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Abstract

Richmond and Szekeres (1977) have conjectured that certain of the coefficients in the power
series expansions of certain infinite products vanish. In this paper, we prove a general family of
results of this nature which includes the above conjectures.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10J20, 10 A 45; secondary
33 A 30, 33 A 25.

1. Introduction

Richmond and Szekeres (1977) have determined Hardy-Ramanujan-Rademacher

expansions for quotients of certain infinite products that have arisen in continued

fraction expansions of the Rogers-Ramanujan type. From these results they deduce

that if

£ m q ( q ) [ I n _ , 8 . + i
m = 0 n=0 U 9

then c 4 m + 3 is a lways z e r o ; fu r thermore , if

m = 0 H9)

then dAm+2 is always zero.

Their results also lead them to conjecture that if

L am<t = G(9) = 1 1
o

L mt (9) 1 1 n
m=o n=oU— 9
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then a6m+5 is always zero, and if

then b6m+3 is always zero.
We shall prove two theorems concerning the quotient of infinite products

Fk (g) = n ( i -g 2 t o i + r ) ( i -g 2 t o + 2 *" f )

where 1 ^ r < k are integers. The first theorem gives a nice identity for treating
such congruence problems.

THEOREM 1.

£ gkn(n+1)/2\ p f/A = y
Z

THEOREM 2. / / 1< r < k are relatively prime integers of opposite parity and

Fk.M =Z"=o <Pr,9" then (pkn+ra-r+i»2 is always zero.

We remark that cases k = 4, r = 3 and k = 4, r = 1 are the results proved by
Richmond and Szekeres for the Cm, while the cases k = 6, r = 5 and A: = 6, r = 1
establish the two conjectures for the dm.

2. Proof of Theorem 1

Theorem 1 relies on one of Ramanujan's elegant summations:

(a\ z" "

(CJ, n=0

where (a)n = (1— a)(l— aq)... (1— aq" ') when « is positive and more generally
(a)n = Ylj>o(l~a<lJ)(l —aqJ+n)~1.'We must also require for the convergence of the
series in (2.1) that \b/a\ < \z\ < 1, \q\ < 1. For proofs of (2.1) see Andrews (1969),
Andrews and Askey (1977) and Ismail (1977).

Let us now replace q by q2k, then set z = qk*r, a = q~k, b = cf and multiply
both sides by (1 — 9*)"1. The resulting formula is

-* -?.l5
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oo ~(* + r)n co _ - i - ( i t - l ) - *

= _«,-* y JL y ?Z J 1 ~2
n = l J H

Theorem 1 follows immediately when we recall Gauss's formula (Andrews (1976),
p. 23):

y .ji(n+i\/2 n \*~x )
— 1 1 / , V2n-l-v

n=0 n=l (I ~x )

3. Proof of Theorem 2

From Theorem 1 it is immediate that to prove Theorem 2, we need only prove
that the coefficient of g*»+'(*-'+i>/2 i n

(3 i) V g(*~fM'~1)-g(*+r)'~*

is identically zero since Yj°=0 g*»("+1>/2 is a function of q". Now the terms of the
series that contribute something to these coefficients either have

(3.2) (k-r)(n-l) =r(k-r+l)/2 (modk)

or

(3.3) (k + r)n-k = r(k-r+l)/2 (mod A:).

Since we are assuming k and r are relatively prime, we see that n = (k—r+1)/2 is
the unique solution of (3.3) lying in [l,k— 1] while n = (k+r+l)/2 is the unique
solution of (3.2) lying in [2,k]. Hence the portion of (3.1) that contains powers

oo (* + r)(fel + (*- r + l ) /2) -k

(3-4) L LL j _ 2k(kn + (k + r+l)l2)-k~ L j _

Now

(3.5) T = Y qik

n=0 m=0

oo ( *

= y -1
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Hence the expression (3.4) is identically zero. Thus all the coefficients

n + r(k-r

in the expansion of Ft,r(?) are identically zero. This concludes the proof of Theorem
2.
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