 2007, 2008). Owing to its flexible generalized
framework, it allows the incorporation of appropriate physics by suitably altering the free
energy functional. In the phase field method, for identifying the distribution of constituting
fluid phases, an order parameter, ψ (x,t) is used. In figure 1, the droplet and surrounding
fluid medium are denoted by ψ = −1 and +1, respectively. The values of ψ vary between
−1 and 1 in the diffuse interfacial region. The dynamic evolution of ψ is described by the
Cahn–Hilliard equation. This equation comprises both the advection as well as diffusion
terms and reads (Jacqmin 1999; Mandal et al. 2015b)

∂ψ

∂t∗
+ u∗·∇∗ψ = ∇∗·(M∗

ψ∇∗G∗), (2.1)

where the mobility factor and the chemical potential are denoted by M∗
ψ,G∗, respectively.

Here G* is described as G∗ = γ (ψ3 − ψ)/ξ ∗ − γ ξ ∗∇∗2ψ . The interfacial thickness is
denoted by ξ ∗. In this work, asterisks are used to denote dimensional parameters, for
notational convenience.

In the framework of phase field formalism, any generic fluid property (χ*) can be
suitably interpolated via the distribution of the order parameter (Badalassi et al. 2003;
Yang, Li & Ding 2013; Mandal et al. 2015b; Yang et al. 2016):

χ∗ = (1 − ψ)

2
χ∗

i + (1 + ψ)

2
χ∗

e . (2.2)

In a non-dimensional format, this is expressed as

χ = (1 − ψ)

2
χr + (1 + ψ)

2
, whereχr = χ∗

i /χ
∗
e . (2.3)

2.2. Governing equations and boundary conditions

2.2.1. Electric field
As the electric field is irrotational (∇∗ × E∗ = 0), it may be related to the electric

potential as E∗ = −∇∗φ. Forces of electrical origin may be expressed in terms of the
divergence of the Maxwell stress tensor, so that

F ∗E =
∫

∀
(∇∗·T ∗M) dx∗3, ∇∗·T ∗M = q∗

vE
∗ − 1

2
(E∗·E∗)·∇∗ε, (2.4)

where ∀ symbolizes the domain volume, and the Maxwell stress tensor is denoted by
T ∗M. The first term of (2.4) denotes the Coulomb force (or electric force), which appears
because of the interaction between the electric field and free charges. The second term
refers to dielectrophoretic force. In (2.4), qv denotes the bulk-free charge density. In
accordance with Gauss law, one may write

∇∗·(ε∇∗φ) = q∗
v. (2.5)

Following the generic property interpolation scheme described earlier, ε can be described
as

ε = (1 − ψ)

2
εi + (1 + ψ)

2
εe. (2.6)
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Further, from charge conservation consideration, the bulk-free charge density follows the
following governing equation:

Dq∗
v

Dt∗
+ ∇∗·(σE∗) = ∂q∗

v

∂t∗
+ ∇∗·(q∗

vu
∗)+ ∇∗·(σE∗) = 0. (2.7)

In accordance with the leaky-dielectric theory (Taylor 1966; Melcher & Taylor 1969), free
charges are transferred instantly from bulk fluid to the interfacial region and the bulk fluid
becomes free of charge. Hence, Dq∗

v/Dt∗ = 0 and (2.7) is reduced to the following form:

∇∗·(σE∗) = 0. (2.8)

Using the irrotationality of the electric field, (2.8) can be expressed as

∇∗·(σ∇∗φ) = 0. (2.9)

Here σ is interpolated as σ = ((1 − ψ)/2)σi + ((1 + ψ)/2)σe.
At the inlet and outlet boundaries, the electric potential follows the boundary conditions

as stated in the following:

At inlet boundary (BL) : φ∗ = 0 at x∗ = 0,
At outlet boundary (BR) : φ∗ = L∗E∗

∞ at x∗ = L∗.

}
(2.10)

2.2.2. Fluid flow
The governing continuity and momentum equations for fluid flow are given by

∇∗·u∗ = 0, (2.11)

ρ

(
∂u∗

∂t∗
+ ∇∗·(u∗u∗)

)
= −∇∗p∗ + ∇∗·[μ{∇∗u∗ + (∇∗u∗)T}]

+ G∗∇∗ψ + F ∗E + F∗
o sin(ω∗t∗)�ex .

(2.12)

Equation (2.12) couples the electrohydrodynamics with phase field formalism, where
G∗∇∗ψ acts as a representation of the interfacial tension in terms of the phase field
order parameter and the chemical potential and F ∗E denotes the electric body force as
stated in (2.4). Here F∗

o sin(ω∗t∗) represents the oscillatory component of the driving
pressure gradient, where ω* and F∗

o represent the frequency and amplitude of the imposed
oscillation, respectively.

2.3. Normalization of governing equations
Normalized forms of the governing equations, described previously, read

∂ψ

∂ t̄
+ u·∇ψ = 1

Pe
∇2G, where G = 1

Cn
(ψ3 − ψ)− Cn∇2ψ, (2.13)

∇ · (σ∇φ) = 0, (2.14)

∇·u = 0, (2.15)

Re
(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [μ{∇u + (∇u)T}]

+ 1
Ca

· G∇ψ + CaE

Ca
F E + 8 sin(t St)�ex . (2.16)
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For the normalization scheme, the following scaling parameters are used: length scale
H*, velocity scale u*c, time scale H∗/u∗

c , viscous stress scale μeu∗
c/H

∗, electric field
scale E∗

∞ and electric stress scale εeE∗2
∞. Here H* and u* denote the channel height

and centreline flow velocity, respectively. The consequent normalization results in the
following dimensionless parameters: Reynolds number (Re = ρu∗

cH∗/μe), Péclet number
(Pe = H∗2uc/M∗

ψγ ), capillary number (Ca = μu∗
c/γ ), electric capillary number (CaE =

εeE∗2
∞H∗/γ ), Cahn number (Cn = ξ ∗/H∗) and Strouhal number (St = ω∗H∗/u∗

c). Another
important dimensionless parameter is the confinement ratio (Wc), defined as the ratio of
undeformed droplet diameter to the width of the channel (expressed as Wc = 2a*/H*). In
the present analysis, we consider L (= L*/H*) = 3.

Interpolation of physical properties, in a dimensionless form, reads (Mondal et al. 2014)

ρ = (1 − ψ)

2
ρr + (1 + ψ)

2
; ρr = ρi

ρe

μ = (1 − ψ)

2
λ+ (1 + ψ)

2
; λ = μi

μe

ε = (1 − ψ)

2
S + (1 + ψ)

2
; S = εi

εe

σ = (1 − ψ)

2
R + (1 + ψ)

2
; R = σi

σe

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.17)

As the interacting fluids are neutrally buoyant for the case studies addressed in this work,
we have set ρ= ρr = 1 subsequently.

The boundary conditions employed at the top and bottom walls (BT and BB) in
dimensionless forms read

(i) No slip : u − (u · ns)ns = 0,
(ii) No penetration: u · ns = 0,
(iii) No flux : ns · ∇ψ = 0.

⎫⎪⎬
⎪⎭ (2.18)

Here, ns denotes the normal vector at the walls. The governing equations have been
solved using the finite element method taking the mentioned boundary conditions into
consideration (Mandal et al. 2015b; Santra et al. 2019b; Wang et al. 2019). The details
of the numerical implementation are described in the supplementary material available at
https://doi.org/10.1017/jfm.2020.789.

3. Results and discussion

3.1. Model benchmarking
In an effort to benchmark our numerical model, we have first conducted validation
studies vis-à-vis the results reported by Halim & Esmaeeli (2013), Mortazavi &
Tryggvason (2000), Chaudhury et al. (2016) and Ha & Yang (2000). Ha & Yang
(2000) experimentally investigated the electric-field-induced deformation and breakup
characteristics of Newtonian and non-Newtonian droplets.

For comparison, we have chosen system NN21 from their study, where castor oil and
silicone oil (μ* = 0.90 Pa·s) have been used as the droplet phase and suspending fluid
phase, respectively. In the sole presence of an electric field, the droplet either deforms
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into prolate or oblate configuration depending on the relative electrical properties. The
degree of the deformation of the droplet is measured by the deformation parameter, D
(Taylor 1966), expressed as D = (Lmax − Lmin)/(Lmax + Lmin), where Lmax and Lmin are the
length of the major axis and minor axis of the elliptically deformed (prolate or oblate)
droplet, respectively. In the study reported by Halim & Esmaeeli (2013), they
have employed the front-tracking/finite difference method to study the transient
electrohydrodynamic behaviour of leaky dielectric droplet under uniform electric field.
In the numerical study performed by Chaudhury et al. (2016), they have analysed the
migration characteristic of the droplet in the presence of background oscillatory flow
field in a parallel plate microchannel. Mortazavi & Tryggvason (2000) have performed
a numerical study on the cross-stream motion of the deformable droplet in pressure-driven
flow, taking the effect of finite inertia, the viscosity ratio of the fluids and the interfacial
tension into consideration. In this study, they have used a front-tracking/finite difference
method to numerically simulate the problem. Figure 2(a) depicts an excellent agreement
between the findings of Halim & Esmaeeli (2013) and predictions based on the
present numerical set-up, highlighting the temporal variation of the electric field-induced
deformation of droplet for different values of the permittivity ratio. Figure 2(b) also
presents another comparison of the cross-stream motion of the droplet between the
present findings and the numerical results of Mortazavi & Tryggvason (2000), exhibiting
excellent quantitative agreement. In addition, figure 2(c) illustrates a comparison between
the present numerical results and experimental results of Ha & Yang (2000) on the
electric-field-induced alteration of the steady-state deformation of the droplet, illustrating
favourable agreement. Figure 2(d) depicts a comparison between our numerical results
and the results of Chaudhury et al. (2016) on the cross-stream migration of the droplet
under an oscillatory flow field. Excellent agreement is also obtained in this regard. All
these benchmarking studies also involve a rigorous grid independence (equivalently, Cahn
number independence) study and Péclet number independence test, which have not been
detailed in this work for the sake of brevity. These validations enable benchmarking
optimal grid sizing in the computational domain, based on the consideration of Cahn
number independence (equivalently, grid independence). The details of the Cahn number
independence and grid independence studies are given in the supplementary material.

3.2. Alteration in droplet motion in the combined presence of an electric field and
background oscillatory flow

3.2.1. Electric-field-induced modification in cross-stream motion of the droplet
Figure 3 depicts the influence of a steady axial electric field on the cross-stream motion

of the droplet for a model system based on the problem description outlined schematically
in figure 1. Values of the relevant dimensionless parameters (unless they are varied)
used for generating these results are (S, R) = (2, 0.5), ρr = 1 and λ= 1. These collective
properties conform to a specific category of physical system designated as system A. In the
present analysis, depending on the relative strength of electric stress as compared with the
flow-induced viscous stress, we have classified the magnitude of electric field strength
into three categories: (i) low electric field strength (where CaE ≤ 0.5 and Ca = 0.3);
(ii) moderate electric field strength (0.5<CaE ≤ 1.5 and Ca = 0.3); (iii) high electric field
strength (CaE > 1.5 and Ca = 0.3).

The shape evolution of the droplet at different stages of the cycle of the imposed
oscillation is also shown in figure 3. In the sole presence of oscillatory pressure-driven
flow, the droplet moves towards the centreline in a zig-zag pathway without any net axial
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FIGURE 2. (a) Temporal variation of the deformation parameter in the presence of a uniform
electric field, considering the set-up of Halim & Esmaeeli (2013). Important parameters are
R = 2.5, λ= 0.1, CaE = 0.25 and Re = 1. (b) Temporal variation of the transverse position of
the droplet’s centroid, considering the set-up of Mortazavi & Tryggvason (2000). Important
parameters are ρr = 1, Re = 1 and Ca = 0.33. (c) Variation of steady-state parameters (D∞) with
electric field strength (CaE), considering the set-up of Ha & Yang (2000). Important parameters
are (R, S) = (10, 1.37), Re = 0.01 and λ= 0.874. (d) Cross-stream migration characteristics
of the droplet in the presence of oscillatory pressure gradient-driven flow in parallel plate
micro-confinement, considering the set-up of Chaudhury et al (2016). Important parameters are
a = 0.4375, Ca = 0.286, ρr = 1, λ= 1, Re = 1.

displacement (defined as oscillatory motion). However, when an axial electric field is
applied, figure 3(a) clearly depicts that the axial oscillations of the droplet prior to reaching
the domain centreline dampen out, and the droplet follows an uncurling pathway (defined
as non-oscillatory motion) at high values of CaE. Once the droplet arrives at the centreline,
it continues to oscillate in the axial direction. Figure 3(b) further emphasizes that the time
taken by the droplet to achieve its steady-state transverse position (tss) also decreases with
the rise in the relative strength of the electric field. Though this phenomenon appears
intuitive, it is of fundamental importance in the exploration of several practical problems
of outstanding relevance, such as high-throughput and on-demand sorting of deformable
entities (droplet, biological cells, etc.) in confined micro-environments. In this regard, it
should be mentioned that despite a widespread emergence of oscillatory microfluidics
towards sorting soft fluidic and cellular matters under physiologically relevant conditions,
one important inherent limitation of the same has been reported to be the fact that the
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FIGURE 3. (a) Cross-stream migration characteristic of the droplet in oscillatory microflow,
(b) Temporal variation of the transverse position of the droplet’s centroid. The variation of tss
with CaE is shown in the inset of figure 3(b). Important simulation parameters are (S, R) =
(2, 0.5), Ca = 0.3, Yd = 0.525, ρr = 1, λ= 1, a = 0.3, Re = 0.1 and St = 2.

sorting process takes place very sluggishly, bearing adverse consequences on the net
throughput. The findings of figure 3 illustrate that the presence of the axial electric field
offers a remedy to overcome this constraint to a large and controllable extent.

Similarly, figure 4 illustrates the electric-field-induced modification of the cross-stream
migration of the droplet for another physical system, henceforth termed as system B.
The distinctive hallmark of system B, as compared with system A, is as follows: the
conductivity ratio (R) of the system is higher than the permittivity ratio (S) that essentially
creates the electrohydrodynamic flow from poles to equators. Relevant dimensionless
properties are (S, R) = (0.5, 2), ρr = 1 and λ= 1. From figure 4(a), it is evident that the
axial oscillations of the droplet before reaching the centreline are amplified for moderate
values of CaE (= 1 and 1.5). Hence, the value of tss increases as depicted in figure 4(b).
If we slightly increase the value of CaE (= 1.52), the droplet achieves its steady-state
transverse position almost immediately (tss = 0.583). In this case, the ultimate position
of the droplet (= 0.5252) is nearly equal to its initial position (= 0.525). For this value of
CaE, the axial oscillation of the droplet before reaching steady-state transverse position
disappears completely. However, after reaching the steady-state transverse position, the
droplet undergoes axial oscillations along a horizontally straight pathway. If we further
increase the value of CaE (= 2), the steady-state transverse position of the droplet shifts
towards the upper wall and the axial oscillations of the droplet before reaching the final
position again amplifies. Accordingly, the magnitude of tss increases. However, if we raise
the value of CaE beyond a threshold limit (CaE = 5), not only do the axial oscillations
attenuate, but the droplet also moves towards the nearest wall at a faster rate. Hence
the magnitude of tss, again, reduces. Therefore, for this leaky dielectric system, the
magnitude of tss varies non-monotonically with the values of CaE. This phenomenon has
immense importance in efficient and rapid manipulation of biological and non-biological
deformable entities at will in a microfluidic system, constrained by its axial length.

We now discuss the physical reasoning behind these observations. In a steady
pressure-driven flow, the droplet’s cross-stream motion in microchannel occurs owing to
(i) hydrodynamic force (FH), originating out of the streamline curvature and deformed
shape of the droplet, and (ii) non-inertial lift force (FL), stemming from the wall effects.
However, when the droplet is subjected to oscillatory pressure-driven flow, FH becomes
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FIGURE 4. (a) Cross-stream migration characteristic of the droplet in an oscillatory microflow,
(b) Temporal variation of the transverse position of the droplet’s centroid. The variation of tss
with CaE is shown in the inset of figure 4(b). Important simulation parameters are (S, R) =
(0.5, 2), Ca = 0.3, Yd = 0.525, ρr = 1, λ= 1, a = 0.3, Re = 0.1 and St = 2.

oscillating in nature and creates oscillations in the droplet that hinders the droplet’s motion
in the transverse direction. The imposed oscillation is quantitatively characterized by the
dimensionless oscillation frequency or the Strouhal number, St. For high values of St, the
imposed oscillation arrests the transverse motion of the droplet to a considerable extent.
However, in the presence of an electric field, two additional forces also act on the droplet
and modify droplet’s migration characteristics in a dramatic fashion. These forces are
(i) dielectrophoretic force (FD = −1/2 · E2 · ∇ε) and (ii) electrohydrodynamic force
(FEHD).

Although variations in electrical permittivity trigger dielectrophoretic forces,
the asymmetric distribution of electric shear-driven flow circulation generates
electrohydrodynamic forces. The net dielectrophoretic force always attempts to drive the
droplet towards the wall in closer vicinity, irrespective of the electrical properties of the
system. This phenomenon can be justified through figure 5(a), where the variation of E2

is plotted along a vertical line, drawn from the bottom wall to top wall and going through
the centroid of the droplet.

Figure 5(a) illustrates that, for system A, the strength of E2 is higher at the bottom
side of the droplet as compared with its top side. Again, the magnitude of the E2 is
lower in the ambient fluid with respect to the inside fluid of the droplet. Similarly, for
system B, the strength of E2 is higher and lower at the bottom half and the top half of the
droplet, respectively, and the strength of E2 is higher outside the droplet with respect to
its inner region. This symmetry breaking in E2 creates an imbalance in dielectrophoretic
force at the two surfaces, producing a translational motion of the droplet in the upward
direction (Esmaeeli 2016). However, the net FEHD can drive the droplet toward the wall or
channel centreline based on the direction of electric-shear-driven flow circulation around
the droplet which is further determined from the conductivity ratio (R) and permittivity
ratio (S). Under a steady axial electric field, for system A, the direction of the flow
circulation is from the equator to the poles as depicted in figure 5(b). Thus, for system
A, the net FEHD tries to drive the droplet toward the centreline. Briefly, in system A, when
a droplet is placed above the centreline, the electric field creates two asymmetric vortex
pairs inside the droplet as depicted in figure 5(b). Therefore, the FEHD, arising because
of the inner vortex at the top half and bottom half (with respect to the horizontal line of
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FIGURE 5. The influence of electric field on the droplet. (a) Variation of E2 along a vertical
straight line passing from lower wall to the upper wall through the centroid of the droplet.
Streamline pattern of flow circulation, formed in the presence of an electric field for (b) system
A having (S, R) = (2, 0.5) and (c) system B having (S, R) = (0.5, 2). For (a–c), the value of CaE
is 1.5. (d) Variation of the magnitude of velocity along a probe passing through the centroid
of the droplet and drawn from the lower wall to the upper wall for system A having (R, S) =
(0.5, 2). Other parameters are Yd = 0.525, ρr = 1, λ= 1, a = 0.3, t = 2.5 and Re = 0.1.

symmetry) of the droplet, attempts to drive the droplet toward the centreline and nearby
wall, respectively. Figure 5(d) shows that the magnitude of the velocity is greater inside
the droplet in the upper half. Hence, the strength of the generated FEHD owing to inner
vortex pairs at the upper half is significantly higher with respect to that in the lower half.

Owing to this fact, the net FEHD due to the dynamics of the inner vortex attempts to
set the droplet in motion towards the channel centreline. Similar to the inner vortex pair,
counter-rotating pairs of outer vortices are generated just outside the droplet. The FEHD

owing to outer vortex pairs at the top side or bottom side attempts to pull the droplet
towards the nearest wall and the channel centreline, respectively. From figure 5(d), we
observe that the strength of the outer vortex pair at the bottom half of the droplet is greater
than the top half. Hence, the net FEHD caused by the dynamics of the outer vortex also
pulls the droplet towards the channel centreline. One can infer that the resultant effect of
the net FEHD due to the dynamics of vortices drives the droplet towards the centreline. It
is worth mentioning that the strength of the net FEHD depends on the strength of the flow
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FIGURE 6. (a) Variation of the magnitude of velocity along a probe passing through the centroid
of the droplet and drawn from the lower wall to the upper wall for system B. (b) Variation of E2

along a vertical straight line passing from the lower wall to the upper wall through the centroid
of the droplet for system B. Other parameters are Yd = 0.525, (R, S) = (2, 0.5), a = 0.3, t = 2.5,
Re = 0.1 and λ= 1.

circulation, which again relies on the strength of the electric field. Figure 5(d) shows that
for system A, with the enhancement of CaE, the strength of the flow circulations in the
inner vortex at the top half and outer vortex at the bottom half increases, which amplifies
the strength of the net FEHD. Thus, for system A, the direction and the patterns of the
droplet motion are determined by the interplay among FH , FL, FD and FEHD. For system
A, at higher values of CaE, the strength of the net FEHD increases drastically and becomes
dominant over the other forces that drive the droplet to the centreline at a faster rate in an
unwinding pathway.

Similar to system A, in system B the interplay among the FH , FL, net FD and net
FEHD also dictates the direction and pattern of the cross-stream motion of the droplet.
However, for system B, the direction of electrohydrodynamic flow takes place from poles
to the equators as depicted in figure 5(c). Therefore, the net FEHD tries to drive the droplet
towards the nearby wall. In short, in system B, when a droplet is kept above the centreline,
the electric field creates two asymmetric vortex pairs inside the droplet, as illustrated in
figure 5(c). Hence, FEHD, arising because of the inner vortex at the top half and the bottom
half (with respect to the horizontal line of symmetry) of the droplet, attempts to move
the droplet toward the adjacent wall and centreline, respectively. Along with inner vortex
pairs, two pairs of counter-rotating outer vortices are also formed. The FEHD originating
out of the outer vortex pairs at the upper half of the droplet tries to push the droplet towards
the centreline, whereas the FEHD owing to the outer vortex pair at the bottom half of the
droplet tries to push the droplet towards the nearby wall.

Figure 6(a) shows that the strength of inner vortex pairs and the outer vortex pairs is
high at the upper half and lower half of the droplet, respectively. Therefore, the net FEHD
owing to the dynamics of the vortex pairs attempts to move the droplet towards the nearby
wall. Furthermore, as we mentioned earlier, the net FD arising owing to the asymmetric
distribution of E2 also attempts to push the droplet towards the nearby wall. On the other
hand, the forces FL and FH attempt to move the droplet towards centreline, opposing these
effects. At a moderate value of CaE (= 1.5), figure 6(a) shows that the strength of the flow
circulation is comparatively weak. Therefore, the strength of net FEHD is also relatively low.
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FIGURE 7. Effect of the electric capillary number on udy (y-component of the velocity of the
droplet) in the combined presence of a steady axial electric field and background oscillatory flow.
Others parameter are (S, R) = (0.5, 2), Yd = 0.525, a = 0.3, λ= 1 and Re = 0.1.

Similarly, figure 6(b) also confirms that the magnitude of E2 is also comparatively lower
for CaE = 1.5. Hence, for this value of CaE, the united strength of net FEHD and FD is
also not significantly high. Therefore, in this scenario, the combined effect of FH and
FL remains dominating in nature. Owing to the opposing nature of net FEHD and FD,
they attempt to lessen the combined effect of FH and FL. As a result, for CaE = 1.5, the
transverse component droplet’s velocity (udy) towards the centreline reduces, as depicted
in figure 7. Because the magnitude of udy is low for CaE = 1.5 and the considered value of
the St is considerably high (St = 2), the droplet takes greater time to reach the centreline
and exhibits more number of oscillations before arriving at the centreline. Therefore, the
magnitude of tss also increases. If we further increase the value of CaE, the magnitude
of net FEHD and FD also increases. At CaE = 1.52, the united effect of net FEHD and FD
nullifies the combined strength of FH and FL almost instantaneously, and the droplet
immediately attains a steady-state position. Therefore, the magnitude of tss also reduces
drastically. For further increase in the value of CaE (= 2), the integrated strength of net
FEHD and FD becomes dominant in nature and shifts the steady-state transverse position
towards the upper wall. In this scenario, the axial oscillations of the droplet before reaching
the steady-state position again amplify and the magnitude of tss also increases. However,
on further increase of CaE (= 5), the magnitude of strength of flow circulation and the
magnitude of E2 enhance significantly, as shown in figures 6(a) and 6(b), respectively.
Therefore, the integrated strength of net FEHD and FD enhances markedly. This not only
arrests axial oscillations in the cross-stream motion, but also increases the magnitude of
udy drastically (as shown in figure 7), which leads to the faster rate of droplet motion
toward the wall closest to it.

A critical assessment of the intricate interplay of electromechanical and hydrodynamic
forces described previously reveals that the combined effect of the steady axial electric
field and the oscillatory pressure-gradient-driven flow on the droplet’s drift velocity is not
necessarily a mere linear superposition of the droplet’s velocity obtained in an oscillatory
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FIGURE 8. Regime plot showing two distinct regimes based on the values of Ca and CaE.
Regime 1: the effects of oscillatory flow and axial electric field may be combined by linear
superposition of the respective drift velocities. Regime 2: the linear superposition fails. Others
parameter are (S, R) = (0.5, 2), Yd = 0.525, a = 0.3, λ= 1 and Re = 0.1.

flow and steady axial electric field, separately. This is due to the two-way nonlinear
coupling between electric potential and flow field mediated by unique shape modulation:
the applied electric field modifies the fluid flow by developing Maxwell stress at the
interface of the droplet; dynamical evolution of the droplet’s shape being unknown a
priori. Again, this flow field causes the deformation of the droplet, which, in turn, modifies
the electric potential distribution. Owing to the fact that the intrinsic cause of the coupled
nature of the electromechanics and hydrodynamics is the shape deformation of the droplet,
the resultant effect of oscillatory flow and electric field can be combined by simply adding
together the respective drift velocities only in small deformation limits. Although this
represents the essential qualitative physics, a more quantitative depiction is presented in
the following.

In an effort to offer a quantitative perspective of the conceptual foundation delineated
previously, we next depict a regime plot across the Ca−CaE parameter space, in figure 8,
to probe the extent of validity of linear superposition of the drift velocities obtained
by considering the individual forcing parameters separately. The linear superposition
approach is considered to validate the outcome from the combined effect when the
difference between them is less than 0.5%. The regime plot clearly shows two distinct
regimes: regime 1, comprising ‘rectangular data points’ where the linear superposition
is valid; and regime 2, comprising ‘circular data points’, where it fails. Evidently, for
low values of Ca (typically, less than 0.01), the linear superposition works up to a
comparatively high value of CaE (= 0.06). This may be attributed to the fact that for
such low values of Ca, the viscous stress-induced droplet deformation is much less. As
the magnitude of Ca increases, this upper limit of CaE (for the validity of the linear
superposition) progressively reduces, stemming from a nonlinear interplay between the
electromechanics and hydrodynamics as mediated by the droplet deformation. Beyond
Ca = 0.06, the viscous stress-induced deformation of the droplet becomes so large that the
linear superposition deems completely invalid for any finite, non-zero values of CaE.

Next, we construct a regime diagram across the CaE–St parameter space for system A,
as shown in figure 9, in an effort to unveil of coupling between the imposed flow
oscillation and electrical forcing. In the figure, region A containing blue-coloured circular
markers denotes oscillatory downward motion of the droplet, whereas the red-coloured
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diamond-shaped markers in region B represent oscillation-free downward motion of the
same.

Figure 9 further suggests that, at low values of the St, the transition of the droplet motion
from oscillatory to non-oscillatory state takes place at comparatively low values of CaE.
However, on increasing the value of St, the magnitude of CaE necessary for converting
the droplet’s motion from oscillatory to oscillation-free nature increases. For substantially
high values of St, the droplet undergoes oscillatory downward motion for any possible
values of CaE. Competing influence of the electric-field-induced net FEHD and the imposed
oscillation induced net FH is responsible for such phenomena.

3.2.2. Effect of domain confinement on the cross-stream motion of the droplet
Figure 10 shows the effect of domain confinement on the cross-stream motion of the

droplet under the combined influence of steady axial electric field and the background
oscillatory flow. The degree of confinement is denoted by the domain confinement ratio
(Wc = 2a*/H*). In the present study, we have altered the magnitude of Wc by varying
the radius of the droplet keeping other parameters intact. Hence, the effect of the size
of the droplet is taken care of by the domain confinement ratio. One primary contribution
of the domain confinement manifests via alterations in the hydrodynamic interactions. This
alters the balance of the pertinent forces via electrohydrodynamic coupling, triggering
transients and cross-stream migration of droplets over small scales, unlike the unbounded
scenario (where a � H or Wc � 1)).

In addition, figure 10(a) shows that the droplet undergoes oscillatory cross-stream
motion following a zig–zag pathway in a weakly confined domain. However, in a tightly
confined domain, the axial oscillations before reaching the centreline attenuate. Beyond a
threshold value of Wc, the droplet moves to the channel centreline in an uncurling pathway
without making axial oscillations. Again, figure 10(b) illustrates that the magnitude of tss
also reduces with enhancement of the domain confinement ratio, which dictates more rapid
settling of the droplet to its final steady state in highly confined domains.

We now explain the physics behind the observed phenomena described previously. For
the considered values of electrical properties, the electrohydrodynamic flow circulation
is directed from the equator to poles, as shown in figures 11(a) and 11(b). Hence, the
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FIGURE 10. Effect of domain confinement on (a) the migration characteristic of the droplet and
(b) the temporal variation of the transverse position of the droplet’s centroid. The variation of tss
with Wc is shown in the inset of (b). Other parameters are (S, R) = (2,0.5), Ca = 0.3, CaE = 1.5,
a = 0.3, Re = 0.1, λ= 1, Yd = 0.525 and St = 2.

electrohydrodynamic force owing to inner vortex pair at the upper half and outer vortex
pairs at the lower half of the droplet attempts to shift the droplet towards the channel
centreline. On the other hand, the electrohydrodynamic force owing to the inner vortex pair
at the lower half and outer vortex pair at the upper half attempts to push the droplet towards
the domain wall. Figure 11(c) depicts that the magnitude of the velocity of the inner vortex
is higher at the upper half, as compared with the the lower half, and the difference in the
magnitudes of velocity enhances with the increase in relative domain confinement. The
consequent increase in the net FEHD attempts to drive the droplet towards the centreline.
In a similar way, the net FEHD attributable to the outer vortex also increases with the
enhancement of relative domain confinement. Furthermore, with an increase in the relative
domain confinement, the strength of FL also enhances. This effect is compounded by
enhanced FH in more tightly confined domains. An elevated combined strength of net
FEHD, FL and FH , thus, becomes capable of moving the droplet rapidly in an uncurling
pathway, with enhancements in the relative domain confinement.

3.2.3. Effect of electrical properties of the system on the cross-stream motion of the
droplet

The alteration of the cross-stream motion of the droplet for different values of (R/S)
is plotted in figure 12. Figure 12(a) reveals that, with increments in R/S ratio, the axial
oscillation of the droplet enhances before reaching the centreline and the transverse extent
traversed by the droplet is small. On decreasing the value of R/S, we observe a reduction
in the axial oscillations of the droplet, and the transverse distance travelled by the droplet
also increases. For comparatively lower values of R/S, the droplet moves to the centreline
without undergoing axial oscillations. Figure 12(b) further corroborates that the magnitude
of tss decays with the lowering of R/S.

The exclusive dependence of the transverse migration characteristics of the droplet
on the relative electrical properties can be explained as follows. In the confined
domain, the forces FL and FH attempt to move the droplet towards the domain centreline.
On the other hand, for R/S> 1, the direction of electrohydrodynamic flow takes place
from the poles to the equator, and the net FEHD owing to the inner vortex pairs at the
upper half and outer vortex pair at the lower half of the droplet tries to drive the droplet
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FIGURE 11. Streamline pattern of flow circulation, formed in the presence an electric field for
(a) Wc = 0.3 and (b) Wc = 0.6. (c) Distribution of the magnitude of velocity along a straight line
passing through the centreline and drawn from the lower wall to the upper wall. Other parameters
are (S, R) = (2,0.5), Ca = 0.3, CaE = 1.5, a = 0.3, Re = 0.1, λ= 1, t = 2.5, Yd = 0.525 and St = 2.
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FIGURE 12. Effect of the electrical property ratio on (a) the cross-stream migration of the
droplet and (b) the temporal variation of the transverse position of the droplet’s centroid. The
variation of tss with R/S is shown in the inset of (b). Other parameters are R = 0.5, Ca = 0.3,
CaE = 1.5, a = 0.3, Re = 0.1, λ= 1, Yd = 0.525 and St = 2.

towards the wall nearest to it. Similarly, the net FD also tries to shift the droplet in a
similar direction. The combined consequences of FD and FEHD neutralize the
combinatorial effect of FL and FH to a large extent, which leads to amplified axial
oscillations of the droplet and decrease in the transverse extent traversed by the same.
However, for R/S< 1, the direction of electrohydrodynamic flow takes place from equators
to poles and its strength is significantly large for R/S � 1. Therefore, the net FEHD tries to
move the droplet towards the channel centreline and its strength is also considerable. The
combined effect of net FEHD, FL and FH drives the droplet to the centreline in an uncurling
pathway, without incurring axial oscillations.

Figure 13 shows a regime diagram mapping three distinct regimes of droplet migration,
depending on the values of (R, S): region I, comprising ‘rectangular data points’, where
the droplet undergoes oscillatory upwards motion towards the wall near to it; region II,
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FIGURE 13. Regime plot based on the values of (S, R). Other parameters are Ca = 0.3,
CaE = 2, a = 0.3, Re = 0.1, Yd = 0.525, λ= 1, Wc = 0.6 and St = 2.

containing ‘circular data points’, representing the oscillatory downward motion of the
droplet towards channel centreline; region III, comprising ‘diamond-shaped data points’,
where the droplet moves to the centreline without following axial oscillations. In region I,
the combined strength of net FD and FEHD overweighs the combined effect of FH and FL
because R � S, and it leads to the motion of the droplet towards the nearby wall. On
decreasing the value of R and increasing the value of S, the dynamics of droplet motion
shifts from regime I to regime II. In regime II, for the data points satisfying R/S> 1, the
integrated effect of net FD and FEHD is not strong enough to outweigh the combined effect
of FH and FL. Thus, the droplet moves towards the centreline following a zig–zag pathway.

On the other hand, in region II, for the data points satisfying R/S< 1, the net
electrohydrodynamic force acts in the direction of FH and FL and their integrated strength
drives the droplet towards the centreline in a zig–zag pathway. For further decrease in
the value of R, there is a cross-over from regime II to regime III. In region III, because
R/S � 1, the strength of net FEHD is very high. This FEHD, along with FH and FL, attenuates
the axial oscillation in the cross-stream motion of the droplet before reaching the channel
centreline.

3.3. Experimental investigation

3.3.1. Fabrication of microfluidic device
For experimental verification of the essential theoretical findings of this work, we have

first fabricated a master-mould by a conventional photolithography technique and then
performed a standard soft-lithography process to obtain the polydimethylsiloxane (PDMS)
device from the mould (Dey et al. 2015; Santra et al. 2018a). After the soft-lithography
process, the solidified PDMS pattern is separated from the mould on sufficient curing, and
arrangements of the inlet and outlet port are made. The closing side of the microfluidic
device is patterned with gold electrodes using a shadow mask and DC sputtering coater
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FIGURE 14. Schematic illustration of the experimental set-up.

(Ted pella, Cressington 108, USA). The patterned glass substrates have then been bonded
to the PDMS microchannel by oxygen-plasma bonding (Dey et al. 2015).

3.3.2. Experimental set-up and methodology
Figure 14 shows the schematic illustration of the experimental set-up. The experimental

set-up comprises a PDMS-based T-shaped microchannel and gold electrodes assembly.
The T-shaped microchannel has been used to produce monodispersed droplets at the
desired frequency. After the production of the droplets at the T-junction, they are carried
out by the continuous phase in the outlet direction and at the diverging section. The
positions of droplets are shifted to an off-centre position owing to hydrodynamic lift force
produced by the flow from the secondary inlet. At this diverging section, a uniform DC
electric field is applied in the direction of flow. For supplying the DC voltage, we have
placed two gold electrodes in the axial direction, connected with a DC power supply
(Keithley- 2410). The electrodes are placed on one wall of the device (bottom glass
substrates) and the distance between the electrodes is 5 mm.

In the experimental analysis, we have estimated the unperturbed electric field strength
from the following equation:

E∗
∞ = −φ

∗
1 − φ∗

2

L∗ . (3.1)

Here, φ∗
2 and φ∗

1 are the electric potential at the high-voltage electrode and grounded
electrode (φ∗

1 = 0 in the analysis), respectively, and L* is the distance between the
electrodes. It is worth mentioning that, in the presence of a droplet, the electric field in
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the droplet region is non-uniform owing to the disparity in the electrical properties of the
droplet and the suspending fluid.

For a representative case study, the microchannel depth is 410 µm, whereas its width
(H) turns out to be 400 and 480 µm, for systems A and B, respectively (measured by a
Dektak 150 surface profiler). For our specific experiments reported here, these systems
are described as follows: (a) system A having S>R, where silicone oil (with εi = 3.43 ×
10−11 F m−1, σ i = 9.26 × 10−11 S m−1, µi = 2.046 × 10−2 Pa·s and ρ i = 1023 kg m−3) and
sunflower oil (with εe = 2.88 × 10−11 F m−1, σ e = 4.74 × 10−9 S m−1, µe = 4.9 × 10−2 Pa·s
and ρe = 921 kg m−3) are used as the dispersed phase and continuous phase, respectively;
(b) system B having R> S, where deionized (DI) water (with ε i = 6.90 × 10−10 F m−1,
σ i = 5.49 × 10−6 S m−1, µi = 1 × 10−3 Pa·s and ρ i = 998 kg m−3) and silicone oil are
employed as the dispersed phase and continuous phase, respectively. The interfacial
tension between the DI water and silicone oil is 33 mN m−1 (Peters & Arabali 2013),
whereas its magnitude for silicon oil and sunflower oil is 1.8 mN m−1 [measured using a
pendant drop method integrated with a goniometer (250 G1, Ramé-hart, Germany)].

To supply the continuous and dispersed fluids in the microchannel, three syringe pumps
(Harvard PHD 2000) are used. The flow rates at the T junction inlet (Qd), primary inlet
(Q1c) and secondary inlets (Q2c) are varied within a range of 20–50 µl h−1, 130–150
µl h−1 and 30–60 µl h−1, respectively. To achieve a time-varying flow field, a solenoid
pinch-off valve (Cole-Parmer) is coupled with the outflow flexible Tygon© tubing. The
solenoid valve is actuated by employing 8 Vpp (peak-to-peak voltage) sinusoidal waveform
with 2 Hz frequency generated from a function generator (Agilent 33220A).

3.3.3. Cross-stream migration characteristic of the droplet
Here, we compare the experimental results with the corresponding theoretical

predictions. For comparing these results, we have directly input the specific pressure
profile as obtained from the experimental analysis into the numerical simulations.

For measuring the differential pressure across the channel length, a differential pressure
sensor (Honeywell FDW) coupled with a data acquisition system [DAQ (NI 6009,
National Instruments)] is used as shown in figure 15(a). For using the differential pressure
sensor, we have selected two pressure tapping points 1 cm apart along the microchannel
length. The DAQ system, having an interface with Lab PC running Labview (National
Instruments) program, takes the raw voltage from the pressure sensors and converts it into
the relevant physical unit depending on the instrument calibration chart mentioned in the
program. For instance, figures 15(b) and 15(c) show the applied voltage waveform and
obtained differential pressure waveform, respectively, for (Q1c, Qd, Q2c) = (150 µl h−1,
30 µl h−1, 50 µl h−1). The analytical expression of the pressure waveform is obtained by
using a curve fitting tool (sum of sines model with two terms) in MATLAB (Mathworks,
USA) and expressed as

�p∗ = 11.67 sin(11.33t ∗ +2.683)+ 24.67 sin(0.0333t ∗ +2.794). (3.2)

The units of (�p*) and t* in (3.2) are Pascals (Pa) and seconds (s), respectively. The
first term (high-frequency component) of (3.2) makes the frequency of the differential
pressure waveform consistent with the experimental results, whereas the addition of the
second term (very low-frequency component) renders the amplitude consistent.

Figures 16(a) and 16(b) illustrate a comparison between the numerically and
experimentally obtained droplet shapes and migration characteristics, respectively, in the
combined presence of an axial electric field and background oscillatory flow. First of all,
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FIGURE 15. (a) Schematic illustration of the experimental set-up for measuring the pressure
differential across the channel length, (b) applied voltage waveform and (c) obtained differential
pressure waveform.
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FIGURE 16. (a) Comparison between experimentally and numerically obtained droplet
configurations, at E∗∞ = 1 × 102 kV m−1. (b) Comparison between experimentally
and numerically obtained migration characteristics. Other parameters are Ca = 0.0015,
(R, S) = (O(104), 20.1), λ= 0.05, Wc = 0.47 and Re ∼ 10−2.

these figures show that the axial electric field has a profound effect in confined domain
unlike for the case of unbounded domain (Mandal et al. 2016). Second, figure 16(b) points
out that for system B, having R> S, the higher strength of the electric field not only
suppresses the axial oscillation of the droplet in its cross-stream motion, but also drives
to droplet to the wall nearest to it at a faster rate. These figures also demonstrate that
the numerically and experimentally obtained droplet shapes and migration characteristics
exhibit good agreement and justify the validity of the numerical findings.

Next, we experimentally demonstrate the effect of the electric field on the cross-stream
migration characteristics of the droplet for system A, having S>R, as depicted in figure 17.
For the present system, the values of Qd, Q1c and Q2c are taken as 20 µl h−1, 130 µl h−1

and 35 µl h−1, respectively, and the approximate analytical expression of the differential
waveform is expressed as

�p∗ = 11.81 sin(11.33t ∗ +2.847)+ 26.36 sin(0.03937t ∗ +2.974). (3.3)
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FIGURE 17. (a) Effect of electric field strength on the cross-stream motion of the droplets.
(b) Shape and position of the droplet at different times for (i) E∗∞ = 0 and (ii) 0.8 × 102 kV m−1.
Other parameters are (R, S) = (0.02, 1.19), λ= 0.42, Ca = 0.006, Wc = 0.45 and Re ∼ 10−2.

From figure 17(a), we observe that as we increase the strength of the electric field, the
axial oscillation of the droplets prior to reaching the centreline attenuates and the droplet
reaches the centreline at a faster rate, justifying the theoretical findings. In figure 17(b), we
demonstrate the experimentally obtained shapes and positions of the droplet at different
times for different values of the electric field, as the primary observable characteristic
governing the migration dynamics.

Next, we experimentally demonstrate the domain confinement-induced alteration in
cross-stream migration of the droplet in system A, under the combined presence of a
steady axial electric field and confined oscillatory microflow, as shown in figure 18. To
vary the confinement ratio as mediated by the size of the droplet, we have varied the flow
rate of the dispersed fluid (Qd), to enable alterations in the initial droplet size. Figure 18(a)
shows that the axial oscillations of the droplet before reaching the centreline dampen out
with the increase in the value of Wc (degree of confinement) and the droplet migrates
towards the centreline at a faster rate. This corroborates our theoretical observations. For
Wc = 0.72, for instance, the droplet reaches the centreline without undergoing any axial
oscillations. Physical reasoning behind such observed phenomenon has been presented
in the discussions on our theoretical findings. In figure 18(b), we further depict the
experimentally obtained shape and position of the droplet at different time instances, for
different confinement ratios. Such deformation characteristics are essentially responsible
for the observed interplay between the electrical and hydrodynamic influences mediated
by confinement-induced interactions. These results of fundamental importance towards
developing extended constitutive forms and physical models of transport phenomena
observed in nature and engineering (Ganguly & Chakraborty 2004; Pal et al. 2006;
Chakraborty & Durst 2007; Chakraborty & Padhy 2008; Dongari, Durst & Chakraborty
2010; Kar, Maiti & Chakraborty 2015; Bandopadhyay et al. 2016; Poddar et al. 2016; Kunti,
Bhattacharya & Chakraborty 2017).
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FIGURE 18. (a) Effect of domain confinement on the cross-stream motion of the droplets
at E∗∞ = 0.8 × 102 kV m−1. (b) Shape and position of the droplet at different times for
(i) Wc = 0.45 and (ii) Wc = 0.72. Other parameters are (R, S) = (0.02, 1.19), λ= 0.42, Ca = 0.006
and Re ∼ 10−2.

4. Conclusions

We have predicted theoretically and confirmed via experimental studies that the
combined effect of confinement, electromechanics and hydrodynamics gives rise to several
artifacts in the cross-stream motion of a droplet in the combined presence of an axial
electric field and oscillatory microflow, which are non-existent in an unbounded steady
flow under axial electrical forcing. Important findings from our study are as follows.

(i) For leaky dielectric systems having S>R and ΩT < 0, the presence of an axial
electric field facilitates rapid cross-stream migration of the droplet via suppressing
the axial oscillations, prior to reaching the channel centreline. Complete attenuation
of the oscillatory characteristics of the droplet migration takes place beyond a
threshold value of CaE that increases with the rise in the values of St.

(ii) For leaky dielectric systems having R> S and ΩT > 0, at moderate values of
CaE, the presence of an electric field induces additional axial oscillations in the
migration characteristics and delays the cross-stream motion of the droplet towards
the centreline. For a slight increase in the magnitude of CaE, the droplet achieves the
steady-state transverse position almost instantaneously, where the initial and final
positions of the droplet are virtually identical. In contrast, beyond a threshold value
of CaE, a simultaneous reversal of the droplet motion and an enhancement of the
rate of cross-stream migration of the droplet can be noted.

(iii) Domain confinement is also found to have a significant effect in suppressing axial
oscillations in the cross-stream motion of the droplet as well as in the conversion of
its migration pattern from oscillatory to oscillation-free. With a rise in the degree of
confinement, the time taken by the droplet to attain a steady-state transverse position
also decreases.

(iv) The electrical property ratio (R/S) also shows a profound effect on the cross-stream
migration. Below a threshold value of R/S, the migration rate of the droplet is
significantly high and the time taken by the droplet to reach a steady-state transverse
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position is low. Depending on the values of R and S, the droplet exhibits three
distinct patterns of migration: (a) oscillatory motion towards the adjacent wall,
(b) oscillatory motion towards the channel centreline and (c) oscillation-free motion
towards the channel centreline.

The important findings listed here implicate that the interplay between the
electromechanics and the oscillatory hydrodynamics in a confined fluidic environment
may potentially be translated into a physics-based unified design principle, holding the
potential of becoming the fundamental premise of developing a versatile and efficient
in vitro platform for performing several processes of emerging impact, innovation and
interest encompassing a wide variety of applications ranging from engineering to biology.
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