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Free Product C*-algebras Associated with
Graphs, Free Differentials, and Laws of
Loops

Michael Hartglass

Abstract. We study a canonical C∗-algebra, S(Γ, µ), that arises from a weighted graph (Γ, µ), spe-
ciûc cases of which were previously studied in the context of planar algebras. We discuss necessary
and suõcient conditions of the weighting that ensure simplicity and uniqueness of trace of S(Γ, µ),
and study the structure of its positive cone. We then study the ∗-algebra,A, generated by the gener-
ators of S(Γ, µ), and use a free diòerential calculus and techniques of Charlesworth and Shlyakht-
enko as well as Mai, Speicher, and Weber to show that certain “loop” elements have no atoms in
their spectral measure. A�er modifying techniques of Shlyakhtenko and Skoufranis to show that
self adjoint elements x ∈ Mn(A) have algebraic Cauchy transform, we explore some applications
to eigenvalues of polynomials in Wishart matrices and to diagrammatic elements in von Neumann
algebras initially considered by Guionnet, Jones, and Shlyakhtenko.

1 Introduction

_e study of graphs has been a prevailing force in the development ofmany areas of
operator algebras. Cuntz andKrieger [CK80] initiated the study of graphC∗-algebras,
which are canonical C∗-algebras that are formed from directed graphs. _e principal
graph of a planar algebra or subfactor [Jon83,Pop95, Bis97] has played an important
role in the development and study of subfactor theory.

Given a standard invariant of a subfactorP●, Popa reconstructed a Jones tower (see
[Jon83] for a deûnition) of II1 factors whose standard invariant is P● [Pop95]. More
recently,Guionnet, Jones, and Shlyakhtenko (GJS) gave a diagrammatic construction
of a Jones’ tower M0 ⊂ M1 ⊂ M2 ⊂ ⋅ ⋅ ⋅ of II1 factors whose standard invariant is
P● [GJS10]. In subsequent work, GJS constructed a (semi)ûnite factor by applying
Shlyakhtenko’s operator-valued generalization [Shl99] of Voiculescu’s free Gaussian
functor [VDN92] to obtain the isomorphism class of theMk in the case where P● is
ûnite-depth [GJS11]. More speciûcally, if P● is ûnite-depthwith ûnite principal graph
Γ, GJS constructed a ûnite von Neumann algebraM(Γ) by assigning to each edge e
of Γ, an ℓ∞(V(Γ))-valued semicircular element Xe . _e factor M0 was realized as a
corner ofM(Γ) that was shown to be an interpolated free group factor.

In later work [Har13, BHP12], the author developed a canonical free-product von
Neumann algebra, M(Γ, µ), that one can associate with an arbitrary undirected,
weighted, graph with weighting µ∶V(Γ) → R+. _e key observation in [Har13] is
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that if (Γ, µ) is a subgraph of (Γ′ , µ), then there is a canonical, possibly nonunital,
inclusion M(Γ, µ) →M(Γ′ , µ), compressions of which are a standard embedding in
the sense of [Dyk93]. _is observation showed that if a planar algebra P● is inûnite
depth, then in the construction in [GJS10],Mk ≅ L(F∞) for all k.

In an eòort to study the diagrammatic C∗-algebras (A0 ⊂ A1 ⊂ A2 ⊂ ⋅ ⋅ ⋅) that arise
in the construction in [GJS10], the author and Penneys deûned the C∗-algebra ana-
logue ofM(Γ, µ), called S(Γ, µ) [HP14a,HP14b]. Although this algebra was deûned
for an arbitrary weighting µ,most properties of S(Γ, µ) were studied only in the case
of Γ being the principal graph of a planar algebra with µ the associated weighting. In
this case, the authors proved that S(Γ, µ) is simple, has unique trace, and established
KK-equivalence between C0(V(Γ)) and S(Γ, µ). Utilizing aMorita equivalence be-
tween Ak and S(Γ, µ), the same properties were deduced for the algebras Ak .

In Section 2 we will study S(Γ, µ) in the setting of an arbitrary connected undi-
rected graph Γ and arbitrary weighting µ on V(Γ). _is C∗-algebra is generated by
C0(V(Γ)) (spanned by the indicator functions {pα ∣ α ∈ V(Γ)}) and C0(V(Γ))-va-
lued semicircular elements Xe associated with each edge e. In the von Neumann
algebra case,M(Γ, µ), the following theorem was proved in [Har13].

_eorem ([Har13]) Suppose Γ is a ûnite, connected, unoriented graph with at least
two edges. If α, β ∈ V(Γ), then write α ∼ β if α and β are joined by at least one edge,
and let nα ,β be the number of edges joining with α and β as endpoints. Finally, let V> be
the set of vertices, β satisfying µ(β) > ∑α∼β nα ,βµ(α). We have

M(Γ, µ) ≅ L(Ft)⊕ ⊕
γ∈V>

rγ
C,

where rγ ≤ pγ and tr(rγ) = µ(γ)−∑α∼γ nα ,βµ(α) (seeNotation 2.10 for themeaning of
the direct sum notation). Moreover, the parameter, t, can be computed using Dykema’s
“free dimension” formulas [Dyk93,DR13]. In particular,M(Γ, µ) is a factor if and only
if V> is non-empty.

We prove the C∗-algebra analogue.

_eorem A Let Γ and V> be as in the statement of the previous theorem . Let V=
be the set of vertices, β satisfying µ(β) = ∑α∼β nα ,βµ(α) and V≥ = V> ∪ V=. Let I
be the norm-closed ideal generated by some pα with α ∈ V(Γ) ∖ V≥. _en I contains
{pβ ∣ β ∈ V(Γ) ∖ V≥} and does not intersect {pγ ∣ γ ∈ V≥}. In addition, I is generated
by {Xe ∣ e ∈ E(Γ)}. Furthermore, the following hold:
(i) I is simple, has unique tracial state, and has stable rank 1.
(ii) I is unital if and only if V= is empty. If V= is empty, then

S(Γ, µ) = I ⊕ ⊕
γ∈V>

rγ
C

with rγ ≤ pγ and tr(rγ) = µ(γ) −∑α∼γ nα ,βµ(α). If V= is not empty, then

S(Γ, µ) = I⊕ ⊕
γ∈V>

rγ
C
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where I is unital, the strong operator closures of I and I coincide in L2(S(Γ, µ),Tr),
and I/I ≅⊕β∈V= C.

(ii) K0(I) ≅ Z{[pβ] ∣ β ∈ V ∖ V≥} and K1(I) = {0} where the ûrst group is the free
abelian group on the classes of projections [pβ]. Furthermore,

K0(I)+ = {x ∈ K0(I) ∣ Tr(x) > 0} ∪ {0}.

In particular, S(Γ, µ) is simple with unique tracial state if and only if V≥ is empty.

A version of this theorem for inûnite Γ is given in Corollary 2.30.
Section 3 switches gears and studies elements of A, the ∗-algebra generated by

{pα ∣ α ∈ V(Γ)} ∪ {Xe ∣ e ∈ E(Γ)}. We develop a free diòerential calculus along the
lines of Voiculescu [Voi93]. Using modiûcations of the methods in [CS15,MSW14],
we are able to prove the following theorem.

_eorem B Let Q ∈ A be nonzero and satisfying

Qpα = Q and µ(α) = min{µ(β) ∣ β ∈ V(Γ)} .

If a = a∗ ∈ M(Γ, µ), apα = a, and Qa = 0, then a = 0. In particular, if Q = Q∗, then
the law of Q with respect to Tr has no atoms.

Section 3 also uses the techniques of [SS15] to prove the following theorem.

_eorem C Let x ∈ Mn(A) be self-adjoint. _en the Cauchy transform of x is alge-
braic.

As a result, further deductions can bemade about the laws of self-adjoint elements
in Mn(A). See Corollary 3.17 and_eorem 3.18.

Section 4 is devoted to applications of the previous sections to the limiting laws of
polynomials in Wishart matrices and to diagrammatic elements in the construction
in [GJS10]. Much like the observations about Gaussian unitary ensembles in [SS15],
it is shown that eigenvalues in self-adjoint polynomials ofWishhart matrices also ex-
perience a weak repulsion.

2 The Free Graph Algebra

2.1 Constructing the Algebra

We will start with countable, weighted, connected, undirected, locally ûnite graph,
Γ = (Γ,V , E , µ) where V is the vertex set of Γ, E is the edge set, and µ∶V → R>0 is a
strictly positive function on the vertices of Γ. We will now form the directed version
of Γ as in [HP14a].

Deûnition 2.1 If Γ is an undirected graph, we will form the directed version of Γ,
Γ⃗ = (Γ⃗, V⃗ , E⃗ , µ⃗, s, t) as the weighted directed graph with the following properties.
(i) V⃗ = V and µ⃗ = µ.

https://doi.org/10.4153/CJM-2016-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-022-6


Free Product C*-algebras 551

(ii) E⃗ is constructed as follows: For each e ∈ E(Γ) having α /= β as its two endpoints,
there are two edges є and єop satisfying

s(є) = t(єop) = α and t(є) = s(єop) = β.
For each e ∈ E(Γ) that is a loop at a vertex, γ, there is one loop (which we will
denote as є) in E(Γ⃗) at γ.

Notice that there is an involution є ↦ єop on E⃗ provided that є = єop whenever
є is a loop. Let X(Γ⃗) be the complex vector space with basis E⃗, and Cfin(V) be the
ûnitely supported complex-valued functions on V . _e algebra Cfin(V) is spanned
by the elements pα for α ∈ Γ satisfying pα(β) = δα ,β .

_ere is a natural Cfin(V) bimodule structure on X(Γ⃗) that is given by

pαє = δs(є),αє and єpα = δt(є),αє.
With these actions in mind, X(Γ) exhibits a Cfin(V)-valued inner product ⟨ ⋅ ∣ ⋅ ⟩
which is given by

⟨є′∣є⟩ = δє ,є′ pt(є)

with linearity in the second variable and conjugate-linearity in the ûrst. Let C denote
C0(V). Using this inner product, X(Γ⃗) completes to a C − C bimodule X(Γ⃗) with
inner product ⟨ ⋅ ∣ ⋅ ⟩C. We will denote this Hilbert bimodule as X when the context is
clear.

We now form the full Fock space of Γ⃗, F(Γ⃗), which is given by

F(Γ⃗) = C⊕ ⊕
n≥1

X⊗
n
C ,

where⊗C denotes the internal tensor product of C−CHilbert bimodules. C, together
with elements of the form є1 ⊗ є2 ⊗ ⋅ ⋅ ⋅ ⊗ єn span a dense subset of F(Γ⃗). Note that
the elementary tensor є1 ⊗ є2 ⊗ ⋅ ⋅ ⋅ ⊗ єn is zero unless the edges form a path in Γ⃗ i.e.,
t(єk) = s(єk+1) for 1 ≤ k < n.

We have the usual creation operator ℓ(ξ) for ξ ∈ X which is deûned by

ℓ(ξ)pα = ξ ⋅ pα and ℓ(ξ)(ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξn) = ξ ⊗ ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξn .
_e creation operator ℓ(ξ) is bounded and adjointable with adjoint ℓ(ξ)∗ given by

ℓ(ξ)∗pα = 0 and ℓ(ξ)∗(ξ1 ⊗ ξ2 ⊗ ⋅ ⋅ ⋅ ⊗ ξn) = ⟨ξ∣ξ1⟩Cξ2 ⊗ ⋅ ⋅ ⋅ ⊗ ξn .

We deûne the Pimsner-Topelitz algebra of Γ⃗, T(Γ⃗) [Pim97] to be the C∗-algebra gen-
erated by C and {ℓ(ξ)∣ξ ∈ X}.

We will now construct our ûnite algebra associated with Γ with weighting µ.

Deûnition 2.2 Let Γ = (Γ,V , E , µ) with Γ⃗ as in Deûnition 2.1.
(i) If e ∈ E is a loop in Γ, and є is the associated loop in E⃗, we deûne Xe = ℓ(є) +

ℓ(є)∗.
(ii) If e ∈ E has α /= β as its endpoints, let є and єop be the two associated edges as

in Deûnition 2.1, with s(є) = t(єop) = α and t(є) = s(єop) = β . Also set

aє = 4

¿
ÁÁÀ µ(α)

µ(β) .
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_en we deûne

Xe = aєℓ(є) + a−1
є ℓ(єop)∗ + a−1

є ℓ(єop) + aєℓ(є)∗ .

We deûne the free graph algebra associated with Γ, µ, S(Γ, µ), to be the subalgebra
of T(Γ) generated by C and the elements (Xe)e∈E .

Remark 2.3 _e elements Xe are always self adjoint. Note that if e has α /= β as
endpoints with α = s(є) and β = t(є), then

pαXe pβ = aєℓ(є) + a−1
є ℓ(єop)∗ and pβXe pα = a−1

є ℓ(єop) + aєℓ(є)∗

We will set Xє = pαXe pβ and Xєop = pβXe pα .

As in [Shl99,HP14a] there is a conditional expectation E∶ S(Γ, µ)→ C that is given
by E(x) = PxP = ∑α∈V ⟨pα ∣xpα⟩C with P∶F(Γ⃗) → C the orthogonal projection. We
have the following theorem.

_eorem 2.4 ([HP14a])
(i) _e expectation E is faithful on S(Γ, µ). Moreover, if we let tr be the (semi)-ûnite

trace on C determined by tr(pv) = µ(v), then Tr = tr ○E is a (semi)-ûnite tracial
weight on S(Γ, µ).

(ii) _e elements (Xe)e∈E(Γ) are free with amalgamation over C with respect to E.
(iii) If є has s(є) = α and t(є) = β and Xє is as in Remark 2.3 then the law of X∗

є Xє
in pβS(Γ, µ)єpβ with respect to Tr(pβ ⋅ pβ) is a free Poisson with the following
distribution, where a = aє :

µ(β)
√

4a2x−(a4−1−a2x)2
2πx 1[a2+a−2−2,a2+a−2+2] dx if µ(β) ≤ µ(α),

(µ(β) − µ(α))δ0 + µ(α)
√

4a2x−(a4−1−a2x)2
2πx 1[a2+a−2−2,a2+a−2+2] dx if µ(β) ≥ µ(α),

Remark 2.5 If µ(α) /= µ(β), then a2
є +a−2

є −2 > 0 sowe conclude that the polar part
of Xє is in S(Γ, µ). _erefore, if µ(α) < µ(β) then pα is equivalent to a subprojection
of pβ in S(Γ, µ). It is important to note that the polar part of Xє will not be in S(Γ, µ)
if µ(α) = µ(β). _is observation is consistent with Corollary 2.9 below. Notice that
Tr(X∗

є Xє) =
√

µ(s(є))µ(t(є)).

We will also need the following lemma, to be used in Section 3.3.

Lemma 2.6 Suppose that є1 , . . . , єn is a loop in in Γ⃗ of length at least 3. _en

Tr(Xє1 ⋅ ⋅ ⋅Xєn) =
1√

µ(s(єn))µ(t(єn))
∑

є j=єopn
j/∈{1,n−1}

Tr(Xє1 ⋅ ⋅ ⋅Xє j−1) ⋅ Tr(Xє j+1 ⋅ ⋅ ⋅Xєn−1)

+ δєn−1 ,єop
n

¿
ÁÁÀ µ(s(єn))

µ(t(єn))
Tr(Xє1 ⋅ ⋅ ⋅Xєn−2) + δє1 ,єop

n

¿
ÁÁÀ µ(t(єn))

µ(s(єn))
Tr(Xє2 ⋅ ⋅ ⋅Xєn−1)
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Proof Noting that Tr = tr ○E, we will ûrst compute the C-valued inner product
⟨p̂t(єn)∣Xє1 ⋅ ⋅ ⋅Xєn p̂t(єn)⟩. To this end, we note that

Xє1 ⋅ ⋅ ⋅Xєn p̂t(єn) = aєnXє1 ⋅ ⋅ ⋅Xєn−1єn .

Clearly for Xє1 ⋅ ⋅ ⋅Xєn−1єn to have a p̂t(єn) component, it must be the case that at
least one element in {є1 , . . . , єn−1} must be єopn . By expanding each Xє j = aє j ℓ(є j) +
a−1
є j ℓ(є j)∗, we will count how many terms in aєnXє1 ⋅ ⋅ ⋅Xєn−1єn have a p̂t(єn) compo-

nent.
Assuming that there is at least one j ∈ {1, 2, . . . , n − 1} satisfying є j = єopn , we see

that

⟨p̂t(єn)∣aєnXє1 ⋅ ⋅ ⋅Xєn−1єn⟩
= ∑

є j=єopn
∑

Tk∈{aєk ℓ(єk),a−1
єk
ℓ(єopk )

∗
}

TkTk+1 ⋅⋅⋅Tn−1єn/∈C p̂ t(єn)

E(aєnXє1 ⋅ ⋅ ⋅Xє j−1)⟨ p̂t(єn)∣aєn ℓ(e
op
j )∗Tj+1 ⋅ ⋅ ⋅Tn−1єn⟩

= ∑
є j=єopn

a2
єnE(Xє1 ⋅ ⋅ ⋅Xє j−1)ℓ(єn)∗E(X j+1 ⋅ ⋅ ⋅Xn−1)єn .

Note that by the deûnition of the trace,

E(X j+1 ⋅ ⋅ ⋅Xn−1) =
Tr(X j+1 ⋅ ⋅ ⋅Xn−1)

Tr(ps(єn))
p̂s(єn) ,

E(Xє1 ⋅ ⋅ ⋅Xє j−1) =
Tr(Xє1 ⋅ ⋅ ⋅Xє j−1)

Tr(ps(є1))
p̂s(є1) .

Since s(є1) = t(єn), we have

⟨p̂t(єn)∣aєnXє1 ⋅ ⋅ ⋅Xєn−1єn⟩ = ∑
є j=єopn

j/∈{1,n−1}

a2
єn

Tr(Xє1 ⋅ ⋅ ⋅Xє j−1)
Tr(pt(єn))

⋅
Tr(X j+1 ⋅ ⋅ ⋅Xn−1)

Tr(ps(єn))
p̂t(єn)

+ δєn−1 ,єopn a
2
єn

Tr(Xє1 ⋅ ⋅ ⋅Xєn−2)
Tr(pt(єn))

p̂t(єn) + δє1 ,єopn a
2
єn

Tr(Xє2 ⋅ ⋅ ⋅Xєn−1)
Tr(ps(єn))

p̂t(єn) .

Taking the trace of both sides gives the desired formula.

2.2 KK-groups

We will begin by computing the KK-groups of S(Γ, µ). _is computation was done
in [HP14a], but for completeness, we will present the argument here. If we let B be a
separable C∗-algebra and Y a countably generated Hilbert B −B bimodule, then we
form the Fock space of Y,

F(Y) = B⊕ ⊕
n≥1

Y
⊗

n
B .

We deûne the Pimsner–Toeplitz algebra of Y, T(Y) to be C∗-algebra generated by the
operators B and ℓ(ξ) for ξ ∈ Y where

ℓ(ξ)b = ξ ⋅ b and ℓ(ξ)(ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξn) = ξ ⊗ ξ1 ⊗ ⋅ ⋅ ⋅ ⊗ ξn .

for all b ∈ B and ξ1 , . . . , ξn ∈ Y. A result of Pimsner says the following.
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_eorem 2.7 ([Pim97]) Assume that B acts on Y by compact operators. _en the
inclusion B↪ T(Y) is a KK-equivalence.

In [Ger], one chooses a closed real subspaceYR ofYwith theproperty thatBYRB =
Y, and deûnes the algebra S(YR) to be the C∗-algebra generated by B and {ℓ(ξ) +
ℓ(ξ)∗∣ξ ∈ YR}. By observing that the homotopy in [Pim97] leaves the subspace
F(Y)⊗B S(YR) of F(Y)⊗B T(Y) invariant, the following theorem was proved.

_eorem 2.8 ([Ger]) Assume thatB acts on Y by compact operators. _e inclusions
B↪ S(YR)↪ T(Y) are KK-equivalences.

We will let XR,µ be the closure of the real subspace spanned by the elements aєє +
a−1
є єop . We observe that S(Γ, µ) is generated by C and the elements ℓ(ξ) + ℓ(ξ)∗ for
ξ ∈ XR,µ . Using this realization,_eorem 2.8 gives the following corollary.

Corollary 2.9 Since Γ is locally ûnite, C acts on X by compact operators. _erefore,
the inclusions C↪ S(Γ, µ)↪ T(Γ⃗) are KK-equivalences. As a consequence,

K0(S(Γ, µ)) = Z{[pα]∣α ∈ V} and K1(S(Γ, µ)) = {0}
where the ûrst group is the free abelian group on the vertices of Γ.

In particular, this shows that the KK-groups are independent of the weighting µ,
but the positive cone K+

0 (S(Γ, µ)) will depend on µ; see Subsection 2.3.

2.3 Ideal Structure

In this section we ûx a ûnite, connected graph, (Γ, µ) with at least two undirected
edges. We will give an explicit description of the closed ideals of S(Γ, µ). To begin,
we will deûne two sets V>(Γ, µ) and V=(Γ, µ) as follows:

V>(Γ, µ) = {α ∈ V ∣ µ(α) > ∑
β∼α

nα ,βµ(β)} ,

V=(Γ, µ) = {α ∈ V ∣ µ(α) = ∑
β∼α

nα ,βµ(β)} ,

where we write β ∼ α to indicate that β and α are the endpoints of at least one edge
of Γ, and we let nα ,β be the number of unoriented edges that have α and β as end-
points. When Γ and µ are understood, we will write V> instead of V>(Γ, µ), and V=
for V=(Γ, µ). We will also write V≥ to denote the set V≥ = V= ∪ V> .

Wewill show that there is an aestheticallypleasingdescription of the ideal structure
of S(Γ, µ) in terms of these vertex sets. To begin, we will state some results on the
simplicity and stable rank of certain reduced (amalgamated) free products.

Notation 2.10 (i) Let A1 and A2 be two unital C∗-algebras with faithful tracial
states tr1 and tr2, respectively. We will write A1 ∗ A2 as the reduced free product with
respect to the tracial states tr1 and tr2.

(ii) More generally, if A1 and A2 are two C∗-algebraswith faithful tracial states tr1
and tr2 respectively and with trace preserving conditional expectations E i ∶A i → D
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onto a common subalgebra D, then A1∗
D
A2 will denote the reduced amalgamated free

product with respect to the expectations E1 and E2.
(iii) Suppose A is a unital C∗ algebra with a ûnite faithful (not necessarily nor-

malized) trace tr. Furthermore, assume that A = B1 ⊕ ⋅ ⋅ ⋅ ⊕ Bn for unital C∗-algebras
B1 , . . . , Bn with identities p1 , . . . , pn , respectively, satisfying tr(pk) = µk . When this
happens, we will write

A =
p1
B1
µ1
⊕ ⋅ ⋅ ⋅ ⊕

pn
Bn
µn

.

With this notation in hand, we will now state several free product results that will
be used in our analysis of S(Γ, µ).

Lemma 2.11 ([Dyk99]) Let A = A1 ∗ A2 and let p ∈ A1, q ∈ A2 be projections.
(i) If tr(p + q) > tr(1), then p + q is invertible.
(ii) If tr(p + q) < tr(1), then {0} is an isolated point in the spectrum of p + q, and if

µ is the law of p + q according to tr, then µ{0} = tr(1) − tr(p + q).
(iii) If tr(p + q) = tr(1), the support projection of p + q is 1; however, p + q is not

invertible, and {0} is not isolated in the spectrum of p + q.

A positivity argument and induction lead to the following corollary.

Corollary 2.12 Assume n ≥ 2, set A = A1 ∗ A2 ∗ ⋅ ⋅ ⋅ ∗ An , and let p i ∈ A i be a
projection for each i.
(i) If∑n

i=1 tr(p i) > tr(1), then∑n
i=1 pn is invertible.

(ii) If ∑n
i=1 tr(p i) < tr(1), then {0} is an isolated point in the spectrum of ∑n

i=1 pn ,
and if µ is the law of∑n

i=1 pn according to tr, then µ{0} = tr(1) −∑n
i=1 tr(pn).

(iii) If ∑n
i=1 tr(p i) = tr(1), the support projection of ∑n

i=1 pn is 1; however, ∑n
i=1 pn is

not invertible, and {0} is not isolated in the spectrum of∑n
i=1 pn .

Deûnition 2.13
(i) If A is a C∗-algebra, then

K0(A)+ = {x ∈ K0(A) ∣ x = [p] for some projection p ∈ Mn(A)} .

(ii) IfA is a unitalC∗-algebra,we say thatAhas stable rank one if the set of invertible
elements in A is norm-dense in A. If A is nonunital, A is said to have stable rank
one if its unitization does.

_eorem 2.14 Assume A1 and A2 are unital C∗-algebras with faithful tracial states
tr1 and tr2 respectively. Suppose that A1 contains a unitary u, and that A2 contains
unitary elements v and w satisfying

tr1(u) = tr2(v) = tr2(w) = tr2(vw∗) = 0.

Let A = A1 ∗ A2.
(i) [Avi82] A is simple with unique tracial state, tr.
(ii) [DHR97] A has stable rank one.

https://doi.org/10.4153/CJM-2016-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-022-6


556 M. Hartglass

(iii) [DR98] Let j i ∶A i → A be the canonical inclusions, and let j∗i ∶K0(A i) → K0(A)
be the induced map on K0. If G is the subgroup of K0(A) generated by j∗1 (A1)
and j∗2(A2), then

G ∩ K0(A)+ = {x ∈ G ∣ tr(x) > 0} ∪ {0}.

Deûnition 2.15 Let A be a unital, abelian C∗-algebra with faithful state ϕ. Identify
A ≅ C(X) with X a compact Hausdorò space, and note that ϕ( f ) = ∫X f (x)dµ(x)
for some probability measure µ on X. We say that (A, ϕ) is diòuse if µ has no atoms.
_is is equivalent to A containing a Haar unitary, i.e., a unitary element u satisfying
ϕ(uk) = 0 for all k ∈ Z ∖ {0} [DHR97].

_eorem 2.16 ([Dyk99])
(i) Suppose A = A1 ∗A2 where A1 contains a diòuse abelian C∗-subalgebra and A2 /=

C. _en A is simple, has stable rank one, and has unique tracial state tr.
(ii) Suppose A = A1 ∗ ⋅ ⋅ ⋅ ∗ An , where each A i has the form

A i =D
µ i
⊕C,

where D contains a diòuse abelian subalgebra. _en A is simple and has unique
trace if and only if ∑n

i=1 µ i > 1. A always has stable rank one, regardless of the
weighting.

Lemma 2.17 ([Dyk93,Dyk99,HP14b])
(i) Suppose that A, B, and C are tracial C∗-algebras with

D = (
p
A⊕ B) ∗ C ,

andD is endowed with the canonical free product trace. _en

pDp = A ∗ p((
p
C⊕ B) ∗ C) p.

(ii) Suppose there are two unital, tracial, C∗-algebras
p+r
B ⊕

r′
C and C that both con-

tain D =
p
C ⊕

q
C as a unital C∗-subalgebra with q = r + r′. Assume that the algebras

are equipped with conditional expectations E1
D and E2

D onto D, respectively as well as
traces tr1 and tr2 so that tri = tri ○E i

D for i = 1, 2, and the restrictions of tr1 and tr2 to D
coincide. Form the reduced amalgamated free product

D = (
p+r
B ⊕

r′
C) ∗

D
C .

_en

(p + r)D(p + r) = (B, E1
D′) ∗D′ ((p + r)((

p
C⊕

r
C⊕

r′
C) ∗

D
C , E2

D)(p + r), E2
D′)

where D′ =
p
C ⊕

r
C, the conditional expectations E i

D′ onto D′ are the trace preserving
ones, and the free product is reduced.
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Lemma 2.18 ([Iva11]) Let C1 and C2 be unital C∗ algebras containing the unital C∗
subalgebra D unitally. Suppose each C i is equipped with a trace tri such that tr1 and
tr2 coincide on D and that there exist trace preserving conditional expectations E i

D of C i
onto D. Consider the reduced amalgamated free productwith conditional expectation E

(C , E) = (C1 , E1
D)∗

D
(C2 , E2

D).

_en C is simple and has unique trace tr = tr1 ○ED = tr2 ○ED provided the following
conditions hold:
(i) _ere exist unitaries u1 ∈ C1 and u2 , u′2 in C2 such that ED(u1) = 0 = ED(u2) =

ED(u′2) = E(u∗2u′2).
(ii) For every a1 , . . . , an ∈ D with zero trace, there exists a unitary u ∈ C2 with expec-

tation 0 such that ED(ua iu∗) = 0 for each i.
(iii) _ere are unitaries w , v ∈ C2 with expectation 0 such that ED(wav) = 0 for all

a ∈ D.
Furthermore, let G be the subgroup of K0(C) that is generated by j∗1 (K0(C1)) and
j∗2(K0(C2))with j i ∶C i → C the canonical inclusion. If the above three conditions hold,
then

K0(C)+ ∩G = {x ∈ G ∶ tr(x) > 0} ∪ {0}.

Lemma 2.19 ([HP14b]) Suppose that B1 and B2 are unital separable C∗-algebras both
unitally containing D = C2 as a subalgebra. Assume that B1 and B2 are equipped with
faithful traces tr1 and tr2, respectively such that tr1 and tr2 agree on D. Let E i

D be the
trace preserving conditional expectation from B i to D for i ∈ {1, 2}. Form the reduced
amalgamated free product

(B, E) = (B1 , E1
D) ∗D (B2 , E2

D).

Let p and q be the two minimal projections in D and assume tri(p) = tri(q). Suppose
B1 contains a unitary u1 and B2 contains unitaries u2 and u′2 with v = pvp + qvq for
v ∈ {u1 , u2 , u′2}, which also satisfy

E(u1) = 0 = E(u2) = E(u′2) = E(u∗2u′2).
_en pBp and qBq both have stable rank 1.

_e key to unlocking the ideal structure of S(Γ, µ) is showing the existence of a
minimal ideal that “avoids” the sets V>(Γ, µ) and V=(Γ, µ). To begin, we ûx a vertex,
α ∈ V ∖ V≥.

Lemma 2.20 Suppose β ∼ α.
(i) If β /∈ V≥, then pβ is in the ideal Iα generated by pα .
(ii) If β ∈ V≥, then β is not in the ideal Jβ that is generated by {pδ ∣ δ ∈ V ∖ {β}}. If

γ ∼ β, then pγ ∈ Iα .

Proof (i) Suppose that β /∈ V≥(Γ, µ). Let e1 , . . . , en denote the edges in Γ that
have β as an endpoint, and let є1 , . . . , єn be the corresponding oriented edges in Γ⃗
having t(є i) = β for all i, and s(є1) = α.
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If µ(β) < µ(α), then X∗
є1Xє1(= X∗

є1 pαXє1) is invertible in pβS(Γ, µ)pβ , so it follows
that pβ ∈ Iα .

If µ(β) ≥ µ(α), then we necessarily have n ≥ 2. Using _eorem 2.4, the traces of
the support projections of the elements X∗

є i Xє i add up to ∑γ∼β nγ ,βµ(β), which by
hypothesis exceeds µ(β). It follows from _eorem 2.16 that the C∗-algebra generated
by the elements X∗

є i Xє i is simple, which means that pβ is in the ideal generated by
these elements. Noting that X∗

є1Xє1 = X∗
є1 pαXє1 , this shows that pβ ∈ Iα .

(ii) Suppose that β ∈ V≥ and let e1 , . . . , en and є1 , . . . , єn be as in the previous part.
Every element in I which is supported under pβ must be a norm limit of elements of
the form

∑
i , j

X∗
є i y i , jXє j

for y i , j ∈ S(Γ, µ).
If n = 1, then for any y ∈ S(Γ, µ), X∗

є1 yXє1 is not invertible in pβS(Γ, µ)pβ . It
follows that pβ /∈ Jβ .

If n ≥ 2, then the support projections pє i of X∗
є i Xє i are in S(Γ, µ) and are free

with respect to Tr(pβ ⋅ pβ). We have ∑n
i=1 Tr(pє i ) ≤ Tr(pβ). Furthermore, if x ∈

pβ Jβ pβ , then x must be in the hereditaryC∗-algebra (∑n
i=1 pє i )S(Γ, µ)(∑n

i=1 pє i ). By
Corollary 2.12,∑n

i=1 pє i isnot invertible in pβS(Γ, µ)pβ . _is implies that pβ /∈ Jβ . _e
unitalC∗-subalgebra in pβS(Γ, µ)pβ generated by the elements X∗

є i Xє i is the reduced
free product

B =
n∗
i=1

(
pє i

C∗(X∗
є i Xє i )⊕C) .

By Lemma 2.17 and _eorem 2.16, pє iBpє i is simple for each i, and the element
pє i X∗

є1Xє1 pє i is nonzero. _is means that pє i ∈ I for all i. Note if γ ∼ β, then γ /∈ V≥,
and pγ is equivalent to one of the pє i (via the polar part of Xє i ). _is implies that
pγ ∈ Iα .

Lemma 2.21 Let Iα be the closed ideal in S(Γ, µ) generated by pα . _en I contains
{pβ ∣ β /∈ V≥(Γ, µ)}. _erefore, Iα does not depend on α, and we will denote it by I.
Furthermore, S(Γ, µ)/I ≅ ⊕γ∈V≥0 C. In addition, I is unital if and only if V=(Γ, µ) is
empty.

Proof Since Γ is connected, we can iterate Lemma 2.20 to conclude that Iα contains
{pβ ∣ β /∈ V≥(Γ, µ)} and has trivial intersectionwith {pβ ∣ β ∈ V≥(Γ, µ)}. _is means
that I is generated as an ideal by {Xє ∣ є ∈ E⃗}, since at least one vertex in V ∖V≥ is an
endpoint of є for each є ∈ E. If γ ∈ V≥, then every element in pγS(Γ, µ)pγ is a norm
limit of elements of the form cpγ + pγxpγ where x is a polynomial in the Xє ’s. _e
arguments in Case (ii) show that pγ is not a norm limit of expressions of the form
pγxpγ . _is implies that S(Γ, µ)/I ≅⊕γ∈V≥ C.
Finally we verify the statement on the unitality of I. Let γ ∈ V≥ and let є′1 , . . . , є′m be

all of the edges satisfying t(є′i) = γ. If V= is empty and pє′i is the support projection of
X∗
є i Xє i , then since∑m

i=1 Tr(pє′i ) < Tr(pγ), {0} is open in the spectrum of∑i p i from
Corollary 2.12, which implies that the support projection, qγ of ∑i=1 pє′i is in I. _e
element∑γ/∈V≥ pγ +∑γ∈V≥ qγ is the unit for I.
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If V= is not empty, m ≥ 2, and γ ∈ V=, then since ∑i Tr(pє i ) = Tr(pγ), pγ is in
the strong closure (in L2(S(Γ, µ),Tr)) of the C∗-algebra generated by∑i pє i [Har13],
so it follows that pγ is the support projection of∑i Tr(pє i ). _erefore I is not unital.
Finally, if m = 1 and γ ∈ V=, then since the law of X∗

є′1
Xє′1 in pγ(S(Γ, µ),Tr)pγ has no

atoms, it follows that pγ is in the strong closure of I, so I is not unital.

Corollary 2.22 If V= is empty, then

S(Γ, µ) = I ⊕ ⊕
γ∈V>

rγ
C

with rγ ≤ pγ and Tr(rγ) = µ(γ) −∑β∼γ nα ,βµ(β). If V= is not empty, then

S(Γ, µ) = I⊕ ⊕
γ∈V>

rγ
C,

where I is unital, the strong operator closures of I and I coincide in L2(S(Γ, µ),Tr), and
I/I ≅⊕β∈V= C.

We will now show that I is minimal.

Lemma 2.23 Let I be as in Lemma 2.21. _en I is simple, has unique trace, and has
stable rank 1.

Proof _e arguments heremirror arguments used in [HP14b, Section 4].

Case 1:We ûrst assume that there is a vertex α ofminimalweight such that Γ = Γ1∪Γ2,
where Γ1 and Γ2 are two connected subgraphs of Γ, each of which has a nonempty
edge set, share no edges in common, and intersects only at the vertex α. We have
pαS(Γ, µ)pα = pαS(Γ1 , µ)pα ∗ pαS(Γ2 , µ)pα . Let є1 and є2 be oriented edges with
t(є i) = α and є i ∈ E⃗(Γi). _e elements X∗

є i Xє i generate diòuse abelianC
∗-subalgebras

of pαS(Γ, µ)pα with respect to Tr(pα ⋅ pα) from _eorem 2.4 and the assumption on
α. It follows from _eorem 2.16 that pαS(Γ, µ)pα is simple, has unique trace, and has
stable rank 1 from _eorem 2.14 or _eorem 2.16. Since pα is full in I from Lemma
2.21, this implies that I is simple, has unique trace, and has stable rank 1.

Case 2: We assume that α is connected only to one other vertex β, and by only one
edge e1. Let є1 ∈ E⃗ have s(є1) = α and t(є1) = β. Notice that the assumption on α
implies that there is at least one other undirected edge e2 with β as an endpoint, and
µ(β) > µ(α) since equality implies that we are in Case 1. Assume that t(є2) = β. Let
Γ̃ be the graph that is obtained by removing the edge e1 from Γ. Let qα be the support
projection of X∗

є1Xє1 and note that qα ≤ pβ and qα is equivalent to pα . If B is the
C∗-algebra generated qβ and S(Γ̃, µ), it follows from Lemma 2.17 that

qαS(Γ, µ)qα = qαC∗(X∗
є Xє)qα ∗ qαBqα .

_e C∗-algebra qαC∗(X∗
є Xє)qα is diòuse and abelian. _e algebra qαBqα contains

the element qαX∗
є2Xє2qα , which generates a diòuse von-Neumann algebra, since the

support projection of X∗
є2Xє2 has trace at least as large as µ(α). It follows that qαBqα

has a unitary of trace zero. _erefore, from _eorem 2.14, qαS(Γ, µ)qα is simple, has
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unique trace, and has stable rank 1. Since pα is full in I from Lemma 2.21, this implies
that I is simple, has unique trace, and has stable rank 1.

Case 3: We assume that there are two distinct vertices, α and β, an edge e1 joining α
and β, and a path from α to β that avoids e1. We can also assume that α is ofminimal
weight, and α /∈ V≥. Let є1 ∈ E(Γ⃗) be the edge associatedwith e1 that satisûes t(є1) = β
and s(є1) = α, and set qα to be the support projection of X∗

є1Xє1 and note that qα ≤ pβ .
Also note that qα ∈ S(Γ, µ), since if X∗

є1Xє1 has connected spectrum, then qα = pβ .
SetB = (pα+qα)S(Γ, µ)(pα+qα). Let Γ′ be the subgraph of Γ obtained bydeleting

the edge e1, and let Γ′′ be the subgraph of Γ whose vertices are α and β and whose
edge set is {e1}. Set D = C∗({pα , pβ}) and D′ = C∗({pα , qα}). From Lemma 2.17, it
follows that

B = (pα + qα)S(Γ′′ , µ)(pα + qα) ∗
D′

(pα + qα)B′(pα + qα),

where the conditional expectations are the trace preserving ones, and

B′ = (
pα
C ⊕

qα
C ⊕

pβ−qα
C ) ∗

D
(pα + pβ)S(Γ′ , µ)(pα + qβ).

We now show that B satisûes the conditions in Lemma 2.18.
_eorem 2.4 determines the structure of (pα + qα)S(Γ′′ , µ)(pα + qα). Explicitly,

if µ(α) < µ(β), then
(pα + qα)S(Γ′′ , µ)(pα + qα) ≅ M2(C)⊗ C[0, 1]

with trace TrM2(C)⊗∫ ⋅dλ with dλ Lebesguemeasure. In this isomorphism,we have

pα z→ (1 0
0 0) and qα z→ (0 0

0 1) .

If µ(α) = µ(β), then

(pα + qα)S(Γ′′ , µ)(pα + qα) ≅
{ f ∶ [0, 1]→ M2(C) ∣ f is continuous and f (0) is diagonal}

with the above trace and identiûcations for pα and qα . In either case, the unitary

U = (cos(2πt) − sin(2πt)
sin(2πt) cos(2πt) )

lies in (pα + qα)S(Γ′′ , µ)(pα + qα). _e traceless elements of D′ are spanned by

x = (1 0
0 −1) ,

and it is easy to check that UxU∗ has zero expectation, so Lemma 2.18(ii) is satisûed.
Note that one has

E(u) = E(u∗) = E(u2) = E(u(u∗)∗) = 0.

Choose edges e2 and e3 of Γ′ whose oriented versions satisfy t(є2) = α and t(є3) =
β. _ere is a Haar unitary v1 in pαS(Γ′ , µ)pα in the continuous functional calculus
of X∗

є2Xє2 . As in the previous case, qαX∗
є3Xє3qα generates a diòuse von Neumann

algebra, so it follows that there is a unitary, v2, of trace zero in qαS(Γ′ , µ)qα . _is
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implies that v1 + v2 is an expectationless unitary in (pα + qα)B′(pα + qα) so Lemma
2.18(i) is satisûed.
Finally, under thematrix algebra identiûcation of (pα +qα)S(Γ′′ , µ)(pα +qα), set

V = (e
2iπ t 0
0 e2iπ t) .

It is easy to see that V is expectationless, and that E(VyV) = 0 for all y ∈ D′. _is
implies that Lemma 2.18(iii) is satisûed. _is impliesB is simple and has unique trace.
Since pα is full in I from Lemma 2.21, this implies that I is simple, has unique trace,
and has stable rank 1.

_e veriûcation of this case shows that the conditions in Lemma 2.19 are satisûed,
so pαBpα has stable rank 1. _is implies that I has stable rank 1 as well.

_ere are several immediate corollaries

Corollary 2.24 S(Γ, µ) is simple if and only if V≥ is empty.

Corollary 2.25 For each β ∈ V≥, the ideal Jβ generated by {pγ ∶ γ /= β} is maximal
and of co-dimension 1. Furthermore, every ideal in S(Γ, µ) is an intersection of the
ideals Jβ , and

I = ⋂
β∈V≥

Jβ .

Corollary 2.26 S(Γ, µ) has stable rank 1.

Proof S(Γ, µ)/I is ûnite-dimensional. _e result follows from [Rie83].

We now turn our attention to the K-groups and positive cone of I.

Lemma 2.27 _e K-groups of I are as follows:

K0(I) = Z{[pβ] ∣ β ∈ V ∖ V≥} and K1(I) = {0},

where Z{[pβ] ∣ β ∈ V ∖ V≥} is the free abelian group on the vertices of Γ that are not
in V≥.

Proof Consider the six term exact sequence

K0(I)
ι0∗ // K0(S(Γ, µ))

π0
∗ // K0(S(Γ, µ)/I)

∂0

��
K1(S(Γ, µ)/I)

∂1

OO

K1(S(Γ, µ))
π1
∗

oo K1(I)
ι1∗

oo

where ι i∗ are the inducedmaps from the canonical inclusion ι∶ I → S(Γ, µ), π i
∗ are the

induced maps from the canonical quotient map π∶S(Γ, µ) → S(Γ, µ)/I, and ∂ i are
the connecting maps. Recall that

S(Γ, µ)/I ≅ ⊕
β∈V≥

C,
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and the inducedmapC∗ {pβ ∣ β ∈ V≥}→ S(Γ, µ)/I is an isomorphism. _erefore, π0
∗

is surjective, which implies that ∂0 is the zero map, which implies that ι1∗ is injective.
Since K1(S(Γ, µ)) = {0} it follows that K1(I) = {0}.

_e image of ι0∗ is Z{pβ ∣ β ∈ V ∖ V≥}. Since S(Γ, µ)/I is ûnite-dimensional,
K1(S(Γ, µ)/I) = {0}, which implies ι0∗ is injective, hence

K0(I) = Z{[pβ] ∣ β ∈ V ∖ V≥} .

Lemma 2.28 K0(I)+ = {x ∈ K0(I) ∣ Tr(x) > 0} ∪ {0}.

Proof _e proof of Lemma 2.23 shows that in the three cases where a hereditary
subalgebra of I was expressed as a(n) (amalgamated) free product of A and B, the
subgroup, G ⊂ K0(I), generated by ι0∗(A) and ι0∗(B), has the desired structure of the
positive cone. We simply need to show thatG = K0(I). _iswill be done by analyzing
the three free product cases. We will now assume that α has minimal weight among
all the vertices in Γ.

Case 1: If Γ = Γ1 ∪ Γ2 as in the proof of Lemma 2.23, then from the description of Γ, if
β /= α and β ∈ V(Γ)∖V≥(Γ), then β ∈ V(Γi)∖V≥(Γi) for exactly one i ∈ {1, 2}. From
the proof of Lemma 2.21, it follows that pβ is in the ideal generated by pα in S(Γi). It
follows that K0(I) is generated by K0(pαS(Γj)pα) for j ∈ {1, 2}.
Case 2: Assume that Γ satisûes the conditions in Case 2 in Lemma 2.23. All notation
here comes from Case 2 in the proof of Lemma 2.23. Let є2 , . . . , єn be all of the edges
distinct from є1 that have target β. Let pє i be the support projection of X∗

є i Xє i for
i ∈ {1, . . . , n}. If i > 1, we see that pє iBpє i contains the algebra

pє i((
qα
C ⊕C) ∗ (

pє i
C∗(X∗

є i Xє i )⊕
pβ−pє i
C )) pє i =

C∗(X∗
є i Xє i ) ∗ pє i((

qα
C ⊕C) ∗ (

pє i
C ⊕

pβ−pє i
C )) , pє i

which is simple, since C∗(X∗
є i Xє i ) is diòuse. _is implies that pє i is in the ideal gen-

erated by pє1 in B.
If β ∈ V ∖ V≥, then ∑n

i=1 pє i ≥ kpβ for some k > 0 (Corollary 2.12). _erefore,
pβ is in the ideal generated by pє1Bpє1 in B since each pє i is in this ideal and ideals
are hereditary. Using the iterative argument in Lemmas 2.20 and 2.21, we see that if
γ ∈ V ∖V≥ and γ /= α, then γ is also in the ideal in B pє1Bpє1 . It follows from this that
K0(I) is generated by K0(pє1C∗(X∗

є1Xє1)pє1) and K0(pє1Bpє1).
If β ∈ V≥, then tr(pє i ) < µ(β) so it follows that pє i is equivalent to ps(є i),

hence ps(є i) is in the ideal in B generated by pє1Bpє1 . _e inductive argument from
Lemma 2.21 will conclude that K0(I) is generated by K0(pє1C∗(X∗

є1Xє1)pє1) and
K0(pє1Bpє1)).
Case 3: By considering є2 , . . . , єn as in the previous case, the exact same proof shows
that K0(I) is generated by

K0((pα + qα)C∗(X∗
є1Xє1)(pα + qα)) and K0((pα + qα)B′(pα + qα)) .

Since I has stable rank one, we obtain the following corollary.
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Corollary 2.29 Suppose p and q are projections in Mn(I) satisfying Trn(p) <
Trn(q), where Trn is the canonical trace on Mn(I) induced from the trace on I. _en
there is a v ∈ Mn(I) satisfying v∗v = p and vv∗ ≤ q.

2.4 Extension to Infinite Graphs

Assume that Γ is a countably inûnite connected graph with a countable edge set. We
can write Γ as in increasing union of ûnite subgraphs Γn . Since simplicity, K-groups,
stable rank 1, and unique trace are preserved under inductive limits, we have the fol-
lowing corollary from our work in the previous section.

Corollary 2.30 Let I be the ideal in S(Γ, µ) generated by {Xє ∣ є ∈ E(Γ⃗)}. _en the
following statements hold.
(i) I is simple, contains the set {pβ ∣ β ∈ V ∖ V≥}, and does not intersect

{pγ ∣ γ ∈ V≥} .

Since Γ inûnite and connected implies that V ∖ V≥ is inûnite, I is not unital.
(ii) S(Γ, µ)/I ≅⊕γ∈V≥ C.
(iii) K0(I) ≅ Z{[pβ] ∣ β ∈ V ∖ V≥}, K1(I) = {0}, and

K0(I)+ = {x ∈ K0(I) ∣ Tr(x) > 0} ∪ {0}.
(iv) I and S(Γ, µ) have stable rank 1.
(v) I has a unique (up to scaling) lower semicontinuous tracial weight. _is weight

is ûnite if and only if the support projection of I in M(Γ, µ), the von Neumann
algebra generated by S(Γ, µ), has ûnite trace.

3 Free Differentials, Atomless Loops, and Algebraicity

For this section, we assume that Γ is ûnite with a ûxed weighting, µ on V(Γ). We let
A = C⟨(Xє)є∈E(Γ⃗) , (pβ)β∈V(Γ)⟩. We aim to prove the following theorems, which are
in the spirit of [SS15,MSW14,CS15].

_eorem 3.1 Suppose α ∈ V andQ ∈ A are such that µ(α) = min{µ(β) ∣ β ∈ V(Γ)}
and Qpα = Q. If a = a∗ = pαapα ∈ W∗(S(Γ, µ),Tr) and Qa = 0, then either Q = 0
or a = 0.

_eorem 3.2 Let x ∈ Mn(A) be self-adjoint. _en the law of x with respect toTr⊗ trn
has algebraic Cauchy transform.

_eorem 3.1 has the following corollary.

Corollary 3.3 Suppose Q = Q∗ ∈ A, pα is as in the statement of _eorem 3.1,
and Q = Qpα(= pαQpα). If Q is not a scalar multiple of pα , then the law of Q in
(pαS(Γ, µ)pα ,Tr) has no atoms.

Notice that any such Q described in Corollary 3.3 must be a linear combination of
elements of the form Xє1 ⋅ ⋅ ⋅Xєn , where є1 ⋅ ⋅ ⋅ єn is a loop in Γ⃗ based at α.
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To develop themachinery to prove_eorem 3.1, we will develop a free diòerential
calculus along the lines of [Voi93,CDS14].

3.1 Commutation with Finite Rank Operators

Let H = L2(S(Γ, µ),Tr). We desire to place a more natural Euclidean structure on
H. First, some notation is in order.

Notation 3.4 Let Π denote the set of all paths in Γ⃗, and σ = є1 ⋅ ⋅ ⋅ єn ∈ Π. Let ∣σ ∣ = n
denote the length of σ . We set:

● σop = єopn ⋅ ⋅ ⋅ єop1
● ℓ(σ) = ℓ(є1) ⋅ ⋅ ⋅ ℓ(єn).
● aσ = 4

√
µ(s(σ))
µ(t(σ)) =

4

√
µ(s(є1))
µ(t(єn))

● Xσ = Xє1 ⋅ ⋅ ⋅Xєn .
● Yσ = ∑σ=ρτ aρa−1

τ ℓ(ρ)ℓ(τop)∗
● σ̂ = є1 ⊗ ⋅ ⋅ ⋅ ⊗ єn (viewed as an element of F(Γ)).

Proposition 3.5 (Change of basis) Suppose σ is a path in Γ⃗ of length n.
(i) Yσ ∈ S(Γ, µ).
(ii) Yσ = Xσ + Q where Q is a linear combination of the Xσ ′ with ∣σ ′∣ < n.
(iii) Xσ = Yσ + P where P is a linear combination of the Yσ ′ with ∣σ ′∣ < n.
(iv) Let 1̂ ∈ F(Γ⃗) be deûned by 1̂ = ∑α∈Γ p̂α . Set

Ỹσ = 4

¿
ÁÁÀ µ(t(σ))

µ(s(σ))Yσ .

_en Ỹσ is the unique element x in S(Γ, µ) satisfying x ⋅ 1̂ = σ̂ .

Proof We will prove this by induction on ∣σ ∣, the length of σ . If ∣σ ∣ = 1, then σ = є
for some є ∈ E⃗ and it is apparent that Yє = Xє .

Given, σ with ∣σ ∣ > 1, write σ = єτ for є ∈ E⃗, and write τ = є′τ′. We see that

XєYτ = (aєℓ(є) + aєop ℓ(єop)∗) ∑
τ=τ1τ2

aτ1a
−1
τ2 ℓ(τ1)ℓ(τop

2 )∗

= ∑
τ=τ1τ2

aєτ1aτ2 ℓ(єτ1)ℓ(τop
2 )∗ + δєop ,є′ ∑

τ′=τ′1τ′2

aτ′1a
−1
(τ′2)op ℓ(τ′1)ℓ((τ′2)op)∗

+ aєopa−1
τ ℓ(єop)∗ℓ(τop)∗

= Yσ + δєop ,є′Yτ′

By induction, this proves (i) and (ii). (iii) follows directly from (ii).
For (iv), it is clear from the deûnition of Ỹσ that Ỹσ ⋅ 1̂ = σ̂ . Furthermore, by the

deûnition of the conditional expectation, E (_eorem 2.4), we have E(x) = ⟨̂1∣x̂1⟩.
Since E is faithful, Ỹσ is the unique element, x, in S(Γ, µ) satisfying x ⋅ 1̂ = σ̂ .
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Note that the Hilbert module K = X(Γ) ⊗C ℓ2(V(Γ), µ) is a Hilbert space with
inner product given by

⟨σ̂1∣σ̂2⟩K = Tr(⟨σ̂1∣σ̂2⟩) = δσ1 ,σ2 µ(t(σ1))

for σ1 , σ2 ∈ Π.

Lemma 3.6 _ere is a S(Γ, µ)-linear unitary U ∶H → K given on ûnite sums by

U(
n
∑
i=1
a i Ỹσ) =

n
∑
i=1
a i σ̂ .

Proof It is apparent from the deûnition of the inner products on H and K that U
is an isometry with dense range, hence U extends to be a unitary operator from H

onto K. Suppose τ ∈ Π, with τ = є′τ′ for є′ ∈ E⃗. _e formula XєYσ = Yєσ + δє′ ,єopYτ′

appeared in the proof of Proposition 3.5. It follows from this formula that XєỸσ =
aєỸєσ + δє′ ,єopaєop Ỹτ′ . Since Xє σ̂ = aєє̂τ + δє′ ,єopaєop τ̂′, U is S(Γ, µ)-linear.

We will canonically identify H with K and refer to this Hilbert space as H. We
will assume H has inner product ⟨ ⋅ ∣ ⋅ ⟩H, which is linear in the right variable. Let
J∶H →H be themodular conjugation, (i.e., the isometric extension of J(x̂) = x̂∗ for
x ∈ S(Γ, µ)). Ifwe setM =M(Γ, µ) (the von-Neumann algebra generated by S(Γ, µ)
acting on H), then JMJ =M′, the commutant ofM.

Note that H is spanned by {p̂α ∣ α ∈ V(Γ)} and elementary tensors of the form
є1 ⊗ ⋅ ⋅ ⋅ ⊗ єn where e1 ⋅ ⋅ ⋅ єn is a path in Γ. _erefore, we viewH as being spanned by
paths in Γ⃗ of ûnite length, with paths length 0 paths simply being vertices. According
to the Euclidean structure above, we have

∥є1 ⋅ ⋅ ⋅ єn∥H =
√

µ(t(єn)) and J(є1 ⋅ ⋅ ⋅ єn) =
¿
ÁÁÀ µ(t(єn))

µ(s(є1))
єopn ⋅ ⋅ ⋅ єop1 .

For ξ, η ∈H, consider the rank-one operator ∣ξ⟩⟨η∣ which is deûned by

∣ξ⟩⟨η∣(ζ) = ξ⟨η∣ζ⟩H .

We have the following lemma.

Lemma 3.7 [ℓ(є), JXє J] = − 1
4√µ(s(e))3 ⋅µ(t(e))

∣ŝ(є)⟩⟨t̂(є)∣, and [ℓ(є), JXє′ J] = 0 if
є /= є′.

Proof It is straightforward to see that ℓ(є)JXє J(є1 ⋅ ⋅ ⋅ єn) = JXє Jℓ(є)(є1 ⋅ ⋅ ⋅ єn) if
n ≥ 1 and that ℓ(є)JXє J(α̂) = 0 = JXє Jℓ(є)(α̂) if α /= t(є). Finally, we see that

[ℓ(є), JXє J](t̂(є)) = [ℓ(є)JXє J − JXє Jℓ(є)](t̂(є)) = ℓ(є)[aєopєop] − JXє J(є)
= aєopєєop − JXє(a2

єopєop)

= aєopєєop − (aєopєєop + a3
єop ŝ(є)) = −(

µ(t(є))
µ(s(є)))

3/4
ŝ(є),
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and

− 1
4
√

µ(s(e))3 ⋅ µ(t(e))
∣ŝ(є)⟩⟨t̂(є)∣ ⋅ t̂(є) = − µ(t(є))

4
√

µ(s(e))3 ⋅ µ(t(e))
ŝ(є)

= −( µ(t(є))
µ(s(є)))

3/4
ŝ(є).

_e result follows.

We will now prove a commutation lemma that is central to our theorem. _e idea
of this proofwas communicated to the author byDima Shlyakhtenko,who has a sim-
ilar proof for when each Xє is a (scalar-valued) semicircular element.

Lemma 3.8 For each є ∈ E⃗, let Rє ∈ B(H) be a ûnite-rank operator with

Rє ∶ Jps(є) JH Ð→ Jpt(є) JH

(i.e., ker(Rє) ⊃ (Jps(є) JH)⊥ and range(Rє) ⊂ Jpt(є) JH) . Suppose further that

∑
є∈E⃗

[Rє , JXє J] = 0.

_en Rє = 0 for all є ∈ E⃗.

Proof Let a, b ∈M. Since JMJ =M′, we have

0 =∑
є∈E⃗
a[Rє , JXє J]b =∑

є∈E⃗
[aRєb, JXє J].

Fixing some є′ ∈ E⃗, and letting TrH be the trace on the ûnite rank operators, we have,
with the aid of Lemma 3.7:

0 = TrH(∑
є∈E⃗

ℓ(є′)[aRєb, JXє J])

=∑
є∈E⃗

TrH( ℓ(є′)aRєbJXє J − ℓ(є′)JXє JaRєb)

=∑
є∈E⃗

TrH( aRєb[JXє Jℓ(є′) − ℓ(є′)JXє J])

= 1
4
√

µ(s(є′))3 ⋅ µ(t(є′))
TrH(aRє′b∣s(є′)⟩⟨t(є′)∣)

= 1
4
√

µ(s(є′))3 ⋅ µ(t(є′))3
⟨t(є′)∣aRє′bs(є′)⟩H

= 1
4
√

µ(s(є′))3 ⋅ µ(t(є′))3
⟨a∗t(є′)∣Rє′bs(є′)⟩H .

As this holds for all a, b ∈M, this implies Rє′ = 0 since Rє′ ∶ Jps(є′) JH → Jpt(є′) JH.
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3.2 A Free Differential Calculus for A

Before deûning our free diòerence quotients, we claim that the elements Xє are al-
gebraically free with amalgamation over C0(V). From _eorem 2.4, the elements
(Xe)e∈E are∗-freewith amalgamation overC0(V). Also, the spectral measure XєXєop

has a nonzero diòuse part. _ese two facts imply that the elements Xє are algebraically
free with amalgamation over C0(V).
For each edge є ∈ E⃗,we deûne ∂є ∶A→ A⊗A to be the derivation that is the unique

extension of
∂є(Xє′) = (δє ,є′)ps(є) ⊗ pt(є) .

Also see [CDS14]. Notice that this means that if є1 ⋅ ⋅ ⋅ єn is a path in Γ⃗, then

∂є(Xє1 ⋅ ⋅ ⋅Xєn) = ∑
є j=є

Xє1 ⋅ ⋅ ⋅Xє j−1 ⊗ Xє j+1 ⋅ ⋅ ⋅Xєn ,

with the understanding that if є1 = є, then the term ps(є1) ⊗ Xє2 ⋅ ⋅ ⋅Xєn appears, and
if єn = є, then the term Xє1 ⋅ ⋅ ⋅Xєn−1 ⊗ pt(єn) appears. Although the following lemma
will not be needed in what follows, it demonstrates that the diòerential operators ∂є
have a ûnite free Fisher information type property [Voi93].

Lemma 3.9 (i) For any P ∈ A, we have

(Tr⊗Tr)(∂єP) =
√

µ(s(є))µ(t(є))Tr(XєopP),

i.e.,
√

µ(s(є))µ(t(є))Xєop is a conjugate variable for ∂e .
(ii) If we deûne σ ∈ Aut(A⊗A) by linear extension of σ(a⊗ b) = b⊗ a, then for any

P ∈ A,
(∂є(P))

∗ = σ(∂єop(P∗)) .
(iii) ∂є has a densely deûned adjoint, ∂∗є , which is given on individual tensors by

∂∗є (Q ⊗ R) =
√

µ(s(є))µ(t(є))QXєR − (id⊗Tr)(∂єop(Q))R
− Q(Tr⊗ id)(∂єop(R)).

_erefore, the operators ∂є are closable as operators from H →H ⊗H.

Proof (i) Suppose P = Xє1 ⋅ ⋅ ⋅Xєn . From Lemma 2.6, we have
√

µ(s(є))µ(t(є))Tr(XєopP)

=
√

µ(s(є))µ(t(є))Tr(Xє1 ⋅ ⋅ ⋅XєnXєop)
= ∑

є j=є
j/∈1,n

Tr(Xє1 ⋅ ⋅ ⋅Xє j−1) ⋅ Tr(Xє j+1 ⋅ ⋅ ⋅Xєn)

+ δєn ,єµ(s(єop))Tr(Xє1 . . . Xєn−1) + δє1 ,єµ(t(єop))Tr(Xє2 . . . Xєn)
= ∑

є j=є
j/∈1,n

Tr(Xє1 ⋅ ⋅ ⋅Xє j−1) ⋅ Tr(Xє j+1 ⋅ ⋅ ⋅Xєn)

+ δєn ,єµ(t(є))Tr(Xє1 . . . Xєn−1) + δє1 ,єµ(s(є))Tr(Xє2 . . . Xєn)
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Note that

∂є(Xє1 ⋅ ⋅ ⋅Xєn) = ∑
є j=є

j/∈{1,n}

Xє1 ⋅ ⋅ ⋅Xє j−1 ⊗ Xє j+1 ⋅ ⋅ ⋅Xєn

+ δєn ,єXє1 . . . Xєn−1 ⊗ pt(є) + δє1 ,єps(є) ⊗ Xє2 . . . Xєn .

TakingTr⊗Tr veriûes the equation formonomials. _e rest follows by linearity.
(ii) If P is amonomial, this immediately follows from the deûnition of σ and ∂є . _e

rest follows by linearity.
(iii) Set X̃є =

√
µ(s(є))µ(t(є))Xє and X̃єop =

√
µ(s(є))µ(t(є))Xєop . For P,Q , R ∈

A, we have

⟨ Q̂ ⊗ R ∣ ∂̂є(P)⟩H⊗H
= Tr⊗Tr((Q∗ ⊗ R∗)∂є(P))

= Tr⊗Tr(Q∗∂є(P)R∗)
= Tr⊗Tr((Q∗PR∗) − ∂є(Q∗)PR∗ − Q∗P∂є(R∗))
= Tr(X̃єopQ∗PR∗) − Tr((Tr⊗ id)(∂є(Q∗))PR∗) − Tr(Q∗P(id⊗Tr)(∂є(R∗)))
= Tr(R∗X̃єopQ∗P) − Tr(R∗(Tr⊗ id)(∂є(Q∗))P) − Tr((id⊗Tr)(∂є(R∗))Q∗P)
= Tr((Q X̃єR)∗P) − Tr([(Tr⊗ id)(σ(∂єop(Q))∗)∗R]∗P)
− Tr([Q(id⊗Tr)(σ(∂єop(R))∗)∗]∗P)

= Tr((Q X̃єR)∗P) − Tr([(id⊗Tr)(∂єop(Q))R]∗P)
− Tr([Q(Tr⊗ id)(∂єop(R))]∗P)

= ⟨ Q̂ X̃єR − (id⊗Tr)(∂єop(Q))R̂ − Q(Tr⊗ id) ̂(∂єop(R)) ∣ P̂ ⟩
H

.

Note thatM⊗M has a canonicalM−M bimodule structure given by a(x1⊗x2)b =
ax1 ⊗ x2b. Moreover, we can realize M ⊗alg M as a subalgebra of the ûnite rank
operators on H by x ⊗ y ↦ ∣x̂⟩⟨ ŷ∗∣. _ese two actions are compatible, i.e., under the
identiûcation ofM⊗alg M with ûnite rank operators on H, we have

a(x ⊗ y)b ↦ ∣ax̂⟩⟨b∗ ŷ∗∣ = a∣x̂⟩⟨ ŷ∗∣b

where the last product is the product in B(H).
We will occasionally realize theM −M bimodule action onM⊗M as anM⊗M

action on M ⊗M via the linear extension of (a ⊗ b)#(x ⊗ y) = ax ⊗ yb. We now
prove the key inductive lemma which is along the lines of [MSW14].

_eorem 3.10 Suppose Q ∈ A and there are α, β ∈ V with pαQ = Q = Qpβ .
Suppose further that there are a and b in M with aQ = 0 = Qb. _en for each є ∈ E⃗,
a∂є(Q)b = 0.

Proof _e assumptions in the problem imply that

a(Q ⊗ pβ − pα ⊗ Q)b = 0.
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_e identity
Q ⊗ pβ − pα ⊗ Q =∑

є∈E⃗
∂є(Q)#(Xє ⊗ 1 − 1⊗ Xє)

can be observed by noting that if Q is a monomial Xє1 ⋅ ⋅ ⋅Xєn with s(є1) = α and
t(єn) = β, then

∑
є∈E⃗

∂є(Q)#(Xє ⊗ 1) = Q ⊗ pβ +
n
∑
k=1

Xє1 ⋅ ⋅ ⋅Xєk ⊗ Xєk+1 ⋅ ⋅ ⋅Xєn and

∑
є∈E⃗

∂є(Q)#(1⊗ Xє) = pα ⊗ Q +
n
∑
k=1

Xє1 ⋅ ⋅ ⋅Xєk ⊗ Xєk+1 ⋅ ⋅ ⋅Xєn

We therefore have

∑
e∈E⃗

(a ⊗ b)#∂є(Q)#(Xє ⊗ 1 − 1⊗ Xє) = 0, which implies

∑
e∈E⃗

[a∂є(Q)b, JXєop J] = 0,

where in the last equation a∂є(Q)b is viewed as a ûnite rank operator onH. Note that
under this identiûcation, a∂є(Q)b∶ Jps(єop) JH → Jpt(єop) JH, so applying Lemma 3.8
(for єop) to a∂є(Q)b gives a∂є(Q)b = 0 as desired.

We now prove_eorem 3.1. _e proofwill be an amalgamated version of the proof
of the corresponding theorem in [MSW14].

Proof of_eorem 3.1 Suppose pα is in the statement of _eorem 3.1 with Q ∈ A

nonzero and Qpα = Q. Suppose further that Qa = 0 for a = a∗ and pαapα = a.
Deûne the degree of Q to be the length of the longest monomial in the Xє ’s with
nonzero coeõcient in the expansion ofQ intomonomials. IfQ is a linear combination
of the elements {pγ ∣ γ ∈ V}, then Q is said to have degree 0. We will prove the result
by induction on the degree of Q. _e result is trivial for Q of degree 0, sowewill now
assume that the degree of P is at least 1.
By expanding Q = ∑β∈V pβQ, we see that Qa = 0 if and only if pβQa = 0 for all β,

so we assume that Q = pβQ for some β ∈ V . Let q̃ be the projection onto the kernel
of Q. Since Qpα = Q, Tr(q̃) ≥ ∑γ∈V∖{α} µ(γ). Assume that a /= 0. _en since a is
supported under pα , we have Tr(q̃) > ∑γ∈V∖{α} µ(γ). Let q be the projection onto
the kernel of Q∗ and note that Tr(q) = Tr(q̃). _erefore, using minimality of µ(α),

Tr(q̃) + Tr(pβ′) > ( ∑
γ∈V∖{α}

µ(γ)) + µ(β′) ≥ ( ∑
γ∈V∖{α}

µ(γ)) + µ(α) = Tr(1).

It follows that qpβ′ /= 0 for all γ ∈ V . In particular, qpβ /= 0.
Note that qQ = 0. By _eorem 3.10, q∂є(Q)a = 0. _is implies that

0 = (Tr⊗ id)(q∂є(Q)a) = (Tr⊗ id)(q∂є(Q))a = 0

for all є. Choose є so that Xє is the le�most term in at least one monomial in the
sum representing Q. We have Tr(qpβ) /= 0, so it follows that (Tr⊗ id)(q′∂є(Q)) ∈ A
is nonzero, has right support under pα , and has degree strictly less than that of Q.
Since a /= 0, this contradicts the assumption that for any nonzero Q of strictly smaller
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degree than Q with right support under pα , Qa = 0 implies a = 0. _erefore, a had
to already be zero in the previous paragraph.

3.3 Algebraicity

We will now turn toward proving _eorem 3.2. _emajority of the discussion below
comes from and is inspired by [SS15]. To begin, we need to set up some notation.

Deûnition 3.11 (i) If R is a ring, we deûne the ring of formal power series in
the variables z1 , . . . , zn (denoted as R[[z1 , . . . , zn]]) to be the set of formal sums of the
form

P = ∑
k1 , . . .kn≥0

Pk1 , . . . ,kn z
k1
1 ⋅ ⋅ ⋅ zkn

n ,

where Pk1 , . . . ,kn ∈ R. Addition of two power series is deûned term-wise. Multiplication
is deûned by

(PQ)k1 , . . . ,kn =
n
∑
j=1

k j

∑
ℓ j=0

Pℓ1 , . . . ,ℓnQk1−ℓ1 , . . . ,kn−ℓn .

We will let R[z1 , . . . , zn] denote the polynomials in the variables z1 , . . . , zn . Note that
P ∈ R[z1 , ⋅ ⋅ ⋅ , zn] if and only if Pk1 , . . . ,kn = 0 for all but ûnitely many (k1 , . . . , kn).

(ii) If R is an integral domain, we say that P ∈ R[[z1 , . . . , zn]] is algebraic if there
exist Q0 ,Q1 , . . . ,Qn ∈ R[z1 , . . . , zn] not all zero satisfying

n
∑
j=0

Q jP j = 0.

_e algebraic elements in R[[z1 , . . . , zn]] form a ring. _is ring will be denoted as
Ralg[[z1 , . . . , zn]].

GivenNeumann algebra,N, a faithful positive linear functional ϕ onN, and a self-
adjoint a ∈ N, there exists a unique positivemeasure µa , supported on the spectrum
of a, which satisûes

ϕ(an) = ∫
R
xndµa(x).

Recall that the Cauchy Transform of ameasure, µ, is deûned as

Gµ(z) = ∫
R

dµ(t)
z − t

.

If µ is compactly supported, it is straightforward to see that Gµ(z) has a Laurent ex-
pansion about z = 0, and that limz→∞Gµ(z) = 0. _erefore, the Laurent series for
Gµ(z) is an element ofC[[ 1

z ]], so itmakes sense to ask ifGµa is algebraic for any a ∈ A.
In order to answer this question, we will need a notion of rational power series.

Deûnition 3.12 (i) Let R be a unital subring of the unital ring, S. We say that R
is rationally closed ifwhenever A is an n×n matrix with entries in R and invertible in
Mn(S), then A−1 ∈ Mn(R). _e rational closure of R is the smallest rationally closed
subring of S containing R.
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(ii) A power series P ∈ R[[z1 , . . . , zn]] is rational if P is in the rational closure of
R[z1 , . . . , zn], viewed as a subring of R[[z1 , . . . , zn]]. _e set of rational power series
will be denoted as Rrat[[z1 , . . . , zn]]

_e following lemma from [SS15] will be helpful.

Lemma 3.13 ([SS15]) Suppose that N is a von Neumann algebra with faithful trace
τ. Given x1 , x2 , . . . , xn ∈ N, and∑∞

n=0 xnzn , we deûne

TrN(
∞

∑
n=0

xnzn) =
∞

∑
n=0

τ(xn)zn ⊂ C[[z]].

Suppose that A is a subalgebra ofN and that

TrN(Arat[[z]]) ∈ Calg[[z]];
then for every self-adjoint matrix A ∈ Mn(A), GµA is algebraic.

As above, we assume that Γ is a ûnite graph, and we ûx a weighting µ on V(Γ).
Let M = M(Γ, µ) and A = C⟨C, (Xє)є∈E⃗⟩. In order to verify the hypotheses in
Lemma 3.13 we need to make use of power series in non-commuting variables.

Deûnition 3.14 (i) Let R be a ring and let X = {x1 , . . . , xn} be a ûnite set, o�en
called an alphabet. A word in X is a ûnite string x i1 , . . . , x ik . _e set of all words in X
will be denoted as W(X), and the empty word will be denoted 1.

(ii) _e non-commutative power series ring, R⟪X⟫ consists of formal sums of the
form

P = ∑
w∈W(X)

Pww

for Pw ∈ R. Addition of elements in R⟪X⟫ is done coordinate wise. Multiplication of
elements P and Q in R⟪X⟫ is deûned as follows:

(PQ)w = ∑
u ,v∈W(X)

w=uv

PuQv

_e non-commutative polynomials in X, denoted by R⟨X⟩, is the subring of R⟪X⟫
consisting of elements of the form

P = ∑
w∈W(X)

Pww

where Pw = 0 for all but ûnitely many w ∈W(X).
(iii) If Z = {z1 , . . . , zm} is an alphabet disjoint from X, a proper algebraic system

over R is a set of equations

z i = p i(x1 , . . . , xn , z1 , . . . , zm),
where p i ∈ R⟨X ∪ Z⟩ has no constant term, nor any term of the form αz j for α ∈ R
and j ∈ {1, . . . ,m}. A solution to a proper algebraic system is (P1 , . . . , Pm) ∈ R⟪X⟫m

with (Pi)1 = 0, satisfying

Pi = p i(x1 , . . . , xn , P1 , . . . , Pm)
for each each i ∈ {1, . . . ,m}.
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(iv) We say that P ∈ R⟪X⟫ is algebraic if P − P11 is a component of a solution of
a proper algebraic system. _e set of the algebraic elements in R⟪X⟫ will be denoted
by Ralg⟪X⟫. Ralg⟪X⟫ is a subring of R⟪X⟫.

(v) We say that P ∈ R⟪X⟫ is rational if P is in the rational closure of R⟨X⟩ in
R⟪X⟫. _e set of rational elements in R⟪X⟫ will be denoted as Ralg⟪X⟫

Fix an alphabet X = {є ∣ є ∈ E⃗} ∪ {α ∣ α ∈ V} and let

X = {Xє ∣ є ∈ E⃗} ∪ {pα ∣ α ∈ V}

so that A = C⟨X⟩. If w = є1 . . . єn , then set w(X) = Xє1 ⋅ ⋅ ⋅Xєn . For α ∈ V , set
Pα ∈ C⟪X ⟫ to be the following element:

Pα = ∑
w∈W(X )

Pαww , where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pα1 = 0,
Pαγ = δγ ,αµ(α) if γ ∈ V ,
Pαw = 0 if pαw(X)pα = 0,
Pαw = 0 if ∣w∣ ≥ 2 and w contains γ ∈ V ,
Pαw = Tr(w(X)) if pαw(X)pα = w(X) /= 0 and w = є1 . . . єn .

Let L(α) denote the loops in Γ⃗ that are based at α. A key point in our analysis is the
following lemma.

Lemma 3.15 Pα − µ(α)α is algebraic for each α ∈ V .

Proof We note that

Pα − µ(α)α = ∑
є1 . . .єn∈L(α)

Tr(Xє1 ⋅ ⋅ ⋅Xєn)є1 ⋅ ⋅ ⋅ єn .

Using Lemma 2.6, this series can be rewritten as:

∑
tєn=α

є1 ⋅⋅⋅єk−1∈L(α)
єk+1 ⋅⋅⋅єn−1∈L(s(єn−1))

1√
µ(s(єn))µ(α)

[Tr(Xє1 ⋅ ⋅ ⋅Xєk−1)є1 ⋅ ⋅ ⋅ єk−1]єopn

× [Tr(Xєk+1 ⋅ ⋅ ⋅Xєn−1)єk+1 ⋅ ⋅ ⋅ єn−1]єn

+ ∑
є1 . . .єn−2∈L(α)

¿
ÁÁÀ µ(α)

µ(s(єn))
[Tr(Xє1 ⋅ ⋅ ⋅Xєn−2)є1 ⋅ ⋅ ⋅ єn−2]єopn єn

+ ∑
є2 ⋅⋅⋅єn−1∈L(s(єn))

¿
ÁÁÀ µ(s(єn))

µ(α) єopn [Tr(Xє2 ⋅ ⋅ ⋅Xєn−1)є2 ⋅ ⋅ ⋅ єn−1]єn

+
√

µ(α)µ(s(є))єopn єn
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_is means that (Pα − µ(α)α)α∈V is a solution to the proper algebraic system

zα = ∑
β∼α

∑
t(є)=α
s(є)=β

√
µ(α) ⋅ µ(β)єopє +

¿
ÁÁÀ µ(α)

µ(β) zαє
opє

+ 1√
µ(β)µ(α)

zαєopzβє +
¿
ÁÁÀ µ(β)

µ(α)є
opzβє,

where α ranges through all of V .

Corollary 3.16 Pα is algebraic for all α ∈ V .

We will now let P ∈ Arat[[z]], and we set PΓ = ∑α∈V Pα and note that PΓ ∈
Calg⟪X⟫. _ere is a homomorphism π∶C⟨X ⟩ → A that is uniquely determined by
π(є) = Xє for all є ∈ E⃗ and π(α) = pα for all α ∈ V . _is map extends to a map
(also denoted π) from C⟨X ⟩[[z]] → A[[z]]. We can ûnd P ∈ C⟨X ⟩rat[[z]] such that
π(P) = P.

In [Sau03] there is a canonical way to realizeC⟨X ⟩rat[[z]] ⊂ C(z)rat⟪X ⟫, where
C(z) is the quotient ûeld of C[z]. Note that we can realize PΓ ∈ C(z)alg⟪X ⟫. If we
consider theHadamard product

P ⊙ PΓ = ∑
w∈X

Pw ⋅ PΓ
w ⋅w ,

then P ⊙ PΓ ∈ C(z)alg⟪X⟫ by [Sch62].
Observe that if we write P = ∑∞

m=0[pm ,E⃗((Xє)є∈E⃗)+ pm ,V((pα)α∈V)]zm for poly-
nomials pm ,E⃗ and pm ,V , then

P =
∞

∑
m=0

[ pm ,E⃗((є)є∈E⃗) + pm ,V((α)α∈V) + qm((є)є∈E⃗ , (α)α∈V)] z
m ,

where qm((Xє)є∈E⃗ , (pα)α∈V) = 0. If we let coeò(p,w) be the coeõcient of w in the
expansion of p into monomials, we see that

P ⊙ PΓ = ∑
α∈V

µ(α)(
∞

∑
m=0

[coeò(pm ,V , α) + coeò(qm , α)]zm)α

+ ∑
α∈V

∑
є1 . . .єn∈L(α)

Tr(Xє1 ⋅ ⋅ ⋅Xєn)

× (
∞

∑
m=0

[coeò(pm ,E⃗ , є1 ⋅ ⋅ ⋅ єn) + coeò(qm , є1 ⋅ ⋅ ⋅ єn)]zm)є1 . . . єn .
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If one inserts 1 for each є and α then we get

∑
α∈V

µ(α)(
∞

∑
m=0

[coeò(pm ,V , α) + coeò(qm , α)]zm)

+ ∑
α∈V

∑
є1 . . .єn∈L(α)

Tr(Xє1 ⋅ ⋅ ⋅Xєn)

× (
∞

∑
m=0

[coeò(pm ,E⃗ , є1 ⋅ ⋅ ⋅ єn) + coeò(qm , є1 ⋅ ⋅ ⋅ єn)]zm)

=
∞

∑
m=0

Tr(pm ,E⃗((Xє)є∈E⃗) + pm ,V((pα)α∈V) + qm((Xє)є∈E⃗ , (pα)α∈V))z
m

=
∞

∑
m=0

Tr(pm ,E⃗((Xє)є∈E⃗) + pm ,V((pα)α∈V)))zm

= TrM(P)
We see that TrM(P) is algebraic from [Sau03]. _is discussion proves _eorem 3.2.
Due to Corollary 3.3, if Q ∈ A is self-adjoint with pαQpα = Q and Q not a scalar

multiple of pα , then the law, µQ of Q in pαS(Γ, µ)pα has no atoms. Since the Cauchy
transform of Q is algebraic, it follows that µQ is absolutely continuouswith respect to
Lebesguemeasure and that the support of µQ is a ûnite union of closed intervals. Fi-
nally, since K0(S(Γ, µ)) is generated by the classes [pβ], we have the following corol-
lary.

Corollary 3.17 Let Q ∈ A be self-adjoint with pαQpα = Q and Q not a scalar
multiple of pα . If µ(α) = min{µ(β) ∣ β ∈ V}, then the law of Q in (pαS(Γ, µ)pα ,Tr)
is absolutely continuous with respect to Lebesguemeasure. Moreover, the spectrum of Q
in pαS(Γ, µ)pα is a ûnite union of disjoint closed intervals, each of which has measure
in (0, µ(α)] ∩Z[{µ(β) ∣ β ∈ V}].

Since the Cauchy transform GµP is algebraic for any self-adjoint P ∈ Mn(A), we
can deduce results stating that the law of any positive P ∈ Mn(A) cannot have a
signiûcant portion of mass near 0 (provided µP has no atom at 0). _e approach is
exactly the same as [SS15,_eorem 5.17]. Given a ûnitemeasure, µ onR, the spectral
density function Fµ is deûned by Fµ(t) = µ((−∞, t]).

_eorem 3.18 Let P ∈ Mn(A) be positive, and let α ∈ V satisfy
µ(α) = min{µ(β) ∣ β ∈ V} .

_en the following hold:

lim
δ→0+

∫
∥P∥

δ

1
t
(FµP(t) − FµP(0)) <∞,(i)

lim
δ→0+

∫
∥P∥

δ
log(t)dµP(t) > −∞.(ii)

In particular, if P ∈ A, and pαPpα = P, and µ′P is a the law of P in pαS(Γ, µ)pα , then

∫
∥P∥

0
log(t)dµ′P(t) > −∞.
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4 Applications

4.1 An Application to Wishart Matrices

Recall that aWishartmatrix A is an M×N randommatrix with independent complex
Gaussian entries a i j . Moreover, the entries have the following covariances

E(a i jakl) =
1√
MN

δ ikδ j l and E(a i jakl) = 0.

Notation 4.1 For each integer, n, ûx positive integers M1(n), . . . ,Mk(n) with
M1(n) = n for all n and M i(n) ≥ n for each i ∈ {1, . . . , k}. Assume further that
limn→∞ M i(n)/M1(n) = γ i . Let {An i j ∣ 1 ≤ i , j ≤ k} be a family of M i(n) × M j(n)
Wishart matrices and assume further that the entries of An i j are independent from
the entries of Ank l provided that i /= k or j /= l .

We are ready to state an application of ourwork to this family ofWishart matrices.

_eorem 4.2 Let Q be a noncommutative, nonconstant polynomial in the variables
(X i j)1≤i , j≤n ∪ (X∗

i j)1≤i , j≤n . Assume that Q makes sense as a random matrix, Qn , when
An i j and A∗n i j are inserted for X i j and X∗

i j , respectively. Assume further that Qn = Q∗
n

and is of size n × n.
(i) _ere is a unique compactly supported probabilitymeasure µQ so that if trn is the

(normalized) trace on the n × n complex matrices, then for each m ∈ N,

trn ⊗E(Qm
n )→ ∫

R
xmdµQ(x) as n →∞.

(ii) _e measure µQ has no atoms. Moreover, the support of µQ is a ûnite union of
intervalswhere each interval hasmeasure in the setZ[{γ i ∣ 1 ≤ i ≤ k}]∩(0, 1]. In
particular, the eigenvalues of Q do not cluster around any point.

Let (Y , µ) be a probability space, set M(n) = ∑k
m=1 Mm(n), and let

Bn = MM(n)(C)⊗ L∞(Y , µ)
be the algebra ofM(n)×M(n) complex randommatrices. If Trn is the (non-normal-
ized) trace on the algebra of M(n) ×M(n) matrices (satisfying Tr(IM(n)) = M(n)),
then we deûne ϕn ∶Bn → C by

ϕn(A) =
1
n
(Trn ⊗E)(A).

We will view elements in Bn as k × k block matrices where the i j block is of size
M i(n)×M j(n). Ifwe are given theWishart matrices An i j as above, thenwe let Ãn i j ∈
Bn be the matrix whose i j block is An i j and whose other blocks are all zero. Notice
that if P is as in the statement of_eorem 4.2 so that P((An i j)1≤i , j,≤k , (A∗n i j)1≤i , j,≤k)
is an n × n random matrix, then

P((Ãn i j)1≤i , j,≤k , (Ã∗n i j)1≤i , j,≤k) ∈ Bn

has its 1, 1 block equal to P((An i j)1≤i , j,≤k , (A∗n i j)1≤i , j,≤k) and all other blocks zero.
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To be able to prove _eorem 4.2, we let (Γ,V , E , µ) be the complete graph on k
vertices with two unoriented edges, e i j and e ji having the distinct vertices i and j as
endpoints. Let µ∶V → R+ given by µ(n) = γn , and let Γ⃗ be the directed version of Γ.
_e following theorem was proved in [GJS10].

_eorem 4.3 ([GJS10, BG05]) _e elements Ãn i j converge in ∗-distribution, under
ϕn , to the elements Xє i j . More speciûcally, if Q is any non-commutative polynomial in
the variables (X i j)1≤i , j≤k and (X∗

i j)1≤i , j≤k , then

lim
n→∞

ϕn(Q((Ãn i j)1≤i , j,≤k , (Ã∗n i j)1≤i , j,≤k)) =

TrS(Γ ,µ)(Q((Xє i j)1≤i , j,≤k , (Xєopi j
)1≤i , j,≤k)) .

Using this theorem, we can prove_eorem 4.2

Proof of_eorem 4.2 In the algebra Bn , let P1,n be the matrix whose 1, 1 block is
the identity and all other blocks are zero and Q is in the statement of_eorem 4.2. In
Bn , if Q̃n = Q((Ãn i j)1≤i , j,≤k , (Ã∗n i j)1≤i , j,≤k), then P1,nQ̃nP1,n = Q̃n , and the 1, 1 block
of this random matrix is Qn = Q((An i j)1≤i , j,≤k , (A∗n i j)1≤i , j,≤k). By _eorem 4.3,

tr(Qm
n ) = ∫

R
xmdµQ(x)

with µQ compactly supported. Since the law of Q((Xє i j)1≤i , j,≤k , (Xєopi j
)1≤i , j,≤k)) has

no atoms in p1S(Γ, µ)p1, it follows that µQ has no atoms. Moreover, the absolute
continuity of µQ and the rest of_eorem 4.2(ii) follows from Corollary 3.17.

4.2 An Application to Planar Algebras

Let P● be a (sub)factor planar algebra. For the deûnition and basic properties of
(sub)factor planar algebras, see [Pet10, BHP12]. We brie�y recall the construction of
[GJS10]. Let Gr0(P●) =⊕n≥0 Pn . We endow Gr0(P●) with the following multiplica-
tion

x ∧ y = x y
n m

for x ∈ Pn , and y ∈ Pm . Gr0(P●) is endowed with the Voiculescu trace

tr(x) = x

TL

n

,

where TL represents the sum of all Temperley–Lieb diagrams with all strings having
endpoints at the bottom of the box. We have the following facts about Gr0(P).

_eorem 4.4 (i) tr is positive deûnite onGr0(P●), and the action of x ∈ Gr0(P●)
on Gr0(P●) by le� multiplication extends to an action on L2(P● , tr) by bounded oper-
ators [GJS10].
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(ii) Let M be the von-Neumann algebra generated by the action of Gr0(P●) on
L2(Gr0(P●), tr). _en M is a II1 factor [GJS10]. If P● is ûnite depth, then M ≅
L(F1+2(δ−1)I) where I is the global index of P● and δ is the loop parameter [GJS11].
If P● is inûnite-depth, then M ≅ L(F∞) [Har13].

(iii) LetB be theC∗-algebra generated by the action ofGr0(P●) on L2(Gr0(P●), tr).
If Γ is the principal graph of P, then K0(B) ≅ Z{[α] ∣ α ∈ V(Γ)}, moreover B is iso-
morphic to p⋆S(Γ, µ)p⋆ with ⋆ the unique depth-zero vertex of Γ and µ the induced
weighting from P● [HP14b]. IfA is the ∗-algebra generated by

{pα , Xє ∣ α ∈ V(Γ), and є ∈ E(Γ⃗)} ,
then this isomorphism carries Gr0(P●) onto p⋆Ap⋆.

Ourwork on the laws of elements inA immediately implies the following corollary.

Corollary 4.5 If x = x∗ ∈ Gr0(P●) is not a scalar, then the Cauchy transform of
x with respect to tr is algebraic, the law of x with respect to tr has no atoms, and the
spectrumof x is a ûniteunion of closed intervals, each ofwhich havingmeasure in (0, 1]∩
Z{µ(α) ∣ α ∈ V(Γ)}

Proof Since ⋆ is ofminimalweight inV(Γ), this is immediate from_eorem4.4(iii)
as well as Corollary 3.17.
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