VOL. 2 (1970), 275-276.

A note on types

B. J. Gardner

A characterization is obtained of the types τ for which $[G / G(\tau)](\tau)=0$ for all torsion-free abelian groups G.

In a torsion-free abelian group G, for any type τ, the elements x of G with types $T(x)$ such that $T(x) \geq \tau$ form a subgroup $G(\tau)$. (We shall use the notation of [1], Chapter VII.) The aim of this note is to prove

THEOREM. Let τ be a type. Then $[G / G(\tau)](\tau)=0$ for all torsion-free abelian groups G if and only if τ is the type of a height $\left(h_{1}, h_{2}, \ldots, h_{n}, \ldots\right)$ where h_{n} takes only the values 0 and ∞.

Suppose τ is the type of a height $\left(h_{1}, h_{2}, \ldots, h_{n}, \ldots\right)$ where $h_{n}=0$ or ∞ for each n, and let m be such that $h_{m}=\infty$. If for some torsion-free G there is an element g such that $T(g+G(\tau)) \geq \tau$, then for each positive integer i, there exists $g_{i} \in G$ for which $p_{m}^{i} g_{i}-g \in G(\tau)$. But then $p_{m^{g}}^{i}-g$ is divisible by p_{m}^{i}, so g is also. Thus $T(g) \geq \tau$, so $[G / G(\tau)](\tau)=0$.

The converse is a consequence of
PROPOSITION. Let τ be the type of a height $\left(h_{1}, h_{2}, \ldots, h_{n}, \ldots\right)$ where $0<h_{n}<\infty$ for infinitely many values of n. Then there is a torsion-free abelian group G with the following properties:
(i) G has rank 2 ,
(ii) $G(\tau)$ has rank 1 ,

Received 21 February, 1970.
(iii) $[G / G(\tau)](\tau)=G / G(\tau)$.

Proof. Let $M=\left\{n \mid h_{n}=\infty\right\}$. Let $\left(k_{1}, k_{2}, \ldots, k_{n}, \ldots\right)$ be the subsequence of positive finite terms of $\left(h_{1}, h_{2}, \ldots, h_{n}, \ldots\right)$ and re-label the associated primes as q_{1}, q_{2}, \ldots. Let $\{x, y\}$ be a basis for a two-dimensional rational vector space $\cdot V$ and G the subgroup of V generated by

$$
\left\{p^{-n} x, p^{-n} y, q_{n}^{-k} n_{x}, q_{n}^{-k}\left(q_{n}^{-1} x+y\right) \mid p \in M, n=1,2, \ldots\right\}
$$

A routine argument using the linear independence of x and y shows that the height of x is $\left(h_{1}, h_{2}, \ldots, h_{n}, \ldots\right)$, so that $T(x)=\tau$.
Suppose y is divisible by $q_{n}{ }^{n}$ for some n. Since the same is true of $a_{n}^{-1} x+y, x$ has q_{n}-height $k_{n}+1$ at least, which is impossible. Thus $T(y)<\tau$. Clearly $[x]_{*} \subseteq G(\tau)$ where $[x]_{*}$ is the smallest pure subgroup of G containing x. If this inclusion is proper, then $G(\tau)$, being a pure subgroup, must have rank 2 and therefore coincide with G. But $y \notin G(\tau)$ and hence $G(\tau)=[x]_{*}$.

Let π denote the natural homomorphism from G to $G /[x]_{*} . G /[x]_{*}$ is generated by

$$
\left\{p^{-n} \pi(y), q_{n}^{-k_{n}} n_{\pi(y)} \mid p \in M, n=1,2, \ldots\right\}
$$

and so is rational of type τ. Thus

$$
[G / G(\tau)](\tau)=\left[G /[x]_{*}\right](\tau)=G /[x]_{*}=G / G(\tau) .
$$

Reference
[1] L. Fuchs, Abelian groups (Publishing House of the Hungarian Academy of Sciences, Budapest, 1958).

University of Tasmania, Hobart, Tasmania.

