VOL. 2 (1970), 275-276.

A note on types

B. J. Gardner

A characterization is obtained of the types τ for which $[G/G(\tau)](\tau) = 0$ for all torsion-free abelian groups G.

In a torsion-free abelian group G, for any type τ , the elements x of G with types T(x) such that $T(x) \geq \tau$ form a subgroup $G(\tau)$. (We shall use the notation of [1], Chapter VII.) The aim of this note is to prove

THEOREM. Let τ be a type. Then $[G/G(\tau)](\tau) = 0$ for all torsion-free abelian groups G if and only if τ is the type of a height $(h_1, h_2, \ldots, h_n, \ldots)$ where h_n takes only the values 0 and ∞ .

Suppose τ is the type of a height $(h_1, h_2, \ldots, h_n, \ldots)$ where $h_n = 0$ or ∞ for each n, and let m be such that $h_m = \infty$. If for some torsion-free G there is an element g such that $T(g + G(\tau)) \ge \tau$, then for each positive integer i, there exists $g_i \in G$ for which

 $p_m^i g_i - g \in G(\tau)$. But then $p_m^i g_i - g$ is divisible by p_m^i , so g is also. Thus $T(g) \ge \tau$, so $[G/G(\tau)](\tau) = 0$.

The converse is a consequence of

PROPOSITION. Let τ be the type of a height $(h_1, h_2, \ldots, h_n, \ldots)$ where $0 < h_n < \infty$ for infinitely many values of n. Then there is a torsion-free abelian group G with the following properties:

(i) G has rank 2,

(ii) $G(\tau)$ has rank 1,

Received 21 February, 1970.

275

B.J. Gardner

(iii)
$$[G/G(\tau)](\tau) = G/G(\tau)$$
.

Proof. Let $M = \{n | h_n = \infty\}$. Let $(k_1, k_2, \ldots, k_n, \ldots)$ be the subsequence of positive finite terms of $(h_1, h_2, \ldots, h_n, \ldots)$ and re-label the associated primes as q_1, q_2, \ldots . Let $\{x, y\}$ be a basis for a two-dimensional rational vector space V and G the subgroup of V generated by

$$\left\{p^{-n}x, p^{-n}y, q_n^{-k}x, q_n^{-k}(q_n^{-1}x+y) \mid p \in M, n = 1, 2, \ldots\right\}$$

A routine argument using the linear independence of x and y shows that the height of x is $(h_1, h_2, \ldots, h_n, \ldots)$, so that $T(x) = \tau$.

Suppose y is divisible by $q_n^{k_n}$ for some n. Since the same is true of $q_n^{-1}x + y$, x has $q_n^{-height} k_n + 1$ at least, which is impossible. Thus $T(y) < \tau$. Clearly $[x]_* \subseteq G(\tau)$ where $[x]_*$ is the smallest pure subgroup of G containing x. If this inclusion is proper, then $G(\tau)$, being a pure subgroup, must have rank 2 and therefore coincide with G. But $y \notin G(\tau)$ and hence $G(\tau) = [x]_*$.

Let π denote the natural homomorphism from ${\it G}$ to ${\it G/[x]}_{\star}$. ${\it G/[x]}_{\star}$ is generated by

$$\left\{p^{-n}\pi(y), q_n^{-k}n\pi(y) \mid p \in M, n = 1, 2, \ldots\right\}$$

and so is rational of type τ . Thus

$$[G/G(\tau)](\tau) = [G/[x]_{\star}](\tau) = G/[x]_{\star} = G/G(\tau) .$$

Reference

[1] L. Fuchs, Abelian groups (Publishing House of the Hungarian Academy of Sciences, Budapest, 1958).

University of Tasmania, Hobart, Tasmania.

https://doi.org/10.1017/S0004972700041903 Published online by Cambridge University Press

276