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On the square root of the inverse different
Adebisi Agboola , David John Burns, Luca Caputo, and Yu Kuang
Abstract. Let Fπ be a finite Galois-algebra extension of a number field F, with group G. Suppose that
Fπ/F is weakly ramified and that the square root Aπ of the inverse different D−1

π is defined. (This
latter condition holds if, for example, ∣G∣ is odd.) Erez has conjectured that the class (Aπ) of Aπ
in the locally free class group Cl(ZG) of ZG is equal to the Cassou–Noguès–Fröhlich root number
class W(Fπ/F) associated with Fπ/F. This conjecture has been verified in many cases. We establish
a precise formula for (Aπ) in terms of W(Fπ/F) in all cases where Aπ is defined and Fπ/F is tame,
and are thereby able to deduce that, in general, (Aπ) is not equal to W(Fπ/F).

1 Introduction

Let F be a number field with absolute Galois group ΩF . Suppose that G is a finite
group on which ΩF acts trivially, and let π ∶ ΩF → G be a surjective homomorphism.
Let Fπ be the corresponding G-Galois-algebra extension of F. (We note that since π is
surjective, Fπ is in fact a number field, and not merely a Galois algebra.) Write Dπ for
the different of Fπ/F and Oπ for the ring of integers of Fπ . If P is any prime of Oπ , the
power vP(Dπ) of P occurring in Dπ is given by

vP(Dπ) =
∞

∑
i=0
(∣G(i)

P
∣ − 1) ,

where G(i)
P

denotes the ith ramification group at P (see [23, Chapter IV, Proposition
4]). This implies that if, for example, ∣G∣ is odd, then the inverse different D−1

π has a
square root, i.e., there exists a unique fractional ideal Aπ of Oπ such that

A2
π =D

−1
π .

(Let us remark at once that if ∣G∣ is even, then D−1
π may well—but of course need not—

also have a square root.)
Recall that Fπ/F is said to be weakly ramified if G(2)

P
= 1 for all prime ideals P of

Oπ . Erez has shown that Fπ/F is weakly ramified if and only if Aπ is a locally free
OFG-module (see [10, Theorem 1]). Hence, if Fπ/F is weakly ramified, it follows that
Aπ is a locally free ZG-module, and so defines an element (Aπ) in the locally free class
group Cl(ZG) of ZG. The following result is due to Erez (see [10, Theorem 3]).
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Theorem 1.1 Suppose that Fπ/F is tamely ramified and that ∣G∣ is odd. Then Aπ is a
free ZG-module.

Based on this and other results, Vinatier has made the following conjecture (cf. [30,
Conjecture] and [4, Section 1.2]).

Conjecture 1.2 Suppose that Fπ/F is weakly ramified and that ∣G∣ is odd. Then Aπ is
a free ZG-module.

The first detailed study of the Galois structure of Aπ when ∣G∣ is even is due
to the third author and Vinatier [4]. By studying the Galois structure of certain
torsion modules first considered by Chase [6], they proved the following result, and
thereby were able to exhibit the first examples for which (Aπ) ≠ 0 in Cl(ZG) (see [4,
Theorem 2]).

Theorem 1.3 Suppose that Fπ/F is tame and locally abelian (i.e., the decomposition
group at every ramified prime of Fπ/F is abelian). Assume also that Aπ exists. Then
(Aπ) = (Oπ) in Cl(ZG).

A well-known theorem of M. Taylor [26] asserts that, if Fπ/F is tame, then

(Oπ) = W(Fπ/F),(1.1)

where W(Fπ/F) denotes the Cassou–Noguès–Fröhlich root number class, which is
defined in terms of Artin root numbers attached to nontrivial irreducible symplectic
characters of G. (In particular, if ∣G∣ is odd, and so has no nontrivial irreducible
symplectic characters, then W(Fπ/F) = 0.)

We therefore see that Theorem 1.3 may be viewed as saying that if Fπ/F is tame and
locally abelian, and if Aπ exists, then we have

(Aπ) = (Oπ) = W(Fπ/F).

In light of the results described above, as well as those contained in [7], Erez has
made the following (unpublished) conjecture.

Conjecture 1.4 Suppose that Fπ/F is weakly ramified and that Aπ exists. Then

(Aπ) = W(Fπ/F).

Conjecture 1.4 includes Vinatier’s Conjecture 1.2 as a special case, and was the
motivation for the work described in [4]. It also explains almost all previously obtained
results on the ZG-structure of Aπ . In a different direction, the conjecture is related to
the recent work of Bley, Hahn, and the second author [3] concerning metric structures
arising from Aπ (for more details of which, see the Ph.D. thesis [17] of the fourth
author).

In this paper, we show that, in general, Conjecture 1.4 fails for tame extensions. For
each tame extension Fπ/F, we use the signs at infinity of certain symplectic Galois–
Jacobi sums to define an element J∗∞(Fπ/F) ∈ Cl(ZG). The class J∗∞(Fπ/F) is of order
at most 2, and is often, but not always, equal to zero. We prove the following result.

Theorem 1.5 Suppose that Fπ/F is tame and that Aπ exists. Then

(Aπ) − (Oπ) = J∗∞(Fπ/F),
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i.e., (see (1.1))

(Aπ) = W(Fπ/F) + J∗∞(Fπ/F).(1.2)

Our proof of Theorem 1.5 combines methods from [1, 2] involving relative algebraic
K-theory with the use of non-abelian Galois–Jacobi sums, the explicit computation
by Fröhlich and Queyrut of the local root numbers of dihedral representations and
a detailed representation-theoretic analysis of the failure (in the relevant cases) of
induction functors to commute with Adams operators. In particular, it is interesting to
compare our use of Galois–Jacobi sums with the methods of [4], where abelian Jacobi
sums play a critical role.

Remark 1.6 It remains an open question as to whether (1.2) continues to hold if the
tameness hypothesis is relaxed.

For any integer m ≥ 1, we write H4m for the generalized quaternion group of order
4m. The following result, which is obtained by combining Theorem 1.5 with the work
of Fröhlich on root numbers (see [11]), gives infinitely many counterexamples to
Conjecture 1.4.

Theorem 1.7 Let F be an imaginary quadratic field such that Cl(OF) contains an
element of order 4. Then, for any sufficiently large prime � with � ≡ 3 (mod 4), there
are infinitely many tame, H4�-extensions Fπ/F such that Aπ exists and (Aπ) ≠ (Oπ) in
Cl(ZH4�).

An outline of the contents of this paper is as follows. In Section 2, we recall certain
basic facts about relative algebraic K-theory from [1, 2]. In Section 3, we discuss how
ideals in Galois algebras give rise to elements in certain relative K-groups. Section 4
contains a description of the Stickelberger factorization of certain tame resolvends (see
[2, Section 7]) in the case of both rings of integers and square roots of inverse differents,
while Section 5 develops properties of Stickelberger pairings and explains how these
may be used to give explicit descriptions of the tame resolvends considered in the
previous section. In Section 6, we recall a number of facts concerning Galois–Gauss
sums. We define Galois–Jacobi sums, and we establish some of their basic properties.
In Section 7, we compute the signs of local Galois–Jacobi sums at symplectic characters
by combining an analysis of the behavior of Adams operators with respect to induction
functors together with the theorem of Fröhlich and Queyrut. In Section 9, we prove
Theorem 1.5. Finally, in Section 10, we prove Theorem 1.7.
Notation and conventions

For any field L, we write Lc for an algebraic closure of L, and we set ΩL ∶=
Gal(Lc/L). If L is a number field or a non-archimedean local field (by which we shall
always mean a finite extension of Qp for some prime p), then OL denotes the ring of
integers of L. If L is an archimedean local field, then we adopt the usual convention of
setting OL = L.

Throughout this paper, F will denote a number field. For each place v of F, we fix
an embedding F c → F c

v , and we view ΩFv as being a subgroup of ΩF via this choice of
embedding. We write Iv for the inertia subgroup of ΩFv when v is finite.
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If H is any finite group, we write Irr(H) for the set of irreducible F c-valued
characters of H and RH for the corresponding ring of virtual characters. We write
1H (or simply 1 if there is no danger of confusion) for the trivial character in RH .

Let L be a number field or local field, and suppose that Γ is any group on which
ΩL acts continuously. (We shall usually, but not always, be primarily concerned with
the case of trivial ΩL-action; see below for further remarks on this.) We identify
Γ-torsors over L (as well as their associated algebras, which are Hopf–Galois exten-
sions associated with AΓ ∶= (Lc Γ)ΩL ) with elements of the set Z1(ΩL , Γ) of Γ-valued
continuous 1-cocycles of ΩL (see [24, I.5.2]). If π ∈ Z1(ΩL , Γ), then we write Lπ/L
for the corresponding Hopf–Galois extension of L, and Oπ for the integral closure
of OL in Lπ . (Thus, Oπ = Lπ if L is an archimedean local field.) Each such Lπ is a
principal homogeneous space of the Hopf algebra MapΩL

(Γ, Lc) of ΩL-equivariant
maps from Γ to Lc . It may be shown that if π1 , π2 ∈ Z1(ΩL , Γ), then Lπ1 ≃ Lπ2 if and
only if π1 and π2 differ by a coboundary. The set of isomorphism classes of Γ-torsors
over L may be identified with the pointed cohomology set H1(L, Γ) ∶= H1(ΩL , Γ). We
write [π] ∈ H1(L, Γ) for the class of Lπ in H1(L, Γ). If L is a number field or a non-
archimedean local field, we write H1

t(L, Γ) for the subset of H1(L, Γ) consisting of
those [π] ∈ H1(L, Γ) for which Lπ/L is at most tamely ramified. If L is an archimedean
local field, we set H1

t(L, Γ) = H1(L, Γ). We denote the subset of H1
t(L, Γ) consisting of

those [π] ∈ H1
t(L, Γ) for which Lπ/L is unramified at all (including infinite) places of

L by H1
nr(L, Γ). (So, with this convention, if L is an archimedean local field, we have

H1
nr(L, Γ) = 0.)
We remark that if ΩL acts trivially on Γ, then we recover classical Galois theory:

π is a homomorphism, Lπ/L is simply an extension of Γ-Galois algebras, and Lπ is a
field if π is surjective. For the most part, this is the only case that will be needed in
this paper. There is, however, one important exception. This occurs in Section 4 when
we describe a certain decomposition (a Stickelberger factorization) of resolvends of
normal basis generators of tame local extensions. (This is a non-abelian analogue of
Stickelberger’s factorization of abelian Gauss sums. See [2, Definition 7.2] for further
remarks on this choice of terminology.)

If A is any algebra, we write Z(A) for the center of A. If A is an R-algebra for some
ring R, and R → R1 is an extension of R, we write AR1 ∶= A⊗R R1 to denote extension
of scalars from R to R1.

2 Relative algebraic K-theory

The purpose of this section is briefly to recall a number of basic facts concerning
relative algebraic K-theory that we shall need. For a more extensive discussion of these
topics, the reader is strongly encouraged to consult [2, Section 5] as well as [1, Sections
2 and 3] and [25, Chapter 15].

Let R be a Dedekind domain with field of fractions L of characteristic zero, and
suppose that G is a finite group upon which ΩL acts trivially. Let A be any finitely
generated R-algebra satisfying A⊗R L ≃ LG.

For any extension Λ of R, we write K0(A, Λ) for the relative algebraic K-group
that arises via the extension of scalars afforded by the map R → Λ. Each element of
K0(A, Λ) is represented by a triple [M , N ; ξ], where M and N are finitely generated,
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projective A-modules, and ξ ∶ M ⊗R Λ ∼�→ N ⊗R Λ is an isomorphism of A⊗R Λ-
modules.

Recall that there is a long exact sequence of relative algebraic K-theory (see [25,
Theorem 15.5])

K1(A)
ι�→ K1(A⊗R Λ)

∂1
A,Λ��→ K0(A, Λ)

∂0
A,Λ��→ K0(A) → K0(A⊗R Λ).(2.1)

The first and last arrows in this sequence are induced by the extension of scalars map
R → Λ, whereas the map ∂0

A,Λ sends the triple [M , N ; ξ] to the element [M] − [N] ∈
K0(A).

The map ∂1
A,Λ is defined as follows. The group K1(A⊗R Λ) is generated by

elements of the form (V , ϕ), where V is a finitely generated, free A⊗R Λ-module,
and ϕ ∶ V ∼�→ V is an A⊗R Λ-isomorphism. To define ∂1

A,Λ((V , ϕ)), we choose any
projective A-submodule T of V such that T ⊗A Λ = V , and we set

∂1
A,Λ((V , ϕ)) ∶= [T , T ; ϕ].

It may be shown that this definition is independent of the choice of T.
Let Cl(A) denote the locally free class group of A. If Λ is a field (as will in fact

always be the case in this paper), then (2.1) yields an exact sequence

K1(A)
ι�→ K1(A⊗R Λ)

∂1
A,Λ��→ K0(A, Λ)

∂0
A,Λ��→ Cl(A) → 0,(2.2)

and this is the form of the long exact sequence of relative algebraic K-theory that we
shall use in this paper.

We shall make heavy use of the fact that computations in relative K-groups and in
locally free class groups may be carried out using functions on the characters of G.
Suppose that L is either a number field or a local field, and write RG for the ring of
virtual characters of G. The group ΩL acts on RG via the rule given by

χω(g) = ω(χ(g)),

where ω ∈ ΩL , χ ∈ Irr(G), and g ∈ G. For each element a ∈ (LcG)×, we define
Det(a) ∈ Hom(RG , (Lc)×) as follows. If T is any representation of G with character
ϕ, then we set Det(a)(ϕ) ∶= det(T(a)). It may be shown that this definition is
independent of the choice of representation T, and so depends only on the character ϕ.

The map Det is essentially the same as the reduced norm map

nrd ∶ (LcG)× → Z(LcG)×(2.3)

(see [2, Remark 4.2]): (2.3) induces an isomorphism

nrd ∶ K1(LcG) ∼�→ Z(LcG)× ≃ Hom(RG , (Lc)×),(2.4)

and we have Det(a)(ϕ) = nrd(a)(ϕ).
Suppose now that we are working over a number field F (i.e., L = F above). We

define the group of finite ideles J f (K1(FG)) to be the restricted direct product
over all finite places v of F of the groups Det(FvG)× ≃ K1(FvG) with respect to the
subgroups Det(OFv G)×. (We shall require no use of the infinite places of F in the
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idelic descriptions given below. See, e.g., [9, pp. 226–228] for details concerning this
point.)

For each finite place v of F, we write

locv ∶ Det(FG)× → Det(Fv G)× ⊆ HomΩFv
(RG , (F c

v )×)
for the obvious localisation map.

Let E be any extension of F. Then the homomorphism

Det(FG)× → J f (K1(FG)) ×Det(EG)×; x ↦ ((locv(x))v , x−1)
induces a homomorphism

ΔA,E ∶ Det(FG)× →
J f (K1(FG))

∏v∤∞Det(Av)×
×Det(EG)×.

Theorem 2.1 (a) There is a natural isomorphism

Cl(A) ∼�→
J f (K1(FG))

Det(FG)×∏v∤∞Det(Av)×
.

(b) There is a natural isomorphism

hA,E ∶ K0(A, E) ∼�→ Coker(ΔA,E).

(c) Let v be a finite place of F, and suppose that Lv is any extension of Fv . Then there
are isomorphisms

K0(Av , Lv) ≃ K1(LvG)/ι(K1(Av)) ≃ Det(LvG)×/Det(Av)×.

Proof Part (a) is due to Fröhlich (see, e.g., [15, Chapter I] or [12]). Part (b) is proved
in [1, Theorem 3.5], and a proof of part (c) is given in [2, Lemma 5.7]. ∎
Remark 2.2 Suppose that x ∈ K0(A, E) is represented by the idele [(xv)v , x∞] ∈
J f (K1(FG)) ×Det(EG)×. Then ∂0(x) ∈ Cl(A) is represented by the idele (xv)v ∈
J f (K1(FG)).

Remark 2.3 Suppose that [M , N ; ξ] ∈ K0(OFG , E) and that M and N are locally
free A-modules of rank one. An explicit representative in J f (K1(FG)) ×Det(EG)×
of hA,E([M , N ; ξ]) may be constructed as follows.

For each finite place v of F, fix Av -bases mv of Mv and nv of Nv . Fix also an FG-
basis n∞ of NF , and choose an isomorphism θ ∶ MF

∼�→ NF of FG-modules.
The element θ−1(n∞) is an FG-basis of MF . Hence, for each place v, we may write

mv = μv ⋅ θ−1(n∞),
nv = νv ⋅ n∞,

where μv , νv ∈ (FvG)×.
If we write θE ∶ ME

∼�→ NE for the isomorphism afforded by θ via extension of
scalars, then we see that the isomorphism ξ ○ θ−1

E ∶ NE
∼�→ NE is given by n∞ ↦ ν∞ ⋅

n∞ for some ν∞ ∈ (EG)×.
A representative of hA,E([M , N ; ξ]) is given by the image of [(μv ⋅ ν−1

v )v , ν∞] in
J f (K1(FG)) ×Det(EG)×.
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Remark 2.4 We see from Theorem 2.1(b) and (c) that there are isomorphisms

K0(A, F) ≃
J f (K1(FG))

∏v∤∞Det(Av)×
≃

HomΩF (RG , J f (F c))
∏v∤∞Det(Av)×

≃ ⊕v∤∞K0(Av , Fv).

There is a natural injection

K0(A, F) → K0(A, F c)
[M , N ; ξ] ↦ [M , N ; ξF c ],

where ξF c ∶ MF c
∼�→ NF c is the isomorphism obtained from ξ ∶ MF

∼�→ NF via extension
of scalars from F to F c . It is not hard to check that this map is induced by the inclusion
map

J f (K1(FG)) → J f (K1(FG)) ×Det(F cG)×

(xv)v ↦ [(xv)v , 1].

We now recall the description of the restriction of scalars map on relative K-groups
and locally free class groups in terms of the isomorphism given by Theorem 2.1(b).

Suppose that F/F is a finite extension and that E is an extension of F. Then
restriction of scalars from OF to OF yields homomorphisms

K0(AOF
, E) → K0(A, E)

and

Cl(AOF
) → Cl(A),

which may be described as follows (see, e.g., [15, Chapter IV] or [27, Chapter 1]).
Let {ω} be any transversal of ΩF/ΩF . Then the map

J f (K1(FG)) ×Det(EG)× → J f (K1(FG)) ×Det(EG)×

[(yv)v , y∞] ↦∏
ω
[(yv)v , y∞]ω

induces homomorphisms

NF/F ∶ K0(AOF
, E) → K0(A, E)(2.5)

and

NF/F ∶ Cl(AOF
) → Cl(A).(2.6)

These homomorphisms are independent of the choice of {ω} and are equal to
the natural maps on relative K-groups (resp. locally free class groups) afforded by
restriction of scalars from OF to OF .

We conclude this section by recalling the definitions of certain induction maps on
relative algebraic K-groups and on locally free class groups of group rings (see, e.g.,
[15, Chapter II] or [27, Chapter I]).

Suppose that G is a finite group and that H is a subgroup of G. Let E be an
algebraic extension of F. Then extension of scalars from OF H to OFG yields natural
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homomorphisms

IndG
H ∶ K0(OF H, E) → K0(OFG , E)(2.7)

and

IndG
H ∶ Cl(OF H) → Cl(OFG).(2.8)

It may be shown that these homomorphisms are induced (via the isomorphisms
described in Theorem 2.1) by the maps

IndG
H ∶ Hom(RH , J(F c)) → Hom(RG , J(F c)),

IndG
H ∶ Hom(RH , (F c)×) → Hom(RG , (F c)×)

given by

(IndG
H f )(χ) = f (χ ∣H), χ ∈ RG .(2.9)

It is not hard to check from the definitions that the following diagram commutes:

K0(OF H, E)
IndG

H����→ K0(OFG , E)

∂0
���� ∂0

����
Cl(OF H)

IndG
H����→ Cl(OFG).

(2.10)

3 Galois algebras and ideals

Let L be either a number field or a local field, and suppose that π ∈ Z1(ΩL , G) is a
continuous G-valued ΩL 1-cocycle. We may define an associated G-Galois L-algebra
Lπ by

Lπ ∶= MapΩL
(πG , Lc),

where πG denotes the set G endowed with an action of ΩL via the cocycle π (i.e.,
gω = π(ω) ⋅ g for g ∈ πG and ω ∈ ΩL), and Lπ is the algebra of Lc-valued functions on
πG that are fixed under the action of ΩL . The group G acts on Lπ via the rule

ag(h) = a(h ⋅ g)

for all g ∈ G and h ∈ πG.
The Wedderburn decomposition of the algebra Lπ may be described as follows. Set

Lπ ∶= (Lc)Ker(π) ,

so Gal(Lπ/L) ≃ π(ΩL). Then

Lπ ≃ ∏
π(ΩL)/G

Lπ ,(3.1)

and this isomorphism depends only on the choice of a transversal of π(ΩL) in G. It
may be shown that every G-Galois L-algebra is of the form Lπ for some π and that Lπ
is determined up to isomorphism by the class [π] of π in the pointed cohomology set

https://doi.org/10.4153/S0008414X23000019 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000019


Inverse different 291

H1(L, G). In particular, every Galois algebra may be viewed as being a subalgebra of
the Lc-algebra Map(G , Lc).

Definition 3.1 The resolvend map rG on Map(G , Lc) is defined as

rG ∶ Map(G , Lc) → LcG
a ↦ ∑

g∈G
a(g) ⋅ g−1 .

(This is an isomorphism of LcG-modules, but it is not an isomorphism of Lc-algebras
because it does not preserve multiplication.)

Suppose now that Lπ/L is a G-extension and that L ⊆ Lπ is a nonzero projective
OLG-module. Then there are isomorphisms

Map(G , Lc) ≃ L⊗OL Lc , LcG ≃ OLG ⊗OL Lc ,

and so the triple [L, OLG; rG] yields an element of K0(OLG , Lc).

Proposition 3.2 Let Fπ/F be a G-extension of a number field F, and suppose that Li ⊆
Fπ (i = 1, 2) are nonzero projective OFG-modules. For each place v of F, choose a basis
l i ,v of Li ,v over OFv G, as well as a basis l∞ of Fπ over FG.
(a) The element [Li , OF G; rG] ∈ K0(OFG , F c) is represented by the image of the idele

[(rG(l i ,v) ⋅ rG(l∞)−1)v , rG(l∞)−1] ∈ J f (K1(FG)) ×Det(F cG)×.
(b) The element

[L1 , OFG; rG] − [L2 , OF G; rG] ∈ K0(OFG , F c)

is represented by the image of the idele

[(rG(l1,v) ⋅ rG(l−1
2,v))v , 1] ∈ J f (K1(FG)) ×Det(F cG)×.

(c) We have that

[L1 , OF G; rG] − [L2 , OFG; rG] ∈ K0(OFG , F) ⊆ K0(OFG , F c).

Proof For each finite place v of F, write

l i ,v = x i ,v ⋅ l∞,

with x i ,v ∈ (Fv G)×. Then it follows from Remark 2.3 that [Li , OFG; rG] ∈
K0(OFG , F c) is represented by the image of the idele [(x i ,v)v , rG(l∞)−1] ∈
J f (K1(FG)) ×Det(F cG)×. However,

x i ,v = rG(l i ,v) ⋅ rG(l∞)−1

(because the resolvend map is an isomorphism of F cG and F c
v G-modules), and this

implies (a). Part (b) now follows directly from (a).
To show part (c), we first recall that

K0(OFG , F) ≃ ⊕v∤∞K0(OFv G , Fv) ≃ ⊕v∤∞Det(Fv G)×/Det(OFv G)×

and that an element c ∈ K0(OFG , F c) lies in K0(OFG , F) if it has an idelic representa-
tive lying in J f (K1(FG)) ×Det(FG)× ⊆ J f (K1(FG)) ×Det(F cG)× (see Remark 2.4).
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Now, a standard property of resolvends implies that

rG(l i ,v)ω = rG(l i ,v) ⋅ π(ω)

for every ω ∈ ΩFv (see, e.g., [2, 2.2]), and so we see that (rG(l1,v) ⋅ rG(l−1
2,v))v ∈ (FvG)×

for each v. (In fact, as we may take l1,v = l2,v for almost all v, we may suppose
that (rG(l1,v) ⋅ rG(l−1

2,v))v = 1 for almost all v.) Hence, it now follows from (b) that
[L1 , OFG; F c] − [L2 , OFG; F c] ∈ K0(OFG , F), as claimed. ∎

It is a classical result, due to E. Noether, that a G-extension Fπ/F is tamely ramified
if and only if Oπ is a locally free (and therefore projective) OFG-module. Ullom has
shown that if Fπ/F is tame, then in fact all G-stable ideals in Oπ are locally free. He
also showed that if any G-stable ideal B, say, in a G-extension Fπ/F is locally free, then
all second ramification groups at primes dividing B are equal to zero (see [29]). If
Fπ/F is any G-extension for which ∣G∣ is odd (and so the square root Aπ of the inverse
different automatically exists), then Erez has shown that Aπ is a locally free OF G-
module if and only if all second ramification groups associated with Fπ/F vanish, i.e.,
if and only if Fπ/F is weakly ramified. In fact, as pointed out by the third author and
Vinatier [4, p. 109, footnote 1], the proof of [10, Theorem 1] shows that if Fπ/F is any
weakly ramified extension such that Aπ exists, then Aπ is locally free.

Definition 3.3 Suppose that [π] ∈ H1
t(F , G) and that Aπ exists. We define

c = c(π) ∶= [Aπ , OF G; rG] − [Oπ , OF G; rG] ∈ K0(OFG , F) ⊆ K0(OFG , F c).

4 Local decomposition of tame resolvends

Our goal in this section is to recall certain facts from [2, Section 7] concerning
Stickelberger factorizations of resolvends of normal integral basis generators of tame
local extensions, and to describe similar results concerning resolvends of basis gener-
ators of the square root of the inverse different (when this exists). Roughly speaking,
the underlying idea is that any tame Galois extension of local fields arises as the
compositum of an unramified field extension with a totally ramified Hopf–Galois
extension (which, in particular, need not be normal).

Let L be a local field, and fix a uniformizer ϖ = ϖL of L. Set q ∶= ∣OL/ϖLOL ∣.
Fix also a compatible set of roots of unity {ζm}, and a compatible set {ϖ1/m} of

roots of ϖ. (Hence, if m and n are any two positive integers, then we have (ζmn)m = ζn ,
and (ϖ1/mn)m = ϖ1/n .)

Let Lnr (resp. Lt) denote the maximal unramified (resp. tamely ramified) extension
of L. Then

Lnr = ⋃
m≥1

(m ,q)=1

L(ζm), Lt = ⋃
m≥1

(m ,q)=1

L(ζm , ϖ1/m).

The group Ωnr ∶= Gal(Lnr/L) is topologically generated by a Frobenius element ϕ ∈
Gal(Lt/L) which may be chosen to satisfy

ϕ(ζm) = ζq
m , ϕ(ϖ1/m) = ϖ1/m

https://doi.org/10.4153/S0008414X23000019 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000019


Inverse different 293

for each integer m coprime to q. Our choice of compatible roots of unity also uniquely
specifies a topological generator σ of Ωr ∶= Gal(Lt/Lnr) by the conditions

σ(ϖ1/m) = ζm ⋅ ϖ1/m , σ(ζm) = ζm

for all integers m coprime to q. The group Ωt ∶= Gal(Lt/L) is topologically generated
by ϕ and σ , subject to the relation

ϕ ⋅ σ ⋅ ϕ−1 = σ q .(4.1)

The reader may find it helpful to keep in mind the following explicit example, due
to Tsang (cf. [28, Proposition 4.2.2]), while reading the next two sections.

Example 4.1 (Tsang) Suppose that L contains the eth roots of unity with (e , q) =
1, and set M ∶= L(ϖ1/e

L ). Write ϖM ∶= ϖ1/e
L , then ϖM is a uniformizer of M. Set H ∶=

Gal(M/L) = ⟨s⟩, say.
Let n be an integer with 0 ≤ ∣n∣ ≤ e − 1, and let us consider the ideal

ϖn
M OM = ϖn/e

L OM

as an OLH-module. Set

α = 1
e

e−1
∑
i=0

ϖn+i
M = 1

e

e−1
∑
i=0

ϖ(n+i)/e
L .

We wish to explain why

OLH ⋅ α = ϖn
M ⋅ OM ,

and to give some motivation for the definition of the Stickelberger pairings in Defini-
tion 5.1.

Suppose that s(ϖM) = ζ ⋅ ϖM , where ζ is a primitive eth root of unity. Then, for
each 0 ≤ j ≤ e − 1, we have

s j(α) = 1
e

e−1
∑
i=0

ζ(i+n) jϖ i+n
M .

Multiplying both sides of this last equality by ζ−(l+n) j , where 0 ≤ l ≤ e − 1, gives

s j(α)ζ−(l+n) j = 1
e

e−1
∑
i=0

ζ(i−l) jϖ i+n
M .

Now, sum over j to obtain

e−1
∑
j=0

s j(α)ζ−(l+n) j = 1
e

n
∑
i=0

ϖ i+n
M

e−1
∑
j=0

ζ(i−l) j = ϖ l+n
M .

So, if for any χ ∈ Irr(H), we choose the unique integer (χ, s)H ,n in the set

{l + n ∣ 0 ≤ l ≤ e − 1}
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such that χ(s) = ζ(χ,s)H ,n , then we see that

Det(rH(α))(χ) =
e−1
∑
j=0

s j(α)ζ−(l+n) j = ϖ(χ,s)H ,n
M .(4.2)

The cases n = 0 and n = (1 − e)/2 (for e odd) correspond to the ring of integers and
the square root of the inverse different, respectively, and we see the appearance of the
relevant Stickelberger pairing (see Definition 5.1) in each case.

It follows from (4.2) that

Bn ∶= {ϖ l+n
M ∶ 0 ≤ l ≤ e − 1} ⊆ OLH ⋅ α.

As Bn is an OL-basis of the ideal ϖn
M ⋅ OM , and as ζe ∈ OL , we see that

OLH ⋅ α = ϖn
M ⋅ OM ,

i.e., α is a free generator of ϖn
M ⋅ OM as an OLH-module.

Definition 4.2 If g ∈ G, we set

βg ∶=
1
∣g∣

∣g∣−1

∑
i=0

ϖ i/∣g∣;

note that βg depends only on ∣g∣, and so in particular we have

βg = βγ−1 gγ

for every γ ∈ G. We define φg ∈ Map(G , Lc) by setting

φg(γ) =
⎧⎪⎪⎨⎪⎪⎩

σ i(βg), if γ = g i ,
0, if γ ∉ ⟨g⟩.

Then

rG(φg) =
∣g∣−1

∑
i=0

φg(g i)g−i =
∣g∣−1

∑
i=0

σ i(βg)g−i .(4.3)

Suppose now that π ∈ Z1(ΩL , G), with [π] ∈ H1
t(L, G). Write s ∶= π(σ) and t ∶=

π(ϕ). We define, πr , πnr ∈ Map(Ωt , G) by setting

πr(σ m ϕn) = π(σ m) = sm ,(4.4)

πnr(σ m ϕn) = π(ϕn) = tn ,(4.5)

so that

π = πr ⋅ πnr .

It may be shown that in fact πnr ∈ Hom(Ωnr , G), and so corresponds to a unramified
G-extension Lπnr of L. It may also be shown that πr ∣Ωr ∈ Hom(Ωr , G), corresponding
to a totally (tamely) ramified extension Lnr

πr
/Lnr . If we write [π̃] for the image of

[π] under the natural restriction map H1(L, G) → H1(Lnr , G), then [π̃] = [πr]. The
element φs is a normal integral basis generator of the extension Lnr

πr
/Lnr . (See [2,
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Section 7] for proofs of these assertions.) If in addition ∣s∣ is odd, then the inverse
different of Lπ/L has a square root Aπ , and

Aπ = ϖ(1−∣s∣)/2∣s∣ ⋅ Oπ .

We can now state the Stickelberger factorization theorem for resolvends of normal
integral bases.

Theorem 4.3 If anr ∈ Lπnr is any normal integral basis generator of Lπnr/L, then the
element a ∈ Lπ defined by

rG(anr) ⋅ rG(φs) = rG(a)(4.6)

is a normal integral basis generator of Lπ/L.

Proof See [2, Theorem 7.9]. ∎

We shall now describe a similar result (due to Tsang when G is abelian) concerning
OLG-generators of the square root of the inverse different of a tame extension of L.

Definition 4.4 Suppose that g ∈ G and that ∣g∣ is odd. Set

β∗g =
1
∣g∣

∣g∣−1

∑
i=0

ϖ
1
∣g∣ (i+

1−∣g∣
2 ).

Define φ∗g ∈ Map(G , Lc) by

φ∗g(γ) =
⎧⎪⎪⎨⎪⎪⎩

σ i(β∗g ), if γ = g i ,
0, if γ ∉ ⟨g⟩.

Then

rG(φ∗g) =
∣g∣−1

∑
i=0

φg(g i)g−i =
∣g∣−1

∑
i=0

σ i(β∗g )g−i .(4.7)

Theorem 4.5 (Cf. [2, Theorem 7.9]) If anr is any choice of n.i.b. generator of Lπnr/L,
then the element b of Lπ defined by

rG(b) = rG(anr) ⋅ rG(φ∗s )(4.8)

satisfies Aπ = OLG ⋅ b.

Proof To ease notation, set N ∶= Lnr and H ∶= ⟨s⟩.
Write [π̃] ∈ H1(N , G) for the image of [π] ∈ H1(L, G) under the restriction map

H1(L, G) → H1(N , G). Then Aπ̃ = ON ⋅ Aπ because N/L is unramified. Hence, to
establish the desired result, it suffices to show that

Aπ̃ = ON G ⋅ b.(4.9)

As rG(anr) ∈ (ON G)×, (4.9) is equivalent to the equality

Aπ̃ = ON G ⋅ φ∗s .(4.10)
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Now,

Nπ̃ ≃ ∏
H/G

N π̃ ,(4.11)

where N π̃ = N(ϖ1/∣s∣) (cf. (3.1)), and this isomorphism induces a decomposition

Aπ̃ = ∏
H/G

Aπ̃ ,(4.12)

where

Aπ̃ = A(N π̃) = ϖ(1−∣s∣)/2∣s∣ ⋅ ON

is the square root of the inverse different of the extension N π̃/N .
It therefore follows from the definition of φ∗s that (4.10) holds if and only if

Aπ̃ = ON H ⋅ β∗s .(4.13)

This last equality follows exactly as in [28, Proposition 4.2.2], and a proof is given by
taking n = (1 − e)/2 (for e odd) in Example 4.1. ∎

Proposition 4.6 Suppose that [π] ∈ H1
t(L, G) and that s ∶= π(σ) is of odd order. Then

the class

c(π) ∶= [Aπ , OLG; rG] − [Oπ , OLG; rG] ∈ K0(OLG , L) ≃ Det(LG)×/Det(OLG)×

is represented by Det(rG(φ∗s )) ⋅Det(rG(φs))−1 ∈ Det(LG)×.

Proof This is a direct consequence of Theorems 4.3 and 4.5, together with the proof
of Proposition 3.2(c). ∎

5 Stickelberger pairings and resolvends

Our goal in this section is to describe explicitly the elements Det(rG(φs)) and
Det(rG(φ∗s )) constructed in the previous section. We begin by recalling the definition
of two Stickelberger pairings. The first of these is due to McCulloh, whereas the second
is due to Tsang in the case of abelian G. See [2, Definition 9.1] and [28, Definition 2.5.1].

Definition 5.1 Let ζ = ζ∣G∣ be a fixed, primitive, ∣G∣th root of unity. Suppose first that
G is cyclic. For g ∈ G and χ ∈ Irr(G), write χ(g) = ζ r for some integer r.

(1) We define

⟨χ, g⟩G = {r/∣G∣},

where 0 ≤ {r/∣G∣} < 1 denotes the fractional part of r/∣G∣.
Alternatively (cf. Example 4.1, but note that there we worked with the primitive

eth root of unity ζe , where e is the exponent of G), if we choose r to be the unique
integer in the set {l ∶ 0 ≤ l ≤ ∣G∣ − 1} such that χ(g) = ζ r , then

⟨χ, g⟩G = r/∣G∣.
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(2) Suppose that ∣G∣ is odd, and choose r ∈ [(1 − ∣G∣)/2, (∣G∣ − 1)/2] to be the unique
integer such that χ(g) = ζ r . Define

⟨χ, g⟩∗G = r/∣G∣.

We extend each of these to pairings

QRG ×QG → Q

via linearity. Finally, we extend the definitions to arbitrary finite groups G by
setting

⟨χ, s⟩G ∶= ⟨χ ∣⟨s⟩ , s⟩⟨s⟩
and

⟨χ, s⟩∗G ∶= ⟨χ ∣⟨s⟩ , s⟩∗⟨s⟩ ,

where the second definition of course only makes sense when the order ∣s∣ of s is
odd.

We shall make use of the following alternative descriptions of the above Stickel-
berger pairing using the standard inner product on RG (see [2, Proposition 9.2]). For
each element s ∈ G, write ζ∣s∣ = ζ ∣G∣/∣s∣

∣G∣ , and define a character ξs of ⟨s⟩ by ξs(s i) = ζ i
∣s∣.

Set

Ξs ∶=
1
∣s∣

∣s∣−1

∑
j=1

jξ j
s .

For ∣s∣ odd, we also define

Ξ∗s ∶=
1
∣s∣

(∣s∣−1)/2

∑
j=1

j(ξ j
s − ξ− j

s ).

Let (−,−)G denote the standard inner product on RG .

Proposition 5.2 (a) If s ∈ G and χ ∈ RG , we have

⟨χ, s⟩G = (IndG
⟨s⟩(Ξs), χ)G .

(b) If furthermore ∣s∣ is odd, then we have

⟨χ, s⟩∗G = (IndG
⟨s⟩(Ξ∗s ), χ)G .

(c) If ∣s∣ is odd, then

Ξ∗s − Ξs = −
(∣s∣−1)/2

∑
j=1

ξ− j
s .

(d) For s odd, write

d(s) ∶= −
(∣s∣−1)/2

∑
j=1

ξ− j
s .
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Then, for each χ ∈ RG , we have

⟨χ, s⟩∗G − ⟨χ, s⟩G = (IndG
⟨s⟩(d(s)), χ)G .

Proof Part (a) is proved in [2, Proposition 9.2]. The proof of (b) is the same mutatis
mutandis. Part (c) follows directly from the definitions of Ξs and Ξ∗s , and then (d)
follows from (a) and (b). ∎

We may use Proposition 5.2 to describe the relationship between the two Stickel-
berger pairings in Definition 5.1 when ∣s∣ is odd.

In the sequel, for any finite group Γ (which will be clear from context), and any
natural number k, we write ψk for the kth Adams operator on RΓ . Thus, if χ ∈ RΓ
and γ ∈ Γ, then one has ψk(χ)(γ) = χ(γk). In particular, we recall that, for all k, ψk
commutes with the restriction and inflation functors, as well as with the action of ΩQ
on RΓ (see [10, Proposition–Definition 3.5]). If L is a number field or a local field, we
also write ψk for the homomorphism

Hom(RΓ , (Lc)×) → Hom(RΓ , (Lc)×)
defined by setting

ψk( f )(χ) = f (ψk(χ))
for f ∈ Hom(RΓ , (Lc)×) and χ ∈ RΓ .

Proposition 5.3 Suppose that s ∈ G is of odd order, and set H ∶= ⟨s⟩.
(a) If 1 ≤ j ≤ ∣s∣ − 1, then

(Ξ∗s , ξ j)H = (Ξs , ξ2 j − ξ j)H

= (Ξs , ψ2(ξ j) − ξ j)H .

(b) (Tsang) For each χ ∈ RG , we have

⟨χ, s⟩∗G = ⟨ψ2(χ) − χ, s⟩G .

Proof (a) If 1 ≤ j ≤ ∣s∣/2, then we have

(Ξs , ξ2 j
s − ξ j

s)H = 2 j − j
∣s∣ = j

∣s∣ ,

whereas if ∣s∣/2 ≤ j ≤ s − 1, then

(Ξs , ξ2 j
s − ξ j

s)H = (2 j − ∣s∣) − j
∣s∣ = j − ∣s∣

∣s∣ .

Thus, in each case, we have

(Ξ∗s , ξ j
s)H = (Ξs , ξ2 j

s − ξ j
s)H ,

and this establishes the claim.
(b) Proposition 5.2(b), together with Frobenius reciprocity, gives

⟨χ, s⟩∗G = (IndG
⟨s⟩(Ξ∗s ), χ)G

= (Ξ∗s , χ ∣H)H .
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The desired result now follows from part (a), together with the fact that, for any χ ∈ RG ,
we have the equality

ψ2(χ) ∣H= ψ2(χ ∣H). ∎

Remark 5.4 Proposition 5.3(b) (due to Tsang) shows very clearly why the second
Adams operator ψ2 appears when one studies the Galois structure of the square root of
the inverse different as opposed to the ring of integers. This appearance of the second
Adams operator was first observed by Erez (see [10, Proposition–Definition 3.5 and
Theorem 3.6]) in the initial work on this topic.

The following result describes the elements Det(rG(φs)) and Det(rG(φ∗s )) in
terms of Stickelberger pairings. In what follows, we retain the notation and conven-
tions of Section 4.

Proposition 5.5 Suppose that χ ∈ RG and s ∈ G.
(a) We have

Det(rG(φs))(χ) = ϖ⟨χ,s⟩G .

(b) If ∣s∣ is odd, then we have

Det(rG(φ∗s ))(χ) = ϖ⟨χ,s⟩∗G .

(c) For ∣s∣ odd, we have

[Det(rG(φ∗s )) ⋅Det(rG(φs))−1](χ) = ϖ⟨χ,s⟩∗G−⟨χ,s⟩G

= ϖ⟨ψ2(χ)−2 χ,s⟩G

= Det(rG(φs))(ψ2(χ))
Det(rG(φs))(2χ) .

That is to say,

Det(rG(φ∗s )) ⋅Det(rG(φs))−1 = ψ2(Det(rG(φs))) ⋅Det(rG(φs))−2 .

Proof Part (a) is proved in [2, Proposition 10.5(a)]. The proof of (b) is very similar,
using [28, Proposition 4.2.2], which in fact shows the result for G abelian. Part (c)
follows from parts (a) and (b), and Proposition 5.3. ∎
Corollary 5.6 Suppose that [π] ∈ H1

t(L, G) and that s ∶= π(σ) is of odd order. Then a
representing homomorphism for the class

c(π) = [Aπ , OLG; rG] − [Oπ , OLG; rG]
in

K0(OLG , L) ≃ Det(LG)×
Det(OLG)× ≃

HomΩL(RG , (Lc)×)
Det(OLG)×

is the map fπ ∈ HomΩL(RG , (Lc)×) given by

fπ(χ) = ϖ⟨ψ2(χ)−2χ,s⟩G .

Proof This follows from Propositions 4.6 and 5.5(c). ∎
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6 Galois–Gauss and Galois–Jacobi sums

Let L be a local field of residual characteristic p. Suppose that [π] ∈ H1
t(L, G), and

recall that we have (see (3.1))

Lπ ≃ ∏
π(ΩL)/G

Lπ .

Set H ∶= π(ΩL) = Gal(Lπ/L), and write τ∗(Lπ/L, −) ∈ Hom(RH , (Qc)×) for the
adjusted Galois–Gauss sum homomorphism associated with Lπ/L (see [14, Chapter
IV, equation (1.7)]). Recall that this is defined by

τ∗(Lπ/L, −) ∶= τ(Lπ/L, −) ⋅ y(Lπ/L,−)−1 ⋅ z(Lπ/L,−),

where τ(Lπ/L, −) denotes the Galois–Gauss sum homomorphism and y(Lπ/L,−)
and z(Lπ/L,−) are homomorphisms taking values in roots of unity in Qc . We define
τ∗(Lπ/L, −) ∈ Hom(RG , (Qc)×) by composing τ∗(Lπ/L, −) with the natural map
RG → RH .

For a finite group Γ, we write Irrp(Γ) for the set of Qc
p-valued irreducible characters

of Γ and RΓ, p for the free abelian group on Irrp(Γ). We fix a local embedding Locp ∶
Qc → Qc

p , and we shall identify Irr(Γ) with Irrp(Γ) via this choice of embedding.
For each rational prime l ≠ p, we fix a semilocal embedding Locl ∶ Qc → (Qc)l ∶=

Qc ⊗Q Ql . (Caveat: note that this is not the same thing as a local embedding Qc →
Qc

l !) For each rational prime l, write Qt
l for the maximal, tamely ramified extension of

Ql .
We shall require the following results. (We remind the reader that the definition of

the Adams operators ψk was recalled just prior to the statement of Proposition 5.3.)

Proposition 6.1 Fix a rational prime l.
(a) Let K be an unramified extension of Ql . Then, for any integer k, we have that

ψk(Det(OKG)×) ⊆ Det(OKG)×.

(b) Let Γ be a finite group with abelian p-Sylow subgroups. Then, for any integer k,

ψk(Det(OQt
p
Γ)×) ⊆ Det(OQt

p
Γ)×.

(c) Suppose that l ≠ p. Then

Locl(τ∗(Lπ/L, −)) ∈ Det(OQ(μp), l G)×.

Proof Parts (a) and (b) are results of Cassou–Noguès and Taylor. For part (a), see,
e.g., [27, Chapter 9, Theorem 1.2], and note that for this particular result, we do not
need to assume that (k, ∣G∣) = 1. For part (b), see [5, p. 83, Remark].

Part (c) follows from [14, Chapter IV, Theorem 30], where analogous results are
proved for τ∗(Lπ/L, −); the corresponding results for τ∗(Lπ/L, −) are then a direct
consequence of the definition of τ∗(Lπ/L, −). ∎

The following result is entirely analogous to [14, Chapter IV, Lemma 2.1]. Recall
that if f ∈ Hom(RΓ , (Qc

p)×), then ω ∈ ΩQp acts on f by the rule

f ω(χ) = f (χω−1
)ω .
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Lemma 6.2 Let L/Qp be a finite extension, and let {ν} be any right transversal of ΩL
in ΩQp . Suppose that f ∈ HomΩLnr (RΓ , (Qc

p)×). Then (cf. (2.5) and (2.6)):

NL/Qp f ∶= ∏
ν

f ν ∈ HomΩQnr
p
(RΓ , (Qc

p)×).

Proof It suffices to show that this result holds with respect to a particular choice of
transversal of ΩL in ΩQp .

We first observe that, as ΩQnr
p

is normal in ΩQp , ΩL ⋅ ΩQnr
p

is a subgroup of ΩQp .
We choose a right transversal {ω} of ΩL ⋅ ΩQnr

p
in ΩQp .

Next, we choose a right transversal {σ} of ΩL ∩ ΩQnr
p

in ΩQnr
p

. It follows that {σ}
is also a right transversal of ΩL in ΩL ⋅ ΩQnr

p
. We now deduce that {σω} is a right

transversal of ΩL in ΩQp . We also note that

ΩL ∩ ΩQnr
p
= ΩLnr ∩ ΩQnr

p

and that (since ΩQnr
p

is normal in ΩQp )

ω−1
i (ΩLnr ∩ ΩQnr

p
)ω i = ω−1

i ΩLnr ω i ∩ ΩQnr
p

for any ω i ∈ {ω}.
Now, suppose that f ∈ HomΩLnr (RΓ , (Qc

p)×) and that ω i ∈ {ω}. Then

f ω i ∈ Homω−1
i ΩLnr ω i

(RΓ , (Qc
p)×),

and so

f ω i ∈ Hom(ω−1
i ΩLnr ω i)∩ΩQnr

p
(RΓ , (Qc

p)×).

Now, observe that for fixed ω i ∈ {ω}, {ω−1
i σω i}σ is a right transversal of

ω−1
i ΩLnr ω i ∩ ΩQnr

p
in ΩQnr

p
, and so

∏
σ
( f ω i )ω−1

i σ ω i ∈ HomΩQnr
p
(RΓ , (Qc

p)×).

Hence, finally, we obtain

∏
ω ,σ
( f ω)ω−1 σ ω = ∏

ω ,σ
f σ ω ∈ HomΩQnr

p
(RΓ , (Qc

p)×),

as required. ∎

Proposition 6.3 Let aπ be any n.i.b. generator of Lπ/L. Suppose also that the square
root Aπ of the inverse different of Lπ/L exists (i.e., that s ∶= π(σ) is of odd order) and
that Aπ = OLG ⋅ bπ . Then:
(a) NL/Qp[Det(rG(bπ))−1 ⋅ ψ2(Det(rG(aπ))) ⋅Det(rG(aπ))−1] ∈ Det(OQt

p
G)×.

(b) (i) Locp[(τ∗(Lπ/L, −))]−1 ⋅NL/Qp[Det(rG(aπ))] ∈ Det(OQt
p
G)×.

(ii) Locp[ψ2(τ∗(Lπ/L, −))]−1 ⋅NL/Qp[ψ2(Det(rG(aπ)))] ∈ Det(OQt
p
G)×.

(c) Locp[ψ2(τ∗(Lπ/L, −)) ⋅ (τ∗(Lπ/L, −))−1]−1 ⋅NL/Qp[Det(rG(bπ))] ∈
Det(OQt

p
G)×.
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(d) Locp[ψ2(τ∗(Lπ/L, −)) ⋅ (τ∗(Lπ/L, −))−2]−1 ⋅NL/Qp[Det(rG(bπ)) ⋅
Det(rG(aπ))−1] belongs to Det(OQt

p
G)×.

(e) With the notation of Proposition 4.6, the element

Locp[ψ2(τ∗(Lπ/L, −)) ⋅ (τ∗(Lπ/L, −))−2]−1 ⋅NL/Qp [Det(rG(φ∗s )) ⋅Det(rG(φs))
−1]

belongs to Det(OQt
p
G)×.

Proof (a) Recall from [2, Definition 7.12] that for any n.i.b. generator aπ of Lπ/L, one
has

rG(aπ) = u ⋅ rG(anr) ⋅ rG(φs),

where u ∈ (OLG)× and rG(anr) ∈ (OLnr G)×. Furthermore, u ⋅ anr is also an n.i.b
generator of Lπnr/L.

Hence,

Det(rG(aπ) ⋅ rG(φs)−1) = Det(u ⋅ anr) ∈ Det(OLnr G)×,

and Lemma 6.2 implies that also

NL/Qp[Det(rG(aπ) ⋅ rG(φs)−1)] ∈ Det(OQnr
p

G)×.

It now follows from Proposition 6.1 that the product

NL/Qp[(Det(rG(aπ)) ⋅Det(rG(φs))−1)−1 ⋅ ψ2(Det(rG(aπ)) ⋅Det(rG(φs))−1)]
(6.1)

belongs to Det(OQnr
p

G)×.
Part (a) now follows from (6.1), together with Proposition 5.5(c) and the Stickel-

berger factorization of rG(bπ) (see Theorem 4.5).
(b) Let Oπ denote the integral closure of OL in Lπ and fix an element α ∈ Lπ such

that Oπ = OLH ⋅ α. It follows from [14, Chapter IV, Theorem 31] that there exists an
element w ∈ (OQt

p
H)× such that

Locp(τ∗(Lπ/L,−))−1 ⋅NL/Qp Det(rH(α)) = Det(w).(6.2)

Under our hypotheses, the inertia subgroup of H is cyclic of order ∣s∣ coprime to p.
Hence, Proposition 6.1(b) implies that

Locp[ψ2(τ∗(Lπ/L, −))]−1 ⋅NL/Qp[ψ2(Det(rH(α)))](6.3)

belongs to ψ2(Det(OQt
p
H)×) ⊆ Det(OQt

p
H)× ⊆ Det(OQt

p
G)×.

Next, we construct a map aπ ∈ Map(G , Lc) associated with α by setting

aπ(γ) ∶= { γ̃(α), if γ = π(γ̃) for γ̃ ∈ ΩL ,
0, otherwise.

It is easy to see from (3.1) that aπ ∈ Lπ and satisfies that Oπ = OLG ⋅ a. In particular,
for each χ ∈ RG , we have

Detχ(rG(aπ)) = Detχ(∑
γ∈G

aπ(γ)γ−1) = Detχ(∑
γ∈H

γ̃(α)γ−1) = Detres χ(rH(α)),
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with res ∶= resG
H ∶ R+G → RH . This implies that

NL/Qp[Det(rG(aπ))] = NL/Qp[Det(rH(α))],
NL/Qp[ψ2(Det(rG(aπ)))] = NL/Qp[ψ2(Det(rH(α)))].(6.4)

We now see from the definition of τ∗(Lπ/L,−) that (i) follows from (6.2) and (6.4),
whereas part (ii) is a consequence of (6.3) and (6.4).

(c) Follows from (a) and (b) above.
(d) Follows from (b)(i) together with (c).
(e) Follows from (d) above. ∎
Proposition 6.3(d) and (e) motivates the following definition.

Definition 6.4 We retain the notation established above. Define the adjusted Galois–
Jacobi sum homomorphism associated with Lπ/L, J∗(Lπ/L, −) ∈ Hom(RG , (Qc)×), by

J∗(Lπ/L, −) ∶= ψ2(τ∗(Lπ/L, −)) ⋅ (τ∗(Lπ/L, −))−2 .

It follows from the Galois action formulae for Galois–Gauss sums (see [14, pp. 119
and 152]) that in fact J∗(Lπ/L, −) ∈ HomΩQ(RΓ , (Qc)×).

Remark 6.5 Let τ(Lπ/L, −) ∈ Hom(RH , (Qc)×) denote the (unadjusted) Galois–
Gauss sum associated with Lπ/L, and write τ(Lπ/L, −) ∈ Hom(RG , (Qc)×) for the
composition of τ(Lπ/L, −) with the natural map RG → RH . We remark that the
Galois–Jacobi sum J(Lπ/L, −) ∈ Hom(RG , (Qc)×) defined by

J(Lπ/L, −) ∶= ψ2(τ(Lπ/L, −)) ⋅ (τ(Lπ/L, −))−2

is a special case of the non-abelian Jacobi sums first introduced by Fröhlich (see [13]).

Proposition 6.6 (a) Suppose that l ≠ p. Then

Locl(J∗(Lπ/L,−)) ∈ Det(Zl G×).

(b) Using the notation of Proposition 6.3, we have

Locp(J∗(Lπ/L, −))−1 ⋅NL/Qp[Det(rG(bπ)) ⋅Det(rG(aπ))−1] ∈ Det(ZpG×).

Hence,

Locp(J∗(Lπ/L, −))−1 ⋅NL/Qp[Det(rG(φ∗s )) ⋅Det(rG(φs))−1] ∈ Det(ZpG×).

Proof (a) Recall that J∗(Lπ/L, −) ∈ HomΩQ(RG , (Qc)×) and that Q(μp)/Q is
unramified at l. It therefore follows from Proposition 6.1(a) and (c), together with
Taylor’s fixed point theorem for determinants (see [27, Chapter 8, Theorem 1.2]), that

Locl(J∗(Lπ/L, −)) ∈ [Det(OQ l (μp)G
×)]ΩQl = Det(Zl G×),

as claimed.
(b) As both of the functions Locp(J∗(Lπ/L, −)) and NL/Qp[Det(rG(bπ)) ⋅

Det(rG(aπ))−1] lie in HomΩQp
(RG , (Qc

p)×), we see from Proposition 6.3(d) that

Locp(J∗(Lπ/L, −))−1 ⋅NL/Qp[Det(rG(bπ)) ⋅Det(rG(aπ))−1]
∈ [Det(OQt

p
G×)]ΩQp = Det(ZpG×).
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The final assertion now follows at once from the Stickelberger factorizations of rG(aπ)
and rG(bπ) (see Theorems 4.3 and 4.5). ∎

7 Symplectic Galois–Jacobi sums I

In this section, we fix data L, G, and π as in Section 6. We write Symp(G) for the set
of irreducible symplectic characters of G. For each χ ∈ Irr(G), we write τ(Lπ/L, χ) for
the associated (unadjusted) Galois–Gauss sum, and

J(Lπ/L, −) ∶= ψ2(τ(Lπ/L, −)) ⋅ (τ(Lπ/L, −))−2

for the (unadjusted) Galois–Jacobi sum (see Remark 6.5).
We shall prove the following result concerning symplectic Galois–Jacobi sums.

Theorem 7.1 Suppose that χ ∈ Symp(G). Then J(Lπ/L, χ) is a strictly positive real
number.

We see from the decomposition (3.1) that it is enough to prove this result after
replacing the Galois algebra Lπ by the field Lπ and the group G by the Galois group
π(ΩL) = Gal(Lπ/L). In the sequel, we shall therefore restrict to the case where Lπ/L
is a finite Galois extension of p-adic fields and G is its Galois group.

To prove Theorem 7.1, it is therefore enough to show that for each χ in Symp(G),
the quotient τ(L, ψ2(χ))/τ(L, 2χ) is a strictly positive real number.

To verify this, we recall that since each such χ is real-valued, the definition of the
local root number W(L, χ) implies that

τ(L, χ) = W(L, χ) ⋅NLf(Lπ/L, χ)1/2

(cf. [18, Chapter II, Section 4, Definition]). Hence, since NLf(Lπ/L, χ)1/2 > 0, it is
enough to prove the following result.

Theorem 7.2 Let E/F be a tamely ramified Galois extension of non-archimedean local
fields that has odd ramification degree and set G ∶= Gal(E/F). Then, for each χ in
Symp(G), one has W(F , ψ2(χ)) = W(F , 2χ) = 1.

This sort of result is, in principle, hard to prove both because root numbers of
symplectic characters are difficult to compute and because Adams operators do not in
general commute with induction functors. We therefore prove two preliminary results
that help address these problems.

The first of these results is entirely representation-theoretic in nature.
In the sequel, for any finite group Γ and character ϕ in RΓ , we write Tr(ϕ) for the

real-valued character ϕ + ϕ.

Lemma 7.3 Let Δ be a subgroup of a finite group Γ, fix a character ϕ of Δ, and consider
the virtual character

I2
Γ(ϕ) ∶= ψ2(IndΓ

Δ(ϕ)) − IndΓ
Δ(ψ2(ϕ)).

For elements γ and δ of Γ, we set γδ ∶= δγδ−1.
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(a) Let T be a set of coset representatives of Δ in Γ. Then, for every γ ∈ Γ, one has

(I2
Γ(ϕ))(γ) = ∑

τ
ϕ((γτ)2),

where the sum runs over all τ ∈ T for which (γτ)2 ∈ Δ and γτ ∉ Δ.
(b) If Δ is a subnormal subgroup of Γ of odd index, then I2

Γ(ϕ) = 0.
(c) Assume that Γ is a semidirect product of a supersolvable group by an abelian normal

subgroup Υ.
(i) Then, for every irreducible character μ of Γ, there exists a subgroup Υ′ of Γ that

contains Υ and a linear character λ of Υ′ such that μ = IndΓ
Υ′(λ).

In addition, if Υ ⊆ Δ, the index of Δ in Γ is a power of 2 and Γ has cyclic Sylow
2-subgroups, then the following claims are also valid.
(ii) If ϕ is real-valued, then I2

Γ(ϕ) is an integral linear combination of characters
of the form IndΓ

Δ′λ and Tr(ϕ′), where Δ′ runs over subgroups of Γ that contain
Δ, λ over homomorphisms Δ′ → {±1} and ϕ′ over elements of RΓ .

(iii) If ϕ is induced from a proper normal subgroup of Δ of 2-power index that
contains Υ, then I2

Γ(ϕ) = 0.
(d) Assume that Γ is generalized quaternion, Δ is the cyclic subgroup of Γ of index 2,

and ϕ is irreducible (and hence linear). Then ϕ2 is trivial on the center Z of Γ and

ψ2(IndΓ
Δϕ) = Inf Γ

Γ/Z(IndΓ/Z
Δ/Z(ϕ2)) + Inf Γ

Γ/Δ(χΓ/Δ) − 1Γ ,

where we regard ϕ2 as a character of Δ/Z and write χΓ/Δ for the unique nontrivial
homomorphism Γ/Δ → (Qc)×.

Proof Part (a) follows directly from the explicit formula for induced characters and
the fact that for each γ ∈ Γ, and τ ∈ T, one has (γτ)2 ∈ Δ whenever γτ ∈ Δ.

To prove part (b), we fix a chain of subgroups

Δ = Γ(1) ⊂ ⋅ ⋅ ⋅ ⊂ Γ(t − 1) ⊂ Γ(t) = Γ(7.1)

such that each Γ(i) is normal in Γ(i + 1). Then the equality

I2
Γ(ϕ) =

i=t−1
∑
i=1

IndΓ
Γ(i+1)(I2

Γ(i+1),Γ(i)(IndΓ(i)
Δ ϕ)),(7.2)

where

I2
Γ(i+1),Γ(i)(χ) = ψ2(IndΓ(i+1)

Γ(i) χ) − IndΓ(i+1)
Γ(i) (ψ2(χ)),

reduces us to the case Δ is normal in Γ. In this case, the claim follows immediately
from the formula in part (a) and the fact that under the stated conditions, for every
γ ∈ Γ and τ ∈ T, one has (γτ)2 ∈ Δ ⇐⇒ γτ ∈ Δ.

Turning to part (c), we note first that under the stated hypothesis on Γ, claim (c)(i)
follows from [22, Section 8.5, Exercise 8.10] and the argument of [22, Section 8.2,
Proposition 25].

To verify (c)(ii) and (c)(iii), we assume the additional hypotheses on Γ and
note, in particular, that since Γ has cyclic Sylow 2-subgroups, Cayley’s normal
2-complement theorem implies that Γ, and therefore also its quotient Γ/Υ, has a
normal 2-complement. Writing Υ1/Υ for the normal 2-complement of Γ/Υ, the given
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assumptions imply Υ1 ⊆ Δ and so, since Γ/Υ1 is cyclic of 2-power order, there exists
a chain of subgroups (7.1) in which Γ(i) has index 2 in Γ(i + 1) for each i. The
corresponding equality (7.2) then reduces claims (c)(ii) and (c)(iii) to the case that Δ
has index 2 in Γ. In this case, ∣T∣ = 2 and, for every γ ∈ Γ and τ ∈ T, one has (γτ)2 ∈ Δ
and, in addition, γτ ∉ Δ ⇐⇒ γ ∉ Δ and so the formula in part (a) implies

(I2
Γ(ϕ))(γ) =

⎧⎪⎪⎨⎪⎪⎩

0, if γ ∈ Δ,
∑τ∈T ϕ((γτ)2), if γ ∉ Δ.

(7.3)

Now, by (c)(i), every irreducible character of Γ has the form μ = IndΓ
Υ′(λ), where Υ′ is

a suitable subgroup of Γ that contains Υ and λ a linear character of Υ′. Furthermore, if
Υ′ /⊂ Δ, then the index of Υ′ in Γ is odd, so μ has odd degree and so, by [20, Theorem
A], is real-valued if and only if it is a homomorphism of the form Υ′ → {±1}. Claim
(c)(ii) follows directly from this fact and the observation that I2

Γ(ϕ) is real-valued if ϕ
is real-valued.

To prove claim (c)(iii), we assume that ϕ = IndΔ
Δ′ϕ′, where Δ′ is a normal subgroup

of Δ that contains Υ and is of 2-power index. In this case, the formula (7.3) implies
that if I2

Γ(ϕ) is nonzero, then there exists an element of Γ/Δ whose square belongs to
Δ′. However, since Υ1 ⊆ Δ′, the image in the (cyclic) group Γ/Δ′ of any element in Γ/Δ
has order divisible by 4 and so its square cannot belong to Δ′. This proves (c)(iii).

Next, under the hypotheses of (d), for every γ ∈ Γ, one has γ2 ∈ Δ and hence

(ψ2(IndΓ
Δϕ))(γ) = (IndΓ

Δϕ)(γ2) = ϕ2(γ) + ϕ2(γ−1).

In particular, since ϕ2(z) = 1 for every z ∈ Z, this formula implies that ψ2(IndΓ
Δϕ) is

the inflation of a character function on the dihedral group Γ/Z, and then the displayed
formula in part (d) is verified by an easy explicit computation. ∎

In the sequel, for each finite Galois extension E/F of p-adic fields, and each complex
character χ of Gal(E/F), we abbreviate the root number W(F , χ) to W(χ).

Part (c) of the following result relies on the central result of Fröhlich and Queyrut
in [16].

Proposition 7.4 Let E/F be a finite Galois extension of p-adic fields. Set G ∶= Gal(E/F)
and assume that the inertia subgroup of G has odd order.
(a) For all ϕ in RG , one has W(Tr(ϕ)) = 1.
(b) If H is a normal subgroup of G and G/H is cyclic, then for each ϕ in RH , one has

W(IndG
H ϕ) =

⎧⎪⎪⎨⎪⎪⎩

W(ϕ), if G/H has odd order,
W(ϕ)W(χG/H)ϕ(1), if G/H has even order,

where, in the second case, χE′/F is the nontrivial character of Gal(E′/F), with E′
the quadratic extension of F in E.

(c) Assume that G is dihedral of order congruent to 2 modulo 4, write L for the
unique quadratic extension of F in E, and set H ∶= Gal(E/L). Then, for each
homomorphism ϕ ∶ H → (Qc)×, one has W(IndG

H ϕ) = W(χG/H), where χG/H is
the nontrivial character of G/H.

https://doi.org/10.4153/S0008414X23000019 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000019


Inverse different 307

Proof It is enough to prove claim (a) in the case where ϕ is a character of G,
represented by a homomorphism Tϕ ∶ G → GLd(Qc). In this case, the general result
of [18, Chapter II, Section 4, Corollary] implies that

W(Tr(ϕ)) = W(ϕ)W(ϕ̄) = detϕ(ρF(−1)),

where detϕ is the homomorphism Gab → (Qc)× induced by sending each g in G to
det(Tϕ(g)) and ρF is the reciprocity map F× → Gab. In addition, −1 belongs to O×F
and so is sent by ρF to an element of the inertia subgroup of Gab of order dividing
2. In particular, since this inertia group has odd order, one has ρF(−1) = 1 and so
detϕ(ρF(−1)) = 1. This proves claim (a).

To prove part (b), we use the inductivity of local root numbers in degree zero to
compute

W(IndG
H ϕ) =W(IndG

H(ϕ − ϕ(1)1H))W(IndG
H1H)ϕ(1)

=W(ϕ − 1H)W(IndG
H1H)ϕ(1)

=W(ϕ)W(1H)−1 ∏
θ∈(G/H)∗

W(θ)ϕ(1) ,

where (G/H)∗ denotes the group of homomorphisms G/H → (Qc)×, and the last
equality is true because IndG

H1H is equal to the sum of θ over (G/H)∗. Now, if G/H is
odd (resp. even), then the only real-valued functions in (G/H)∗ are 1G (resp. 1G and
χG/H) and all other homomorphisms occur in complex conjugate pairs. The result
of part (b) therefore follows from the above displayed formula after isolating the
conjugate pairs in the product that occurs in the final term, applying the result of part
(a) to each of these pairs, and noting that W(1H) = W(1G) = 1.

To prove part (c), we recall that by a result of Fröhlich and Queyrut [16, Section 4,
Theorem 3], one has W(ϕ) = ϕ(ρL(x)), where ρL is the reciprocity map L× → H and
x is any element of L/F with x2 ∈ F×. In addition, since ϕ is of dihedral type, it is trivial
on restriction to F× (cf. [16, Section 3, Lemma 1]) and so ϕ(ρL(x))2 = ϕ(ρL(x2)) =
ϕ(1) = 1. On the other hand, the order of ϕ is odd (since it divides ∣H∣ = ∣G∣/2 which,
under the given hypothesis on ∣G∣, is odd) and so ϕ(ρL(x))2 = 1 implies ϕ(ρL(x)) = 1
and hence also W(ϕ) = 1.

This last equality then combines with a straightforward application of the general
result of part (b) to prove the formula in part (c). ∎

We are now ready to prove Theorem 7.2. At the outset, we note that G is the
semidirect product of its inertia subgroup I by the cyclic quotient group G/I. We
further note that, by assumption, the group I is cyclic of odd order, and hence, in
particular, that G is supersolvable.

Fix χ in Symp(G). Then, since χ is tamely ramified, one has W(χ) ∈ {±1} (cf. [14,
Chapter III, Theorem 21(iii)]) and so W(2χ) = W(χ)2 = 1. It is therefore enough for
us to prove that W(ψ2(χ)) = 1.

Next, we note that, by Lemma 7.3(c)(i), there exists a subgroup J of G that contains I
and a linear character ϕ of J such that one has χ = IndG

J ϕ. In particular, since J contains
I and G/I is cyclic, there exists a normal subgroup H of G with J ⊴ H ⊴ G and such
that H/J is cyclic of 2-power order and G/H is cyclic of odd order.
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Then one has χ = IndG
H χ′ with χ′ ∶= IndH

J ϕ and we claim that χ′ belongs to
Symp(H). To see this, we note that χ′ is an irreducible character of H (since χ is
irreducible) and so, by the Frobenius–Schur theorem (cf. [9, Theorem (73.13)]), the
sum cH(χ′) ∶= ∣H∣−1 ∑h∈H χ(h2) belongs to {−1, 0, 1} and is equal to −1 if and only
if χ′ is symplectic. In addition, since H is normal in G and of odd index, one has
g2 ∈ H ⇐⇒ g ∈ H for each g ∈ G and so

cG(χ) = cG(IndG
H χ′) = ∣G∣−1 ∑

g∈G
(IndG

H χ′)(g2)

= ∣G∣−1 ∑
τ∈T

∑
h∈H

(χ′)τ(h2)

= ∣T∣−1 ∑
τ∈T

cH((χ′)τ),

where T is a set of coset representatives of H in G and (χ′)τ is the irreducible character
of H that sends each element h to χ′(hτ). In particular, since both cG(χ) = −1 (as χ ∈
Symp(G)) and each cH((χ′)τ) belongs to {−1, 0, 1}, the displayed equality implies that
cH((χ′)τ) = −1 for all τ. Thus, one has cH(χ′) = −1 and so χ′ ∈ Symp(H), as claimed.

Now, since G/H is cyclic of odd order, one has W(ψ2(χ)) = W(IndG
H(ψ2(χ′)) =

W(ψ2(χ′)), where the first equality follows from Lemma 7.3(b) and the second from
Proposition 7.4(b). Thus, if necessary after replacing G by H (and χ by χ′), we can
assume in the sequel that χ has 2-power degree.

Next, we note that, since G is supersolvable, an induction theorem of Martinet (cf.
[18, Chapter III, Theorem 5.2]) implies that either χ = Tr(IndG

H′ϕ′), where ϕ′ is a linear
character of some subgroup H′ of G, or that χ is the induction to G of a quaternion
character of a subgroup. In view of Proposition 7.4(a), we can therefore also assume
in the sequel that there exists a subgroup J1 of G that has 2-power index, and hence
contains I, and a quaternion character ϕ1 of J1 such that χ = IndG

J1
ϕ1.

This implies that J1 has a quotient Q isomorphic to a generalized quaternion group
and that

ϕ1 = Inf J1
Q(IndQ

P θ),(7.4)

where P is the cyclic subgroup of Q of index 2 and θ a homomorphism P → (Qc)×. Let
J′1 denote the inverse image of P under the quotient map J1 → Q, and set ϕ′1 ∶= Inf J′1

P θ
(so ϕ′1 is a linear character of J′1). Then the subgroup J′1 is of index 2 in J1, and (7.4)
implies that

ϕ1 = IndJ1
J′1

ϕ′1 .(7.5)

Now, as J′1 has 2-power index in G, it contains I. Thus, since G/I is cyclic,
one has J′1 ⊴ G and G/J′1 is cyclic of 2-power order. In particular, since the degree
(ψ2(ϕ1))(1) = ϕ1(1) is even, one therefore has

W(ψ2(χ)) = W(ψ2(IndG
J1

ϕ1)) = W(IndG
J1
(ψ2(ϕ1))) = W(ψ2(ϕ1)),

where the second equality follows from Lemma 7.3(c)(iii) (after taking account of (7.5))
and the third from Proposition 7.4(b).
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In addition, since Q is the Galois group of a tamely ramified extension of p-adic
fields that has odd ramification degree, it is the semidirect product of a cyclic (inertia)
subgroup of odd order by a cyclic group. In particular, since such a group can have no
quotient isomorphic to H8, the group Q must be isomorphic to H4m , with m odd. In
view of (7.4), we can therefore apply Lemma 7.3(d) (with Γ, Δ, and ϕ taken to be Q , P,
and θ) to deduce that

W(ψ2(ϕ1)) = W(ψ2(IndQ
P θ)) = W(IndQ/N

P/N (λ))W(χQ/P),

where N denotes the center of Q (so N is the unique subgroup of P of order 2) and λ
denotes θ2, regarded as a homomorphism P/N → (Qc)×.

Finally, since the group Q/N is generalized dihedral with ∣Q/N ∣ = 2m ≡ 2 modulo
4, and the inertia subgroup of Q/N has odd order, the theorem of Fröhlich and
Queyrut implies (via Proposition 7.4(c)) that W(IndQ/N

P/N (λ)) = W(χQ/P). Upon sub-
stituting this fact into the last two displayed formulas, we deduce that W(ψ2(χ)) =
W(χQ/P)2 = 1.

This completes the proof of Theorem 7.1.

8 Symplectic Galois–Jacobi sums II

We retain the notation of the previous two sections. For any real number x, we write
sgn(x) ∈ {±1} for the sign of x. In this section, we shall examine sgn(J∗(Lπ/L, χ)) for
χ ∈ Symp(G). This will in turn lead to the definition of J∗∞(Fπ/F) ∈ Cl(ZG) for F a
number field and [π] ∈ H1

t(F , G).
Recall that for each χ ∈ RG , the adjusted Galois–Gauss sum is defined (in [14,

Chapter IV, Section 1]) by setting

τ∗(L, χ) ∶= τ(L, χ)y(L, χ)−1z(L, χ),

for suitable roots of unity y(L, χ) and z(L, χ) in Qc . [14, Chapter IV, Theorem 29(i)]
implies that y(L, χ) = 1 for all χ in Symp(G). One can also check (directly from the
definitions) that z(L, ψ2(χ)) = z(L, χ)2 and hence that z(L, χ) = z(L, ψ2(χ)) = 1 for
each χ in Symp(G).

Recall that Theorem 7.1 asserts that J(Lπ/L, χ) > 0 whenever χ ∈ Symp(G). The
following result is now a direct consequence of the definition of the adjusted Galois–
Jacobi sum J∗(Lπ/L, χ).

Theorem 8.1 Suppose that χ ∈ Symp(G). Then

sgn(J∗(Lπ/L, χ) = sgn(y(Lπ/L, ψ2(χ))).

The following Propostion shows that sgn(y(Lπ/L, ψ2(χ))) = −1 is possible.

Proposition 8.2 Let M/L be a tamely ramified Galois extension with Γ ∶= Gal(M/L) ≃
H4m , with m odd. Suppose that the inertia subgroup Γ0 of Γ is odd. Then, for each χ ∈
Symp(G), we have y(M/L, ψ2(χ)) = −1.

Proof For ease of notation, we write, e.g., y(χ) rather than y(M/L, χ).
To prove the desired result, we shall use Lemma 7.3. Let Δ be the cyclic subgroup

of Γ of index 2. Then all irreducible symplectic characters of Γ can be written in the
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form χ = IndΓ
Δϕ, where ϕ is a linear character of Δ. It is easy to see that the order of ϕ

does not divide 2 (for otherwise IndΓ
Δϕ would be an orthogonal character of Γ; see [18,

Chapter III, Theorem 3.1]), and that ϕ (and hence also ϕ2) is nontrivial on Γ0 (since
Γ0 has odd order).

Let Z denote the center of Γ, and let χΓ/Δ denote the unique nontrivial homomor-
phism Γ/Δ → (Qc)×. Using the formula in Lemma 7.3(d), one can compute that

y(ψ2(χ)) = y(ψ2(IndΓ
Δϕ))

= y(Inf Γ
Γ/Z(IndΓ/Z

Δ/Z(ϕ2))) ⋅ y(Inf Γ
Γ/Δ(χΓ/Δ)) ⋅ y(1Γ)−1

=(−1)deg(n0)detn0(σ) ⋅ (−1)χΓ/Δ(σ) ⋅ (−1)1Γ(σ)−1

= 1 ⋅ 1 ⋅ (−1) = −1,

where ϕ2 is regarded as a character of Δ/Z, σ is the Frobenius element in Γ/Γ0 lifted
to Γ, and n0 ∶= n(Inf Γ

Γ/Z(IndΓ/Z
Δ/Z(ϕ2))) denotes the unramified part (cf. [14, Chapter

I, equation (5.6)]) of Inf Γ
Γ/Z(IndΓ/Z

Δ/Z(ϕ2)). The third equality above holds since clearly
Inf Γ

Γ/Δ(χΓ/Δ) and 1Γ are both linear and unramified. The fourth equality follows
from the fact that n0 = 0 (since ϕ2 is irreducible and ramified, by [14, Chapter III,
Proposition 1.3(ii)] the unramified part n(IndΓ/Z

Δ/Z(ϕ2)) = 0 and therefore n0 = 0). ∎

The above discussion motivates the following definition.
Definition 8.3 We define J∗∞(Lπ/L,−) ∈ HomΩQ(RG , J(Qc)) by its values on χ ∈
Irr(G) as follows:

J∗∞(Lπ/L, χ)v =
⎧⎪⎪⎨⎪⎪⎩

sgn(J∗(Lπ/L, χ)), if χ ∈ Symp(G) and v∣∞,
1, otherwise.

We write J∗∞(Lπ/L) for the element of K0(ZG , Q) represented by the homomor-
phism J∗∞(Lπ/L,−). Similarly, we also write J∗(Lπ/L) for the element of K0(ZG , Q)
represented by J∗(Lπ/L,−).
Theorem 8.4 We have

J∗(Lπ/L,−) ⋅ J∗∞(Lπ/L,−)−1 ∈ Det(QcG),

and so

∂0(J∗(Lπ/L)) = ∂0(J∗∞(Lπ/L)).

Proof To ease notation, set f = J∗(Lπ/L,−) ⋅ J∗∞(Lπ/L,−)−1.
Then, since f ∈ HomΩQ(RG , (Qc)×), the Hasse–Schilling–Maass Norm Theorem

(cf. [8, Theorem (7.48)]) implies that the first equality is equivalent to asserting that
f (χ) is a strictly positive real number for every χ in Symp(G). This in turn follows at
once from the definition of J∗∞(Lπ/L,−).

The second equality is now an immediate consequence of the fact that
∂0(Det(QcG)) = 0. ∎

Suppose now that F is a number field and that [π] ∈ H1
t(F , G). We also recall that

Fπ ,v ∶= Fπ ⊗F Fv ≃ Fv ,πv (see, e.g., [19, equation (2.4)]).
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Definition 8.5 We set

J∗(Fπ/F) ∶= ∑
v∤∞

J∗(Fv ,πv /Fv) ∈ K0(ZG , Q)

and

J∗∞(Fπ/F) ∶= ∑
v∤∞

J∗∞(Fv ,πv /Fv) ∈ K0(ZG , Q).

(Note that the infinite sums make sense as J∗∞(Fv ,πv /Fv) = J∗(Fv ,πv /Fv) = 0 for all
places v that are unramified in Fπ/F.)

We define J∗(Fπ/F) ∈ Cl(ZG) by

J∗(Fπ/F) ∶= ∂0(J∗(Fπ/F)), J∗∞(Fπ/F) ∶= ∂0(J∗∞(Fπ/F))

(see (2.2)).

Proposition 8.6 Suppose that F is a number field and that [π] ∈ H1
t(F , G). Then

J∗(Fπ/F) = J∗∞(Fπ/F).

Proof This is a direct consequence of Theorem 8.4 and Definition 8.5. ∎

9 Proof of Theorem 1.5

Let [π] ∈ H1
t(F , G), and write

c(π) = [Aπ , OF G; rG] − [Oπ , OF G; rG] ∈ K0(OFG , F) ⊆ K0(OFG , F c).

For each finite place v of F, we write [πv] for the image of [π] in H1
t(Fv , G).

Recall that

K0(OFG , F) ≃
HomΩF (RG , J f (F c))
∏v∤∞Det(OFv G)× .

A representing homomorphism in HomΩF (RG , J f (F c)) of c(π) is f = ( fv)v defined
by

fv(χ) = ϖ⟨ψ2(χ)−2χ,sv⟩G
v ,

using the notation of Corollary 5.6. Let Ram(π) denote the set of finite places of F at
which Fπ/F is ramified. If v ∉ Ram(π), then sv = 1 and so fv = 1.

Definition 9.1 Suppose that v ∈ Ram(π). Then we define c(π; v) ∈ K0(OFG , F) to be
the element represented by f (v) = ( f (v)w )w ∈ HomΩF (RG , J f (F c)) given by

f (v)w (χ) =
⎧⎪⎪⎨⎪⎪⎩

fv(χ) = ϖ⟨ψ2(χ)−2χ,sv⟩G
v , if w = v ,

1, otherwise.

Lemma 9.2 We have

c(π) = ∑
v∈Ram(π)

c(π; v).(9.1)
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Proof It follows from the definitions that

f = ∏
v∈Ram(π)

f (v) ,

and this implies the result. ∎

We can now prove Theorem 1.5.

Theorem 9.3 Suppose that [π] ∈ H1
t(F , G) and that Aπ is defined. Then

∂0(NF/Q(c(π)) ⋅ J∗∞(Fπ/F)−1 = 0,

and so there is an equality

(Aπ) − (Oπ) = J∗∞(Fπ/F),

i.e., (see (1.1))

(Aπ) −W(Fπ/F) = J∗∞(Fπ/F),

in Cl(ZG).

Proof Lemma 9.2 implies that in order to show that

∂0(NF/Q(c(π)) ⋅ J∗∞(Fπ/F)−1 = 0,

it suffices to show that

∂0(NF/Q(c(π; v)) ⋅ J∗∞(Fv ,πv /Fv)−1 = 0

for each v ∈ Ram(π). Theorem 8.4 implies that this is equivalent to showing that

∂0(NF/Q(c(π; v)) ⋅ J∗(Fv ,πv /Fv)−1 = 0

for each v ∈ Ram(π).
We see from the description of Cl(ZG) given in Theorem 2.1(a) that this last

equality will in turn follow if, for each v ∈ Ram(π), we show that

J∗(Fv ,πv /Fv ,−)−1 ⋅ (NF/Q( f (v))) ∈ ∏
l

Det(Zl G)×.

To show this last inclusion, we first observe that Proposition 6.6(a) implies that the
inclusion holds at all rational primes l not lying below v.

For each rational prime l that lies below v, we fix an embedding Locl ∶ Qc →
Qc

l and use it to identify Irr(Γ) with Irrl(Γ). We recall in particular that such an
isomorphism RG → RG , l in turn induces an isomorphism HomΩF (RG , (Qc)×l ) →
HomΩFv

(RG , l , (Qc
l )×) (cf. [14, Chapter II, Lemma 2.1]). Then, reasoning analogously

to the proof of [14, Theorem 19, pp. 114–116], one can deduce from Proposition 6.6(b)
that

NFv/Q l ( fv) ⋅ Locl(NF/Q( f (v)))−1 ∈ Det(Zl G).

This establishes the desired inclusion at rational primes lying below v and completes
the proof of the desired result. ∎
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Remark 9.4 Let us make some remarks concerning Theorem 9.3 when Fπ/F is locally
abelian.

Suppose that v ∈ Ram(π). Set sv ∶= π(σv), and write Hv ∶= ⟨sv⟩. Proposition 5.2(d)
with G = Hv and Proposition 5.3(b) imply that for each χ ∈ RHv , we have

⟨χ, sv⟩∗Hv
− ⟨χ, sv⟩Hv = (d(sv), χ)Hv

= ⟨ψ2(χ) − χ, sv⟩Hv .

Now, suppose also that Fv contains a primitive ∣sv ∣th root of unity. This implies
in particular that the extension Fπv

v /Fv is abelian. Let b(π; v) ∈ K0(FHv , F) be the
element represented by ρ(v) = (ρ(v)w )w ∈ HomΩF (RHv , J f (F c)) defined by

ρ(v)w (χ) =
⎧⎪⎪⎨⎪⎪⎩

ϖ(d(sv), χ)Hv
v = ϖ⟨ψ2(χ)−χ,sv⟩Hv

v , if w = v ,
1, otherwise.

Observe that without the hypothesis concerning the number of roots of unity
in Fv , we would only have that ρ(v) ∈ Hom(RHv , J f (F c)) rather than ρ(v) ∈
HomΩF (RHv , J f (F c)). We also see from the definitions of c(π; v) and b(π; v) (see
also (2.7) and (2.9)) that c(π; v) = IndG

Hv
b(π; v).

Hence, if for every v ∈ Ram(π), Fv contains a primitive ∣sv ∣th root of unity—which
is precisely what happens if Fπ/F is locally abelian—then we have

c(π) = ∑
v∈Ram(π)

IndG
Hv

b(π; v),(9.2)

and so (using (2.10))

∂0(c(π)) = ∑
v∈Ram(π)

∂0(IndG
Hv

b(π; v))

= ∑
v∈Ram(π)

IndG
Hv

∂0(b(π; v))

= 0.

We now deduce from Theorem 9.3 that J∗∞(Fπ/F) = 0.
A comparison of (9.2) and (9.1) highlights the crucial difference between the locally

abelian case and the general case. In both cases, the class c(π) may be decomposed
into a sum over the places v ∈ Ram(π) of classes c(π; v) ∈ K0(OFG , F c). However, in
the locally abelian case, these classes c(π; v) are induced from cyclic subgroups of G,
whereas in the general case, they are not. This is why Theorem 9.3 may be proved in the
locally abelian case using abelian Jacobi sums, thereby showing that in this situation
J∗∞(Fπ/F) = 0), which is what is done in [4].

10 Proof of Theorem 1.7

Let F be any imaginary quadratic field such that Cl(OF) contains an element of order
4. In this section, we shall construct infinitely many counterexamples to Conjecture
1.4 by showing that if � is any sufficiently large prime with � ≡ 3 (mod 4) and G is the
generalized quaternion group H4�, then there are infinitely many tame G-extensions
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Fπ/F of fields such that Aπ exists and J∗∞(Fπ/F) ≠ 0. Hence, for these extensions,
(Oπ) ≠ (Aπ) in Cl(ZG). This will prove Theorem 1.7.

In what follows, we fix an imaginary quadratic field F such that Cl(OF) contains an
element of order 4. To prove Theorem 1.7, it will suffice to prove the following result,
which we shall derive as a consequence of works of Fröhlich (see [11]).

Lemma 10.1 Suppose that � is a sufficiently large prime and that G ≃ H4�. Then there
exists a G-extension Fπ/F of fields such that:
(a) Fπ/F is ramified at only a single prime p of F with p ∤ �.
(b) The prime p does not split in Fπ/F.
(c) The ramification index of p is equal to �.

Before we prove this result, we shall first show that Lemma 10.1 implies
Theorem 1.7.

Proof of Theorem 1.7 First, we note that the decomposition subgroup of G at p is
equal to H4�. We also recall that for an odd prime �, the generalized quaternion group
H4� has a single, irreducible, nontrivial symplectic character χ, say.

If q is unramified in Fπ/F, then one has sgn(y(Fπ ,q/Fq , ψ2(χ))) = 1. On the other
hand, Theorem 8.1 and Proposition 8.2 imply that

sgn(J∗(Fπ ,p/Fp , χ)) = sgn(y(Fπ ,p/Fp , ψ2(χ))) = −1.

In particular, if we now assume in addition that � ≡ 3 (mod 4), then it follows from [14,
Chapter II, Proposition 4.4] that the element J∗∞(Fπ/F) ∈ Cl(ZG) (see Definitions 8.3
and 8.5 and Proposition 8.6) is nontrivial. (We remark in passing that if instead � ≡ 1
(mod 4), then the same argument shows that J∗∞(Fπ/F) = 0.) ∎

The remainder of this section will be devoted to the construction of the extensions
described in Lemma 10.1.

Let L be an unramified, cyclic extension of F of degree 4. We write E/F for the
quadratic subextension of L/F and write φE/F for the quadratic character of E/F on
ideals of F. We also view this as an idele class character of F. If ω denotes the idele class
character of E that cuts out the extension L/E, then ω is of quaternion type (i.e., the
restriction of ω to J(F) is equal to φE/F —see [11, p. 405].)

For each prime �, the symbol η� will denote a primitive �th root of unity. Then,
following [11, Theorem 4], we consider the following conditions on primes.

Property 10.2 Let � be an odd prime such that:
(a) [F(η�) ∶ F] is even.
(b) E /⊆ F(η� + η−1

� ).
(c) The class number of E is not divisible by �.

We remark that these properties are satisfied for all sufficiently large �. (We observe,
in particular, that in our case, Property 10.2(b) is automatically satisfied for sufficiently
large � since E/F is unramified.)

Henceforth, we therefore fix a prime � satisfying Property 10.2 and abbreviate η�

to η. We then write Σ− for the set of primes p of F satisfying the following properties
(see [11, equation (8.5)]).
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Property 10.3 Let p be a finite prime of F such that:
(a) The prime p is inert in E/F (ie. φE/F(p) = −1).
(b) NF/Q ≡ −1 (mod �).

In what follows, if p ∈ Σ−, we write pE for the unique prime of E lying above p.
Our argument relies on the following result of Fröhlich (see [11, pp. 432–434]). We

state the result and then describe an outline of the proof. We refer the reader to [11]
for complete details.

Theorem 10.4 There are infinitely many primes in Σ− (in fact, a subset of positive
Chebotarev density) for which the following statement is true: there exists a nontrivial
idele class character θ of E of order �, and of dihedral type (i.e., the restriction of θ to
J(F) is trivial) which is ramified at pE and which is unramified at all other finite places
of E.

Proof We remark that necessary conditions for such a θ to exist are given in [11,
Section 8, Lemma 5]. The existence of θ is demonstrated on pages 433 and 434 of loc.
cit. via the following argument.

Recall that η is a primitive �th root of unity, and set

M ∶= E(η).

(Note that this field is denoted by L in [11, p. 433, l. 9], which is an unfortunate clash
of notation with the field L defined earlier in loc. cit. (see [11, p. 407]).

Write M̃ for the extension of M obtained by adjoining the elements

{y1/� ∣ y ∈ O×E}.

It is shown in loc. cit. that for each prime p of F satisfying the following Frobenius
conditions, there exists an idele class character θ of E satisfying the properties we seek.

Property 10.5 For every prime P of M̃ lying above p, the Frobenius element δ =
(P, M̃/F) satisfies:
(F1) δ2 = 1.
(F2) δ∣E is nontrivial (so p does not split in E/F).
(F3) δ ∣F(η) is nontrivial (so p satisfies Property 10.3(b)). ∎

The set of primes p of F satisfying Property 10.5 has positive Chebotarev density,
and all such primes lie in Σ−.

Let θ be an idele class character of E as constructed in Theorem 10.4, and let N/E
denote the extension cut out by θ. Then N/E is cyclic of order �, ramified (necessarily
totally) at pE , and at no other primes of E. As θ is of dihedral type, the extension N/F
is dihedral of order 2�.

Set ψ ∶= ωθ. Then ψ is an idele class character of E of quaternion type, and we
deduce that Fπ(ψ) ∶= NL is an H4� extension of F. (Note that the field that we call Fπ(ψ)
is denoted by the symbol Fψ in [11].) The extension Fπ(ψ)/F is ramified only at p, with
ramification index �. We have the following diagram of fields and corresponding idele
class characters (where we write φ for φE/F ):
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F

E

LN

Fπ(ψ) = NL

M = E(η)

M̃

φ

ωθ

To complete the proof of Lemma 10.1, it suffices to show that in Theorem 10.4, there
are infinitely many choices of p (and so of θ) such that the decomposition group of
p in Fπ(ψ)/F is not abelian. This is equivalent to imposing an additional Frobenius
condition on p. In order to do this, we require the following lemma.

Lemma 10.6 The extensions M̃/E and L/E are linearly disjoint. Hence, [M̃L ∶ M̃] = 2.

Proof The extension M̃/E has a unique quadratic subextension, viz. the unique
quadratic subextension of M/E (recall that M = E(η)). This extension is ramified at
places above p, and so cannot be equal to the unramified quadratic extension L/E. ∎

We now fix an element δ1 ∈ Gal(M̃L/F) which maps under the obvious quotient
map onto the element δ ∈ Gal(M̃/F) constructed in the proof of Theorem 10.4 (see
(10.5)), and we consider the set of primes p of F satisfying the following Frobenius
condition.

Property 10.7 For every prime Q of M̃L lying above p,
(F4) the Frobenius element (Q, M̃L/F) lies in the conjugacy class of δ1.

The set of primes p satisfying (10.7) has positive Chebotarev density, and plainly if
p satisfies (10.7), then it also satisfies (10.5).

Suppose that p satisfies (10.7). Then the corresponding extension Fπ(ψ)/F con-
structed above is an H4�-extension unramified outside p, in which p is nonsplit
and ramified, with ramification index �. Hence, Fπ(ψ)/F an extension satisfying the
conditions of Lemma 10.1.

This completes the proof of Lemma 10.1.

Remark 10.8 It is shown in [11, Theorem 4] that for the extensions Fπ(ψ)/F con-
structed above satisfying the conditions of Lemma 10.1, we have

W(Fπ(ψ)/F) = φE/F(p) = −1.

This implies that (Oπ(ψ)) ≠ 0 (see (1.1)), and so, sinceJ∗∞(Fπ(ψ)/F) ≠ 0, it follows from
Theorem 1.5 that (Aπ(ψ)) = 0.

Remark 10.9 Dominik Bullach has explained to us how explicit counterexamples
to Conjecture 1.4 can also be derived from Theorem 1.5 by using general results of
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Neukirch on the embedding problem (see [21]) rather than the explicit computations
of Fröhlich in [11].
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