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ABSTRACT. An essential problem in snow science is to predict the changing form of
ice grains within a snow layer. Present theories are based on the idea that form changes are
driven by mass diffusion induced by temperature gradients within the snow cover. This
leads to the well-established theory of isothermal- and temperature-gradient metamorph-
ism. Although diffusion theory treats mass transfer, it does not treat the influence of this
mass transfer on the form� the curvature radius of the grains and bonds� directly.
Empirical relations, based on observations, are additionally required to predict flat or
rounded surfaces. In the following, we postulate that metamorphism, the change of ice
surface curvature and size, is a process of thermodynamic optimization in which entropy
production is minimized. That is, there exists an optimal surface curvature of the ice
grains for a given thermodynamic state at which entropy production is stationary. This
state is defined by differences in ice and air temperature and vapor pressure across the
interfacial boundary layer. The optimal form corresponds to the state of least wasted
work, the state of minimumentropy production.We show that temperature gradients pro-
duce a thermal non-equilibrium between the ice and air such that, depending on the
temperature, flat surfaces are required to mimimize entropy production.When the tem-
peratures of the ice and air are equal, larger curvature radii are found at low temperatures
than at high temperatures. Thus, what is known as isothermal metamorphism corres-
ponds to minimum entropy production at equilibrium temperatures, and so-called tem-
perature-gradient metamorphism corresponds to minimum entropy production at non-
equilibrium temperatures. The theory is in good agreement with general observations of
crystal form development in dry seasonal alpine snow.

1. INTRODUCTION

Mass transport, heat transfer andphase changes are the fun-
damentalthermodynamicprocesses inthesnowcover.Anim-
portant phenomenon, metamorphism� the change of ice
grain formsof the snowcoverover time� is inducedbythese
processes. Traditionally, metamorphism has been studied
using theconcepts ofmass andenergyconservationwhich re-
quire a detailed knowledge of the movement of water mol-
ecules on the ice surface or the diffusionof water vapor in the
pore space. For an overview, see Colbeck (1987). Rate equa-
tions describing grain growth havebeenproposed (Colbeck,
1983;Gubler,1985; Lehningandothers,2002)with the goal of
modeling the development of the seasonal snow cover (Brun
and others,1992; Bartelt and Lehning, 2002).

The application of heat and mass transport principles is
essential for understanding the processes involved in snow
metamorphism; however, conservation principles do not in-
clude geometric aspects and cannot solve the problem of
form. This is evident in the present generation of meta-
morphism models which predict growth rates and crystal
size, but the form changes are still based on empirical par-
ameterizations of field or laboratory observations (Brun and
others,1992; Lehning and others, 2002). Metamorphism can
be described by such relationships, but not the underlying
principle.

The question is whether there exists a simple thermo-
dynamic function related directly to form. Such a function

would provide a thermodynamic principle that would allow
the determination of the natural snow structure under well-
defined thermodynamic constraints such as the temperature
state, the applied temperature gradient and mass supply.
Heat-transfer engineers use such functions because they try
to reduce the increase in entropy per unit time, the so-called
entropy production (Bejan, 1996). During the design of a
thermodynamic system (e.g. a heat exchanger), their object-
ive is to find an optimal geometric arrangement of system
components such that entropy production is minimized.
The minimum of entropy production corresponds to a
thermodynamic statewhere the least work is dissipated (Pri-
gogine,1980, p.88). Ingeophysics andbiology theprinciple of
minimum entropy production has been applied to see if the
minimum entropy production yields the optimal or natural
visible form of river basins or living trees (Bejan, 2000). Nat-
ural scientists argue that the optimal form arises out of the
competition between at least two mechanisms, or two driv-
ing forces, and their respective fluxes. A similar principle
was used by Bejan (2000) to predict the formation of snow-
flakes. Since the conjugate forces and fluxes are also the
source of increasing entropy, the final form is the one that
makes entropy production stationary. In a thermodynamic
system, the driving forces can be temperature and pressure,
and the corresponding fluxes are heat andmass flows.

In snow the mass fluxes are the reason for the changes in
form of the ice grains. The driving force is the difference in
water-vapor pressure over the ice surface which depends on
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temperature and the curvature radius of the ice grains.This
force and flux produce entropy, together with other form-
dependent and form-independent processes. In the follow-
ing, we postulate that the form of the ice grains will be
changed until the entropy production is a minimum within
the constraints givenby the thermodynamic variables (p, T,
V ). This will be a non-equilibrium steady state. In view of
this, we must:

Identify the irreversible (entropy-producing) processes
within a clearly defined thermodynamic control volume.

Express the irreversible processes in terms of the geo-
metric arrangement of ice grains.

Find the optimal ‘‘form’’ for stationary entropy produc-
tion by minimizing the entropy production function
with respect to a‘‘form’’ variable.

The irreversible processes are formulated using constitu-
tive relations for heat conductivity and mass transfer. It is
important to note that not all thermodynamic processes
produce entropy. For instance, sublimation and subsequent
deposition do not produce entropy because phase changes
are reversible and thus isentropic processes. The model for
the geometric arrangement of the ice grains will be a com-
monly used model for snow microstructure applications
(Lehning and others, 2002; Miller, 2002): the grains are uni-
form spheres of polycrystalline ice that are bonded together
by necks (Fig. 1). Such forms are found typically in dry,
early-winter seasonal alpine snowpacks. The single ice
crystals are joined together at crystal boundaries; the grains
are joined together at the necks. A grain can consist of many
single crystals. The crystal boundaries can be seen as fine
dark lines in Figure 1. Under sufficient magnification, they
appear as grooves. The migration of molecules along these
grooves is not the subject of our investigations. Hence, for a
given density, our model contains two independent form
parameters, the sphere’s curvature radius and the radius of
the neck.We will choose the curvature radius of the grain
surface as the appropriate form variable.We can easily find
theminimumentropy productionbydifferentiating the sum
of the entropy-producing terms with respect to curvature
radius.

In summary, we hypothesize that metamorphism devel-
ops toward a non-equilibrium steady state where the en-
tropy production is a minimum and therefore stationary.

This procedure provides unambiguous information about
form changes under the given thermodynamic constraints.
These are interpreted within the framework of isothermal-
and temperature-gradient snow metamorphism.

2. ENTROPY PRODUCTION IN SNOW

We consider snow to be a porous medium consisting of ice
(subscript i) and air (superscript a). The ice phase consists
of grains which are bonded together to form a complicated
and irregular but load-bearing ice skeleton.The ice skeleton
is considered to be rigid.The pore air contains water vapor
(supscript v) which diffuses through the pore space of the
granular skeleton. The diffusion rate is given by the mass
flow rate of the air _ma; the density of the dry air is �a; the
density of the water vapor �v. The partial vapor pressure is
pv and is related to the density via the ideal gas law. The
water vapor has the same temperature as the dry air,
Tv ¼ Ta.We assume no free (fluid) water is present on the
ice, i.e. the snow is dry. The temperature of the ice, Ti, and
that of the adjacent air, Ta, are not in thermal equilibrium,
Ti 6¼ Ta. In the presence of a temperature gradient, heat is
being transferred in the ice (heat flux Qi) by conduction,
and air (heat flux Qa) by conduction and advection. Tem-
perature gradients are induced by meteorological forcing
at the snow-cover surface; the heat flux and vapor fluxes
are primarily in one direction, that is, in the direction of

Fig. 1. A detail of snow showing the grain bonding and crystal

boundaries (SLF). Note the existence of both positive and

negative curvatures.

Table 1. Nomenclature of thermodynamic variables. The

subscripts are: i= ice, a= air, v= vapor, g= grain, n= neck,

b= boundary (interfacial) layer, s= saturation.The double

prime superscript denotes a quantity per unit area

As Specific surface area of the ice^air interface m2 m�3

h Interfacial heat-transfer coefficient W m�2 K�1

hm Interfacial mass-transfer coefficient with
respect to density difference

m s�1

~hm Interfacial mass-transfer coefficient with
respect to pressure difference

s m�1

ki; ka Thermal conductivities, ice and air Wm�1 K�1

_ma Mass flow rate in pore space kg s�1

_m00
i$v Mass flux across interfacial layer per

surface area
kg s�1 m�2

_m00
g$v Mass flux across interfacial layer per grain

surface area
kg s�1 m�2

_m00
n$v Mass flux across interfacial layer per neck

surface area
kg s�1 m�2

� Viscosity of air (� ¼ 2:0� 10�6 Pa s) Pa s
Mv Molecular mass of water vapor kg mol�1

pa; pv Partial pressures, air and water vapor Pa
�ps Saturation pressure over ice (flat surface) Pa
psg; psn Saturation pressure, grains and necks Pa
� Viscous dissipation function s�2

q00i$a Heat flux across interfacial layer per surface
area

W m�2

Qi; Qa Heat-flux ice matrix and pore air W
R Gas constant J mol�1 K�1

�a; �v Densities of dry air and water vapor kg m�3

�s Density corresponding to ps kg m�3

�sg; �sn Density corresponding to psg; psn kg m�3

� Surface energy or tension
ð� ¼ 0:109Nm�1Þ

Nm�1 or Jm�2

t Time s
�i; �a Volumetric components of ice and air,

�i þ �a ¼ 1
Ti; Ta; Tv Temperature of ice, air and vapor, Ta ¼ Tv K
z Coordinate direction of the temperature

gradient
m
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the temperature gradient (the z direction). A list of the
thermodynamic variables is provided inTable 1.

At the interfacial ice^air boundary (subscript b), heat
(free convection) and mass are exchanged between the ice
lattice and pore air. The heat flux across the boundary per
unit surface area we denote q00i$v; the mass flux across the
boundary per unit surface area we denote _m00

i$v. (The dou-
ble prime denotes a quantity per unit area; a triple prime a
quantity per unit volume.) The interfacial boundary is satu-
rated with water vapor (saturation pressure ps, concentra-
tion density �s) which is maintained by sublimation or
deposition processes from or to the ice surface.The heat flux
across the interfacial boundary is driven by the temperature
difference between the ice and air, Ti � Ta; the mass flux by
the density difference, �s � �v. The layer has an unknown
width. A schematic representation of this system is shown
in Figure 2.

In summary, we consider avolume of snow to be an open
thermodynamic system undergoing both heat and mass
transfer. Due to symmetry, we chose the control volume
such that it contains half an ice grain and half a bond (see
Fig. 2). The control volume contains both ice and air. The
relationship between grain-size and pore diameter is found
by imposing the volumetric constraint �i þ �a ¼ 1, where �
is the volumetric fraction of a component.

For this open system, the second law of thermodynamics
can be stated as (Bejan,1997):

_S ¼ dSb

dt

� �
|fflfflffl{zfflfflffl}
interface

� Qi

Ti
þQa

Ta

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
conduction

þ
X
out

_ma s�
X
in

_ma s

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mass flow

� 0;

ð1Þ
where _S is the total entropy production, and s the entropy
density (JK�1 kg�1).The first term in square brackets is the
rate of entropy accumulation inside the control volume due
to interfacial boundary heat and mass transfer, _Sb; the sec-

ond term in brackets is the entropy transfer due to heat con-
duction in the ice and air; the third term in brackets is the
net entropy flow rate out of the control volume viamass flow
in the pore space.The entropy variables are listed inTable 2.

The entropy production per unit volume _S
000
bh due to the

heat flux q00i$a across the interfacial boundary is given by
(Bejan,1996):

_S
000
bh ¼ q00i$aAs

� �Ti � Ta

TaTi
; ð2Þ

where As is the specific surface area of the boundary
(m2m�3), in this case the total surface area of the interface
within the control volume. The entropy generation is posi-
tive so long as the temperature difference exists. (If Ta4Ti

then the sign of the heat flux q00i$v is negative.)
The entropy production per unit volume due to the mass

flux across the interfacial layer over a grain _m00
g$v and necks

_m00
n$v of the control volume is given by (Bejan,1996)

_S
000
bg ¼

_m00
g$v

�vTv
�grad pð Þ ð3Þ

and

_S
000
bn ¼ _m00

n$v

�vTv
�grad pð Þ ð4Þ

respectively. Both expressions are required since the curva-
ture of the grains and necks differ, meaning that both the
mass flux and pressure gradient across the interfacial layer
differ and must be considered separately. In summary, the
total entropy accumulation within the control volume (the
first part of Equation (1) per unit volume) is

_S
000
b ¼ _S

000
bh þ _S

000
bg þ _S

000
bn : ð5Þ

The entropy generation due to heat conduction across the
control-volumeboundaries in the ice and air is (Bejan,1996):

_S
000
ik ¼ ki

T 2
i

@Ti

@z

� �2

ð6Þ

Fig. 2. Definition of thermodynamic and microstructural

variables. Snow is defined as a porous medium of volumetric

ice content �i and volumetric air content �a.The grains have

positive radius rg; the bonds have negative radius rc.The pore

space is filled with dry air (subscript a) and water vapor

(subscript v).The temperature of air and ice can differ. Sur-

rounding the ice grains is a saturated boundary layer of pres-

sure ps. The unit microstructural cell defines the control

volume boundaries of our open thermodynamic system.

Table 2. Entropy variables.The subscripts are: g=grain, n=
neck, b = interfacial mass transfer, h = interfacial heat

transfer, k= conductivity, f = airflow. A triple prime denotes

a quantity per unit volume

s Entropy density J K�1 kg�1

_S Entropy production in control volume W K�1

_Si Entropy production in control volume in ice
lattice

W K�1

_Sa Entropy production in control volume in pore air W K�1

_Sb Entropy production in control volume in
interfacial layer

W K�1

_S
000
bh Entropy production interfacial heat transfer per

unit volume
W K�1m�3

_S
000
bg Entropy production interfacial mass-transfer

grains, per unit volume
W K�1m�3

_S
000
bn Entropy production interfacial mass-transfer

necks, per unit volume
W K�1m�3

_S
000
ik Entropy production conductive heat-transfer ice,

per unit volume
W K�1m�3

_S
000
ak Entropy production conductive heat-transfer air,

per unit volume
W K�1m�3

_S
000
af Entropy production mass-transfer air, per unit

volume
W K�1m�3
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and

_S
000
ak ¼

ka
T 2
a

@Ta

@z

� �2

; ð7Þ

where ki and ka are the thermal conductivities of ice and air,
respectively. The entropy generation in the pore space per
unit volume, due to the net entropy flow rate out of the con-
trol volume via mass flow, is (Bejan,1996)

_S
000
af ¼

�

Ta
�; ð8Þ

where � is the viscosity of air and� is the viscous dissipation
function.This defines the third term in the statement of the
second law, Equation (1), per unit volume.

The specific total entropy production _S
000
is the sum of

the entropy production in the ice, interfacial boundary layer
and pore air,

_S
000 ¼ _S

000
i þ _S

000
b þ _S

000
a : ð9Þ

In the above derivation, several assumptions were made
that were not explicitly mentioned. Is entropy production
additive? In principle, entropy production is not additive
because the processes are not independent, as given by
Onsager’s reciprocity relations (Bejan,1997). By adding the
entropy production terms, we are implicitly assuming, for
instance, that Soret and Dufour diffusion effects canbe neg-
lected. This implies that the cross-diagonal terms of
Onsager’s relations are zero. Another assumption is that
surface tension effects are reversible and therefore do not
contribute to entropy production.Two other entropy produ-
cing processes we did not include in our model are radiation
and viscous (irreversible) deformation.We assume that the
ice matrix is rigid.

3.THEMICROSTRUCTURALMODEL

Consider Figure1which shows a thin cross-section of a snow
sample. The sample consists of well-rounded grains which
are bonded together at necks. Note that both positive (con-
cave) and negative (convex) curvatures exist in the sample.
Furthermore, the curvature radius of the grains is in general
larger than the grain radius. In the following, we do not at-
tempt to model the complex geometric arrangement of
grains. Rather we concentrate on the basic microstructural
elements: grains and necks. Thus, the microstructural
model consists of two spherical grains of radius rg (Fig. 2).

The distance between grain centers is 2rg. A concave-
shaped neck is constructed by revolving the bond arc length
of radius rc around the axis of grain contact, the z axis. Due
to symmetry, only the section consisting of a half-neck (of
length ln) and half-grain (of radius rg) is considered in the
entropy minimization analysis. The important feature of
this model is that the geometry is defined by only two par-
ameters, the grain radius rg and the neck radius rc. The
model has been employed by other authors to describe snow
metamorphism (Lehning and others, 2002). Other snow
types (e.g. dendritic new snow) would require a different
microstructural model. A complete list of themicrostructur-
al variables is contained inTable 3.

The relationship between the grain radius rg and neck
radius rc canbe expressed in terms of the angle � (see Fig.3)

rg ¼ rc
sinð�Þ

1� sinð�Þ
� �

: ð10Þ

The neck radius rb is

rb ¼ rgcosð�Þ: ð11Þ
The cross-sectional neck radius rb should not be confused
with the neck curvature radius rc which is used to define
the vapor pressure near the neck surface. The cross-sec-
tional radius of the neck at the point of grain contact is de-
noted rn and can be found by solving the following
quadratic equation:

r2g þ ðrc þ rnÞ2 ¼ ðrg þ rcÞ2: ð12Þ
The length of the neck is

ln ¼ rcsinð�Þ ¼ rg 1� sinð�Þ½ � ¼ rgrc
rg þ rc

: ð13Þ

The surface area of the ice, As, is given by the sum of the
neck surface area

An ¼ 2�rc �rn þ �rc � lnð Þ ð14Þ
and the grain surface area

Ag ¼ 2�rgðrg � lnÞ: ð15Þ
Likewise, the volume of the ice is given by the sum of the
neck volume

Vn ¼ 4�2rc
�rn þ �rc � lnð Þ2

�

" #
ð16Þ

Table 3. Nomenclature of microstructural variables. The

subscripts are: i= ice, a= air, g= grain, n= neck.The vari-

ables are depicted in Figures 2 and 3

Vn Ice volume of neck m3

Vg Ice volume of grain m3

Vi Total ice volume ðin the control volumeÞ m3

Va Total air volume ðin the control volumeÞ m3

Vt Control volume m3

An Surface area of necks m2

Ag Surface area of grains m2

ln Neck length m
rn Inner ðsmallerÞ radius of neck m
rg Radius of grain m
rb Outer ðlargerÞ radius of neck m
rc Neck curvature radius m
� Neck angle rad

Fig. 3. Definition of microstructural variables. Spherical ice

grains of radius rg are connected by bonds of radius rb.The

radius of curvature of the bonds is rc.The model consists of

only two free parameters, rg and rc. � is half the bond angle.

345

Bartelt and Buser:Minimum entropy production and snow structure

https://doi.org/10.3189/172756504781829945 Published online by Cambridge University Press

https://doi.org/10.3189/172756504781829945


and the grain volume

Vg ¼ 2

3
�r3g

� �
� �l2n

3
3rg � ln
� �� �

: ð17Þ

The total ice volume is

Vi ¼ Vg þ Vn: ð18Þ
The total volume, Vt, is the sum of the ice and air volumes

Vt ¼ Va þ Vi ¼ Vi 1þ �a
�i

� �
; ð19Þ

where �i and �a are the volumetric fractions of ice and air,
respectively.

4. ENTROPY PRODUCTIONCOMPONENTS

4.1. Interfacial heat and mass transfer

The vapor saturation pressure in the interfacial layer over
the ice grain is denoted psg and given by the vapor equation
of Laplace

psg ¼ �ps þ
2�

rg
; ð20Þ

where �ps is saturationpressure over a flat surface and � is the
surface tension.The interfacial layer over the ice is assumed
to be saturated at temperature Ti, and thus the water-vapor
pressure over a flat ice surface, �ps, is found from the well-
known Clausius^Clapeyron relation. Similarly, the vapor
saturation pressure over the neck is denoted psn and ap-
proximately given by

psn ¼ �ps þ�
1

rn
� 1

rc

� �
: ð21Þ

Note that the bond, unlike the grain, possesses both convex
(radius rn) and concave (radius rc) surfaces. The air is
assumed to be saturated at vapor temperature Tv, and thus
the water-vapor pressure in the air, pv, can likewise be deter-
mined from the Clausius^Clapeyron relation.

The mass exchange from the ice to the surrounding pore
space is given by the difference in vapor concentration
between the boundary layer and air (Incropera and Dewitt,
2002). Specifically, the mass-transfer rate across the interfa-
cial grain layer is

_m00
g$v ¼ hm �sg � �v

� �
; ð22Þ

where hm is the interfacial mass-transfer coefficient, �sg is
the vapor density of the interfacial layer and �v is the vapor
density of the pore space. Assuming an ideal gas, the mass-
transfer rate canbe expressed in terms of the pressure differ-
ence (Incropera and DeWitt, 2002)

_m00
g$v ¼ ~hm psg � pv

� � ¼ ~hm �pþ 2�

rg

� �
; ð23Þ

where the interfacial mass-transport coefficient ~hm is re-
lated to hm according to

~hm ¼ hmMv

RTv
: ð24Þ

Mv is the molecular mass of water vapor (Mv =
1.80 kgmol�1) andR is themolar gas constant.The pressure
difference�p is defined as

�p ¼ �ps �pv; ð25Þ
that is, the part of the pressure difference between the inter-
facial layer and air which is independent of curvature

effects. In a similar manner, the mass transfer over the neck
surface can be found:

_m00
n$v ¼ ~hm psb � pvð Þ ¼ ~hm �pþ �

1

rn
� 1

rc

� �� �
: ð26Þ

Note that _mg$v and _mn$v are positive when mass sub-
limates from the ice. In order to find the total entropy pro-
duction in the control volume, Equations (3) and (4) must be
integrated over the volume.We find the total entropy pro-
duction rates for the grains and necks:

_Sbg ¼
~hm Ag

�vTv
�pþ 2�

rg

� �2

ð27Þ

_Sbn ¼
~hm An

�vTv
�pþ �

1

rn
� 1

rc

� �� �2
: ð28Þ

The interfacial heat flux between the ice lattice and pore
space can be given by

q00i$v ¼ h Ti � Tað Þ; ð29Þ
where h is the local convection coefficient (Incropera and
DeWitt, 2002). The total entropy production per unit cell
for this process can likewise be found by integrating Equa-
tion (2) over the total boundary area:

_Sbh ¼ h Ag þ An

� � Ti � Tað Þ2
TaTi

: ð30Þ

Kaviany (1995) provides a relationship between the dimen-
sionless Nusselt number (Nu ¼ ð2hrg=kaÞ) and air speed
based on packed-bed experiments with spherical particles.
For low Reynolds number, Nu� 2.Thus, the local heat con-
vection coefficient can be approximated,

h ¼ ka
rg

: ð31Þ

This formula is based on an evaluation of both steady-state
and transient packed-bed experiments, for a wide range of
Reynolds number. It should be noted that few if any data
exist for the interfacial heat-transfer coefficient for snow
and that at low Reynolds number the above equation has
not been experimentally verified (Kaviany,1995).

The relationship between the convection heat-transfer
coefficient and the mass-transfer coefficient can be found in
Incropera and DeWitt (2002). We make the following ap-
proximation:

h

hm
¼ �cLe1�n � 103; ð32Þ

where � � 1kgm�3 is the density of air, c is the specific heat
capacity of air c � 1000 J kg�1 K�1, and Le1�n � 1 is the
dimensionless Lewis number, the ratio of thermal to mass
diffusivities (see Incropera and DeWitt , 2002).

4.2. Heat conduction

The entropy produced in the control volume by heat con-
duction in the ice and pore air is (Bejan,1996)

_Sik ¼ ki
T 2
i

@Ti

@z

� �2

Vi; ð33Þ

and

_Sak ¼ ka
T 2
a

@Ta

@z

� �2

Va: ð34Þ

We are assuming that the conductivities, ki and ka, are inde-
pendent of z.
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4.3. Air current in pore space

Air movement in snow is in the laminar, creeping flow
regime. Reynolds numbers are small,Re < 10. For this flow
regime, various porous-media airflow models can be
applied (Kaviany, 1995). Buser and Good (1987) found that
a capillary tube model fits the experimental data of
Shimuzu (1970) as well as their own data.The entropy pro-
duction in tubes in the laminar flow regime has been deter-
mined by Bejan (1996). For Hagen^Poiseuille flow the
velocity distribution in the pore space varies parabolically
(Fig. 2), according to,

uaðrÞ ¼ 3

2
uavg 1� r

d=2

� �2
" #

; ð35Þ

where uavg is the average air velocity and d the tube diam-
eter. In a Hagen^Poiseuille flow model, the flow velocity
tangential to the ice surface (r ¼ d=2) is zero and reaches a
maximum at the tube middle, r ¼ 0. The entropy produc-
tion per unit volume at any position r for this case is (Bejan,
1996)

_S
000
a ¼ �

Ta
� ¼ 36

�

Ta

uavg

d

� 	2 r

d=2

� �2

; ð36Þ

where � is the viscosity of air (� ¼ 2:2� 10�5 kgm�1s�1).
For our purposes, the entropy production in the control
volume must be found by integrating the above equation
over the length (rg) and tube area.We find:

_Sa ¼ 9

2
�u2

avgrg
�

Ta

� �
: ð37Þ

Typical average velocities are uavg �1.0�10�6 m s�1 arising
frompressure differences inducedby temperature gradients.
Higher values due to wind pumping at the surface of the
snow cover canbe found, but it is estimated that these values
are seldom over uavg51.0�10^4m s^1.

5. ENTROPY PRODUCTION MINIMIZATION

The total entropy production in the control volume is given

by the sum of the entropy production in the ice, due to heat
conduction (Equation (33)),

_Si ¼ ki
T 2
i

@Ti

@z

� �2

Vi; ð38Þ

the interfacial layer, due to heat and mass transfer (from
Equations (27), (28) and (30)),

_Sb ¼
~hm Ag

�vTv
�pþ 2�

rg

� �2

þ
~hm Ab

�vTv
�pþ �

1

rn
� 1

rc

� �� �2

þ h Ag þAn

� � Ti � Tað Þ2
TaTi

; ð39Þ

and, finally, the entropy production in the adjacent pore
space, due to heat conduction and fluid friction (Equations
(34) and (37)):

_Sa ¼ ka
T 2
a

@Ta

@z

� �2

Va þ 9

2
�u2

avgrg
�

Ta

� �
: ð40Þ

Given the air and ice temperature, the temperature gradi-
ent and the pore air velocity, the total entropy production

_S ¼ _Si þ _Sb þ _Sa ð41Þ
canbe expressed in terms of the grain radius, rg, assuming a
bond angle �.

Figure 4 plots the total entropy production as a function
of the grain curvature radius rg for two bond angles (a) � =
5‡ and (b) � = 20‡.The plot depicts the entropy production
at four different temperatures varying between T ¼ 253K
and T ¼ 272K. The system is placed in thermal equilib-
rium, i.e. T ¼ Ta ¼ Ti ; no temperature difference exists
between the ice and air. Thus, the figure shows the entropy
production minima as a function of varying isothermal
temperature. At lower temperatures, the mimima are
located at larger grain radii. In addition, the minima at
lower temperatures are associated with higher entropy pro-
duction levels. Note that when the system reaches an iso-
thermal state near T ¼ 272K, a small change in
equilibrium temperature influences the entropy production
significantly. The change in entropy production from T ¼
253K to T ¼ 263K is small in comparison to the change
from T ¼ 263K to T ¼ 270K. At T ¼ 272K the entropy
production minimum is at a very large curvature radius,
not seen on the graph.

Fig. 4. Entropy production as a function of grain curvature for different temperatures. (a) � = 5‡ and (b) � = 20‡. Production

minima are located at large curvature radii with increasing temperature. AtT = 272 K the entropy production minimum is at a

very large curvature radius, not seen on the graph.
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Figure 5 displays the contributions to the total entropy
production, classified according to the different thermo-
dynamical processes: interfacial mass transport, interfacial
heat transport, heat conduction in the ice and air and fluid
friction. The graph shows that the primary producer of en-
tropy is clearly interfacial mass transport (by a factor of 100
over convective heat transport). Entropy production due to
fluid friction in the pore air is insignificant. Since snow
metamorphism is defined as the process of mass change
under thermodynamic actions, this result underscores the
connection between entropy production and snow meta-
morphism.

6. DISCUSSIONOF RESULTS

6.1. Minimum entropy production at equilibrium
temperatures (isothermal metamorphism)

The isothermal temperature results depicted in Figure 4 can
be visualized from a different perspective. As shown, the en-
tropy production curve as a function of rg contains a well-
defined minimum. In order to find the grain radius at which
the total entropy production is minimal, we solve

d _S

drg
¼ 0: ð42Þ

The curvature radius at which entropy production is mini-
mum for a defined thermodynamic state is termed the opti-
mal curvature radius, ropt. Figure 6 plots the optimal
curvature radius as a function of the difference in tempera-
ture between the ice and air,�T ¼ Ti � Ta, for three differ-
ent ice temperatures. The three curves intersect the �T ¼
0K axis at three different locations. The colder the tem-
perature, the smaller the curvature radius.This agrees with
observations made by Marbouty (1980). Note also that the
optimal curvature radius for the isothermal case is not the
largest radius possible. Larger optimal curvature radii, for a

given ice and air temperature, are predicted when the tem-
perature is higher in the ice than in the air.

The influence of bond size on entropy production is de-
picted in Figure 7a, which shows the entropy production for
two different bond angles � ¼ 5‡ and � ¼ 45‡. Isothermal
conditions were imposed on the ice and air, Ti ¼ Ta ¼
268K.The bond angle � influences the location of the mini-
mumentropy production. Smaller bond angles induce smal-
ler optimal curvature radii. Evidently, the geometry of the
microstructural model plays an important role in the appli-
cation of the principle of minimum entropy. Figure 7b
shows the influence of supersaturation (1.05% of saturation)
and partial saturation (0.95% of saturation) on the entropy
production.The graph shows that ropt is not sensitive to the
state of saturation; however, the magnitude of the entropy
production changes significantly.

6.2. Minimum entropy production at
non-equilibrium temperatures
(temperature-gradient metamorphism)

Several other important results can be ascertained from
Figure 6. First, note that the optimal radius curves are not
symmetric around the isothermal�T = 0K axis.The max-
imum radii for a given temperature are located to the right
of the �T = 0K axis; that is, for �T 4 0K, or when the
temperature in the ice is higher than the air temperature,
Ti > Ta.The peaks are extremely sharp, meaning that slight
changes in the thermodynamic state will produce signifi-
cant changes in optimal curvature radius. Note also that
the colder the ice temperature, the farther away the peaks
are located from the �T = 0K axis. For example, for an
ice temperature of Ti = 258K, themaximumoptimal radius
is located at �T = 2K; for a higher ice temperature Ti =
272K, the peak is located very near the�T = 0Kaxis.This
result suggests that in order to obtain flat grains at low tem-
peratures, a large temperature difference between the ice

Fig. 5. Components of entropy production. Ice temperature Ti

= 265 K; air temperature Ta = 263 K; air velocity ua= 1.0

�10�6; temperature gradient dT=dz = 10Km�1. The

plot depicts the importance of interfacial mass transfer in the

total entropy production.

Fig. 6. Optimal grain curvature radius as a function of tem-

perature difference.The maximum optimal radii do not occur

on the�T = 0‡C isothermal axis.The lower the temperature

the farther away the peaks are from the isothermal axis.
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and air (Ti � Ta) must be maintained. This will seldom
occur since the energy transfer (convective heat exchanges)
between the ice and air phases will ensure a state near�T =
0K.Thus, the theory of minimum entropy production pre-
dicts that very flat grains at colder temperatures are possi-
ble, but probably rare. Alternatively, at temperatures near
Ti ¼ 273K, smaller temperature differences of the order
�0.1K are required to obtain the optimal curvature radius.

One way to induce and maintain temperature differ-
ences between the ice and air is to apply a temperature
gradient dT=dz to the system, a snow layer or the entire
snowpack. This can be shown by considering the following
very simple model in which the ice and air components of a
control volume are divided into two parts as shown in Fig-
ure 8.The goal of the analysis is to find the steady-state tem-
perature distribution in the ice, TiðzÞ, and air, TaðzÞ, when a

temperature gradient is applied. We are interested in the
magnitude of the ice^air temperature difference
�T ðzÞ ¼ TiðzÞ� TaðzÞ. For simplicity, the ice part consists
of a cone.The upper radius is the neck radius, rn; the lower
radius is the grain radius rg. The temperature distribution
in the cone is calculated disregarding surface heat and mass
exchanges. For steady-state conditions, the heat flux is

Qi ¼ AiðzÞki dTi

dz
: ð43Þ

The temperature distribution at position z is found from the
above equation:

TiðzÞ ¼ T ð0Þ þQi

ki

Z z

0

dz

AiðzÞ : ð44Þ

The cross-sectional area is

AiðzÞ ¼ �r2ðzÞ ð45Þ
with

r ¼ rg � rg � rn
l

� 	
z: ð46Þ

The integral, Equation (44), can easily be evaluated (for this
simple geometry):

TiðzÞ ¼ T ð0Þ þ Qi

ki�

zl

rgl� zrg þ zrn
� � : ð47Þ

The temperature difference between the upper (z ¼ rn)
and lower (z ¼ 0) cone surfaces can subsequently be found:

TiðrgÞ � T ð0Þ ¼ � Qil

�kirnrg
: ð48Þ

For air, the same calculation procedures apply, substituting
dp for rg and dn for rn.The height of the microstructural cell
is in both cases l.

An example calculation is presented in Figure 9. A tem-
perature gradient of 100Km�1 is applied over a cell of
1mm length. The base temperature at z ¼ 0 is 268K; the
neck temperature is 268.1K. The volumetric content of ice
is �i ¼ 0:3. The grain radius is rg = 1mm; the neck radius
is rn = 0.4mm. Figure 9a displays the temperature distribu-
tion in the ice and air over the cell length. Figure 9b displays
the temperature difference between the ice and air.The im-
portant fact to observe is that a temperature difference of
0.1Kover the length of the grain produces amaximum tem-
perature difference of 0.03K between the ice and air. More

Fig. 7. (a) Entropy production for different bond configurations, � = 5‡ and � = 45‡. (b) Entropy production for different

degrees of saturation, �= 5‡. Calculations assume isothermal conditions: Ti = Ta = 268 K.

Fig. 8. A simple microstructural cell model consisting of ice

and air.The ice is in the shape of a cone of length l with top

radius rn and bottom radius rg.The air is in the shape of an

inverse cone with radii dn and dp . No heat is transferred

across the ice^air boundary.The model is used to demonstrate

the temperature difference between the ice and air given a heat

flux in the iceQi and airQa.
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complicated and realistic geometries will strengthen this
effect. If the bond and ice radius are equal, the temperature
difference will vanish.

In summary, because the ice lattice consists of a non-uni-
form, irregular structure, global temperature gradients will
induce local temperature differences between the ice and
air. If the temperature of the ice lattice is 268K 5 Ti 5
273K, these temperature differences must only be of the
order �T 5 0.1K to produce massive changes in the opti-
mal curvature radius. The fact that larger temperature dif-
ferences are required at colder temperatures agrees well
with the experimental observations made by Sokratov
(2001). He noted that the relative importance of temperature
gradient was large when the temperature was high, andwas
negligible for low temperatures.

It appears that temperature-gradient metamorphism
can be defined within the framework of minimum entropy
production: applied temperature gradients induce slight dif-
ferences between the ice and air because of the highly ir-
regular and non-uniform granular structure of snow.
Depending on the temperature and temperature difference,
flat surfaces are required to minimize entropy production.

An observed feature of temperature-gradient meta-
morphism is that recrystallization rates stop at a limiting
density (Sokratov, 2001). Bozhinskiy and Losev (1998) state
that the limiting density is 350 kgm�3; Marbouty (1980)
states a value of 400 kgm�3. A possible explanation for this
phenomenon is that at higher densities, large grains prevail
with bond sizes about the size of the grain radius (large �
angles). In such a situation, the temperature difference
between the ice and air vanishes since the cross-sectional
areas of the ice and air are constant.Without irregularities,

the temperature gradient cannot induce temperature differ-
ences across the interface and, subsequently, temperature-
gradient metamorphism stops.

6.3. Comparison of minimum entropy production
with isothermal and temperature-gradient
metamorphism

Adirect comparison canbe made between minimum entro-
py production and mass diffusion theory. The results are
presented in Table 4. Diffusion theory divides snow meta-
morphism into two regimes: isothermal- and temperature-
gradient metamorphism. We take McClung and Schaerer
(1993) as the standard reference describing these two
regimes. We do not consider new snow metamorphism or
wet snow metamorphism, for these would require different
microstructural or thermodynamic models.

Table 4 shows the position of minimum entropy produc-
tion within the framework of established metamorphism
theory. It shows that the principle of minimum entropy pro-
duction is not in contradiction with observations. Equilib-
rium conditions are likely to exist when the temperature
gradients are small and the grains are tightly packed; non-
equilibrium conditions are likely to exist under high tem-
perature gradients and when the pore space is large. Iso-
thermal metamorphism thus corresponds to minimum
entropy production at equilibrium temperatures, and tem-
perature-gradientmetamorphism corresponds tominimum
entropy production at non-equilibrium temperatures.

Fig. 9. A temperature gradient of 100 Km�1 is applied over a microstructural cell of 1mm length.The base temperature at z = 0 is

268 K; the neck temperature is 268.1K.The volumetric content of ice is �i = 0.3.The grain radius is rg = 1mm; the neck radius is

rn = 0.4 mm. (a)Temperature distribution in the ice and air over the cell length. (b)Temperature difference.The important fact

to observe is that a temperature difference of 0.1Kover the length of thegrain produces a maximum temperature difference of 0.03 K

between the ice and air.

Table 4.The principle of minimum entropy production predicts form changes as a function of �T.The widely accepted theory, from

McClung and Schaerer (1993), is based on mass diffusion arising from temperature gradients.The two theories are not in contradiction

Observations Mininum entropy production Established theory (McClung and Schaerer, 1993)

Isothermal Equilibrium temperatures Small dT=dz
(1) Low growth rates �T � 0 Tightly packed
(2) Rounded grains Smaller ropt at colder temperatures More rounded grains at colder temperatures

Temperature gradient (TG) 0‡C < �T < 2K Large dT=dz
(1) Large growth rates Large pore space
(2) Flat surfaces Smaller�T needed at warmer temperatures Higher growth rates at warmer temperatures
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7. SUMMARYAND CONCLUSIONS

In summary, the theory of minimum entropy production
predicts:

The dominant entropy production contribution arises
from mass transfer across the interfacial boundary.

Entropy production minima are associated with flat,
non-rounded grains.

Entropy production decreases with increasing tempera-
ture. At T ¼ Ta ¼ Ti ¼ 273.15K and flat surfaces
1=rg ¼ 0, entropy production appears to stop.

In isothermal conditions, T ¼ Ta ¼ Ti, the lower the
absolute temperature, the smaller the curvature radius,
depending directly on�p = psðTiÞ � pvðTaÞ.
The size of the bonds relative to the grain-size has an in-
fluence on the entropy production in both isothermal-
and temperature-gradient metamorphism. Hence, the
ratio of bond size to grain-size could be an important
parameter in snow metamorphism.

The optimal surface curvature in isothermal conditions
is not the largest possible. Even flatter surfaces are possi-
ble in non-equilibrium conditions�T ¼ Ti � Ta 6¼ 0.

In order to obtain very flat grains (the maximum opti-
mal radii) at lower temperatures, large temperature dif-
ferences between the ice and air must be maintained.

Temperature-gradient metamorphism is defined within
the framework of minimum entropy production as fol-
lows: Applied temperature gradients induce slight tem-
perature differences between the ice and air because of
the highly irregular and non-uniform granular structure
of snow. Depending on the temperature and tempera-
ture difference, very flat surfaces are required to mini-
mize entropy production.

Because the controlling physical process of snow meta-
morphism appears to be interfacial mass transport which is
driven by temperature and concentration differences
between the ice and air phases, physical snowpack models
should be based on a non-equilibrium treatment of heat
and mass transfer (Bartelt and others, 2004).

These results are based on an elementary application of
the principle of minimum entropy production.We were un-
able to derive a more complicated production function in
which the control volume contained more than one grain
and bond. Only the volumetric constraint condition
between the ice and pore air was used in this work. In order
to determine grain-size (not only grain curvature), add-
itional (and non-trivial) mass constraints will probably
have to be invoked with larger control volumes.The formu-
lation was also based on a rigid, non-deforming ice matrix.
Entropy principles including irreversible mechanical de-
formations (Coleman and Noll, 1963) can and should be
applied in future.

Finally, there is a fundamental assumption behind the
invocation of the minimum entropy principle. We assume
that non-equilibrium states can be deduced from principles
of thermodynamic equilibrium (Jaynes,1980).The practical
consequence of this assumption is that it is impossible to say
how a system behaves as a function of time. Therefore, it is
impossible to state how fast the system attains the state of
minimum entropy production. In principle, we cannot even

say whether the system reaches this state or not. In our par-
ticular case, it is impossible for us to state how fast the grain
curvature is changing; we can only suggest the general ten-
dency or direction of the change. This is useful, but it is no
substitute for rate equations.We must postulate: if a thermo-
dynamic system can reduce entropy production by chan-
ging some variable(s), it will develop towards the minimum
entropy productionwithin the given constraints (Glansdorff
and Prigogine,1974).To find the implicit time dependence of
entropy production on form will be the next challenge.

According to our analysis, the snow cover is in the neigh-
borhood of equilibrium (Prigogine,1980) because the entro-
py production principle appears to hold. This will allow us
to apply linear non-equilibrium thermodynamics to the
snow cover in the future.
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