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Abstract In this paper we give a short, direct proof, using only properties of the Haagerup tensor
product, that if an operator algebra A possesses a diagonal in the Haagerup tensor product of A with
itself, then A must be isomorphic to a finite-dimensional C∗-algebra. Consequently, for operator algebras,
the first Hochschild cohomology group H1(A, X) = 0 for every bounded, Banach A-bimodule X, if and
only if A is isomorphic to a finite-dimensional C∗-algebra.
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1. Introduction

Let A be a complex algebra with unit 1. A diagonal in A⊗A is an element u =
∑

ai ⊗ bi

such that
∑

aibi = 1 and
∑

(aai) ⊗ bi =
∑

ai ⊗ (bia) for every a ∈ A. For example, if
Mn denotes the algebra of n × n complex matrices and Eij denotes the standard matrix
units, then

∑n
i=1 Ei1 ⊗ E1i is easily seen to be a diagonal in Mn ⊗ Mn.

It is fairly well known that the existence of a diagonal is equivalent to the vanishing
of the first Hochschild cohomology H1(A, X) for every A-bimodule X. Since this fact is
elementary, we quickly recall a proof, for clarity. First, assume that we have a diagonal
u, as above, and that we are given an A-bimodule X and a derivation δ : A → X. If we
set x =

∑
δ(ai)bi, then it is easily checked that δ(a) = xa − ax and so every derivation

into X is inner. That is, H1(A, X) = 0 for every X. To prove the converse, one simply
considers the A-bimodule A ⊗ A and lets X be the submodule which is the kernel of the
product map. The map δ : A → X given by δ(a) = a ⊗ 1 − 1 ⊗ a is easily seen to be
a derivation. If w ∈ X is the element that implements this necessarily inner derivation,
then it is easily checked that u = 1 ⊗ 1 − w is the desired diagonal.

The above proof easily extends to the case of various topological algebras, where the
module actions and derivations are restricted to those which are continuous in some
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appropriate sense. The only change that must be made is that the algebraic tensor
product of A with itself is replaced by its completion in some appropriate topology.

In this setting, Helemskii [4] and Selivanov [8] proved that a C∗-algebra A has the
property that every bounded derivation into every bounded A-bimodule is inner if and
only if A is finite dimensional. By the above remarks this can be seen to be equivalent
to characterizing those C∗-algebras A which possess a diagonal in the projective tensor
product of A with itself. The first author extended this result [5] by proving that a C∗-
algebra A has the property that every completely bounded derivation into every operator
A-bimodule is inner if and only if A is finite dimensional. Again by the above remarks,
this latter result is equivalent to proving that the only C∗-algebras A which possess a
diagonal in the Haagerup tensor product of A with itself are the finite-dimensional C∗-
algebras. Because the projective tensor norm is larger than the Haagerup tensor norm,
this latter result implies the result of Helemskii and Selivanov.

Unfortunately, all of the proofs cited above relied on non-trivial results. In particular,
the proof in [5] relied on deep results about nuclear and injective C∗-algebras. The
purpose of this paper is to state a more general result, and to give a short, self-contained
proof using only properties of the Haagerup tensor product. Specifically, we show that if
A is any algebra of operators on a Hilbert space with a diagonal in the Haagerup tensor
product of A with itself, then A is necessarily isomorphic to a finite direct sum of matrix
algebras.

2. Main results

In this section we present our main results. Let H be a Hilbert space and let B(H)
denote the algebra of bounded linear operators on H. We let A be any subalgebra of
B(H) which contains the identity operator. We shall call each such algebra an algebra of
operators, and we note that we do not require it to be self-adjoint.

We briefly recall the definition of the Haagerup tensor product. Given w ∈ A ⊗ A we
set

‖w‖h = inf
{∥∥∥∑

aia
∗
i

∥∥∥1/2 ∥∥∥∑
b∗
i bi

∥∥∥1/2
}

, (2.1)

where the infimum is taken over all ways to express w as a finite sum
∑

ai ⊗ bi of
elementary tensors. This quantity defines a norm on A ⊗ A called the Haagerup tensor
norm and the completion of A⊗A in this norm is called the Haagerup tensor product of
A with itself and is denoted A ⊗h A.

This tensor norm has two very nice properties that we shall use. The first is that any
w in the completion has a representation as a norm-convergent series, w =

∑∞
i=1 ai ⊗ bi

with ‖
∑∞

i=1 aia
∗
i ‖ and ‖

∑∞
i=1 b∗

i bi‖ both finite. The second is that such a represen-
tation may be chosen so that {ai}∞

i=1 and {bi}∞
i=1 are both strongly independent sets

in the following sense. A sequence of elements {ai}∞
i=1 which defines a bounded oper-

ator (a1, a2, . . . ) ∈ B(H∞, H) is strongly independent if the equation
∑∞

i=1 λiai = 0,
where {λi}∞

i=1 ∈ �2, can only be satisfied by λi = 0, i � 1. An equivalent formulation [1,
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Lemma 2.2] is that the subspace

{(φ(a1), φ(a2), . . . ) : φ ∈ A∗}

is norm dense in �2. For these facts about the Haagerup tensor product we refer the
reader to [2,3,9,10].

Theorem 2.1. Let A be an algebra of operators on a Hilbert space. If there is a
diagonal in A ⊗h A, then A is finite dimensional.

Proof. Let u =
∑∞

i=1 ai ⊗ bi be a diagonal, where the series is norm convergent and
{ai}∞

i=1 and {bi}∞
i=1 are strongly independent. Since

∞∑
i=1

aibi = 1 (2.2)

is a norm-convergent series, we may choose M so that

∥∥∥∥
M∑
i=1

aibi − 1
∥∥∥∥ < 1

2 , (2.3)

and we set c = (
∑M

i=1 aibi)−1. From the Neumann series we know that ‖c‖ < 2. Now
define two constants k and ε by

k = max
{∥∥∥∥

∞∑
i=1

aia
∗
i

∥∥∥∥
1/2

,

∥∥∥∥
∞∑

i=1

b∗
i bi

∥∥∥∥
1/2}

, ε = (8Mk2)−1. (2.4)

Since, for each x ∈ A, the series

∞∑
i=1

xai ⊗ bi =
∞∑

i=1

ai ⊗ bix (2.5)

are norm convergent, we may apply, by [3, Proposition 3.7], an element φ ∈ A∗ to
(2.5) to obtain

∞∑
i=1

φ(xai)bi =
∞∑

i=1

φ(ai)bix. (2.6)

From the strong independence of {ai}∞
i=1, we may choose linear functionals φj ∈ A∗,

1 � j � M , such that

‖(φj(a1), φj(a2), . . . ) − ej‖2 < ε, 1 � j � M, (2.7)

where {ej}∞
j=1 denotes the canonical orthonormal basis for �2.

It now follows that
∥∥∥∥bjx −

∞∑
i=1

φj(ai)bix

∥∥∥∥ � ε

∥∥∥∥
∞∑

i=1

x∗b∗
i bix

∥∥∥∥
1/2

� εk‖x‖, (2.8)
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for 1 � j � M , and for all x ∈ A. Using (2.6), we have that

∥∥∥∥bjx −
∞∑

i=1

φj(xai)bi

∥∥∥∥ � εk‖x‖, (2.9)

for 1 � j � M , and for all x ∈ A.
Since limn→∞ ‖

∑∞
i=n aia

∗
i ‖ = 0, we may choose N sufficiently large that

∥∥∥∥bjx −
N∑

i=1

φj(xai)bi

∥∥∥∥ � 2εk‖x‖ (2.10)

holds for 1 � j � M , and for all x ∈ A. The inequality ‖aj‖ � k follows from (2.4), and
so the relation ∥∥∥∥

M∑
j=1

[
ajbjx −

N∑
i=1

φj(xai)ajbi

]∥∥∥∥ � 2εMk2‖x‖ (2.11)

is a consequence of multiplying the expression in (2.10) on the left by aj and summing
over j. Now multiply (2.11) on the left by c and use (2.4) to obtain

∥∥∥∥x −
M∑

j=1

N∑
i=1

φj(xai)cajbi

∥∥∥∥ � 4εMk2‖x‖ � ‖x‖/2, x ∈ A. (2.12)

Define a finite-dimensional subspace of A by

B = span{cajbi : 1 � j � M, 1 � i � N}.

The inequality (2.12) implies that the Banach space quotient map from A to A/B has
norm at most 1

2 , which can only happen when A = B. We conclude that A is finite
dimensional. �

Ruan [7] has introduced another Hochschild cohomology for operator algebras which
uses a family of maps called the jointly completely bounded maps. The relevant tensor
norm for this cohomology is called the operator space projective tensor norm.

Corollary 2.2. Let A be an algebra of operators on a Hilbert space. If there is a
diagonal in either the projective or operator space projective tensor product of A with
itself, then A is finite dimensional.

Proof. For any element in the algebraic tensor product A ⊗ A, we have that its
projective tensor norm is at least as large as its Haagerup norm. Thus, the identity
map on A ⊗ A extends to a contractive map from the projective tensor product to the
Haagerup tensor product. It is easily checked that if u is a diagonal in the projective
tensor product, then its image under this map is a diagonal in the Haagerup tensor
product, and the result follows from Theorem 2.1. A similar argument applies to the
operator space projective tensor product. �

https://doi.org/10.1017/S0013091500001073 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001073


Diagonals in tensor products of operator algebras 651

Note that, since any A as above is finite dimensional, the algebraic tensor product is
complete in every tensor norm. Thus we are reduced to the purely algebraic problem of
determining those finite-dimensional complex algebras A that have a diagonal in A ⊗ A,
which is essentially Burnside’s Theorem. We supply a simple proof below that is based
on the ideas that we have already introduced.

Theorem 2.3. Let A be a finite-dimensional, unital, complex algebra. If A has a
diagonal in A ⊗ A, then A is isomorphic to a direct sum of matrix algebras.

Proof. Since A can be represented as the algebra of left multiplication operators on
itself, we may assume that A is a subalgebra of Mn for some n.

Now suppose that p is an invariant orthogonal projection for A, that is, pap = ap for
all a in A. Then it is easily seen that X ≡ pMn(1 − p) is an A-bimodule, and that the
equation

δ(a) ≡ pa(1 − p) = pa − ap (2.13)

defines a derivation of A into X. By hypothesis, there exists x ∈ X such that

δ(a) = ax − xa, a ∈ A. (2.14)

Combining these last two equations, we see that (p+x) commutes with A. Since x2 = 0,
the element y ≡ 1 + x is invertible in Mn with inverse y−1 = 1 − x.

The equations

p(1 + x)a(1 − x) = (p + x)a(1 − x) = a(p + x)(1 − x) = ap (2.15)

and
(1 + x)a(1 − x)p = (1 + x)ap = (1 + x)pap = pap = ap (2.16)

show that p commutes with yAy−1, and thus reduces this algebra.
By inductively choosing such projections p and conjugating by the corresponding

invertible elements, we may assume that the representation π : A → Mn is a finite
direct sum of representations, πi : A → Mni

, i = 1, . . . , k, where the image πi(A) is a
subalgebra of Mni

that has no non-trivial invariant projections. Thus, πi(A) is a transitive
subalgebra, and hence πi(A) = Mni by Burnside’s Theorem [6, Corollary 8.6].

Using the simplicity of each matrix algebra, it is now easy to argue that A is isomorphic
to a finite direct sum of matrix algebras. To see this, note that if Ji = ker(πi), then πj(Ji)
is either Mnj or (0) and argue by induction on k. �

Corollary 2.4. If A is an algebra of operators and A has a diagonal in one of the
Haagerup, projective or operator space projective tensor products of A with itself, then
A is isomorphic to a finite direct sum of matrix algebras.

We end by formally stating the equivalent theorems in terms of Hochschild cohomology.
If A is any Banach algebra, then by an A-bimodule X we mean any Banach space X

equipped with an A-bimodule action satisfying ‖axb‖ � c‖a‖ ‖x‖ ‖b‖, for some constant
c. An A-derivation is a bounded linear map δ : A → X satisfying δ(ab) = aδ(b) + δ(a)b.
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An A-derivation is inner if there exists x in X such that δ(a) = ax − xa. Finally,
H1(A, X) denotes the quotient of the space of all bounded derivations by the space of
inner derivations.

Corollary 2.5. Let A be a Banach algebra, which has a bounded faithful representa-
tion as an algebra of operators on a Hilbert space. Then H1(A, X) = 0 for every bounded
A-bimodule X if and only if A is isomorphic to a finite direct sum of matrix algebras.

Remark 2.6. Similar results hold for the completely bounded Hochschild cohomology
of an operator algebra. For the definitions and results see [5].

Acknowledgements. Both authors were partly supported by grants from the NSF.
V.I.P. also thanks the Department of Mathematics, Rice University, where parts of this
research were completed.

References

1. S. D. Allen, A. M. Sinclair and R. R. Smith, The ideal structure of the Haagerup
tensor product of C∗-algebras, J. Reine Angew. Math. 442 (1993), 111–148.

2. D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Analy-
sis 99 (1991), 262–292.

3. D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product, J. Lond.
Math. Soc. 45 (1992), 126–144.

4. A. Helemskii, The homology of Banach and topological algebras (Kluwer, Dordrecht,
1989).

5. V. I. Paulsen, Relative Yoneda cohomology for operator algebras, J. Funct. Analysis
157 (1998), 358–393.

6. H. Radjavi and P. Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und
ihrer Grenzgebeite, Band 77 (Springer, 1977).

7. Z.-J. Ruan, Operator amenability of A(G), Am. J. Math. 117 (1995), 1449–1474.
8. Yu. V. Selivanov, Biprojective Banach algebras, Math. USSR Izv. 15 (1980), 387–399.
9. A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann algebras,

London Mathematical Society Lecture Note Series, no. 203 (Cambridge University Press,
1995).

10. R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J.
Funct. Analysis 102 (1991), 156–175.

https://doi.org/10.1017/S0013091500001073 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001073

