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TWO MORE REPRESENTATION PROBLEMS

by ANDREW BREMNER and RICHARD K. GUY*

(Received 7th October 1994)

We discuss the problem of finding those integers which may be represented by (x + y + zf/xyz, and also
those which may be represented by x/y + y/z + z/x, where x, y, z are integers. For example,

x = -3888953655693309094309277243253295616000,
y = 870614350109377939730940722158565152629,
z =-211788680591112853611774198484237121509

satisfy (x + y + zf/(xyz) = -47, and

x =10695607136243980529530429582617991136107507407713992824,
y = -123256655541019041417443728014061733054947136623569984,
z = 8446121230200308492574953446465639841507828834632079329

satisfy x/y + y/z + z/x = -86.

1991 Mathematics subject classification: 11D25, 11G05.

1. Introduction

In [2] we discussed Melvyn Knight's problem of finding those integers representable
in the form

n = (x + y + z)(- + - + -

and exhibited triples of integers (x, y, z) for all but 99 of the possible n in the range
-1000 < n < 1000. Analogous problems have arisen elsewhere, and in [8] it was asked
to find all integers representable by

(x + y + zf
xyz

but it turns out that only a small finite number of positive n are so representable, while
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2 ANDREW BREMNER AND RICHARD K. GUY

negative integers are given by (x, y, z) = (n, —n, n3). Homogeneity is desirable (because
of the underlying elliptic curve structure), and a better question [9] is to ask for
representations

( x + ^ + z)3
 = n. (1)

xyz

A representation problem that is closely related to (1) has attracted some historical
interest:

- + ^ + - = n. (2)
y z x

Cassels [3] and Cassels and Sansone [4] show there are no integer solutions for (2)
when n = 1; see also Sierpinski [13]. The equation merits attention in Sierpinski [14],
who asks for all solutions in the cases n= 1,2,3. From Konhauser, Velleman and
Wagon [11], one learns that Underwood Dudley had given the solutions (9,162,4),
(72, 162, 4) and (350, 196, 5), each for n = 41. Peter Montgomery observes that if x, y, z
have no factor in common, then (2) implies that there exist integers a, b, c such that
x = a2b, y = b2c, z = c2a. Then

« = - + - + - = — + — + — = a? + ^ + ^ (3)
y z x be ca ab abc

In the form (3), the representation problem at (2) has been studied by Dofs [5, 6],
who gives some parametric solutions and a table of numerical solutions for some n in
the range — 81 < n < 80. See also Craig [5], Mohanty [12], and Thomas and Vasquez
[15]. Notice that (a3, b3, c\ n3) at (3) is now a solution to the first representation
problem (1). In the reverse direction, a solution of (1) in which n is a perfect cube gives
rise to a point on the underlying elliptic curve which (assuming it is not a torsion point)
may be tripled to give a point corresponding to x, y, z being all cubes, and hence giving
rise to a solution of (2) for nl/3.

An initial computer search was carried out for solutions to (1) and (3) by Peter
Montgomery. For (1), the search was over the range 1 < x < y < z < 46,300, and 539
solutions were found, involving 501 different values of n, 69 of them in the interval
27 < n < 1000. For (3), the search range was max(|a|, \b\, \c\) < 2000, \n\ < 10\ with
800 solutions found.

A descent can be carried out on (3) by means of Sylvester's transformations, given
by Dofs [6].

Let U = na + 3b + 3c, V = 3a +nb+ 3c, W =3a + 3b + nc
with inverse

a : b : c = (n + 3)U - 3V - 3W : -3U+ (n + 3)V - 3W : -3U - 3V + (n + 3)W.
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Then (3) becomes

(n2 + 3n + 9)(U + V + Wf =(n + 6

so that there exist integers P, Q, R and a, fi, y with afiy = n2 + 3n + 9, satisfying

aPi + PQi + yR3 = (n + 6)PQR. (4)

One can now search (4) for solutions, and we made several additions in this manner
to our list of solutions of (2). However, the main thrust of this study is to
investigate in each of the problems the underlying family of elliptic curves. Rene
Schoof used the family (3) in a lecture at Bordeaux in May 1995, to illustrate the
ideas of 3-descent. He computed many of the smaller solutions, and one or two
others by the calculation of Heegner points. His tables were carried further by
Cremona (using a customized 2-descent) and by Fermigier (by direct computation),
leaving gaps at n = -86, -80, -63, 72, 73, 92, 99.

We extend our grateful thanks to Peter Montgomery, both for discussion of the
problems and for his solution search to the pair of equations, and to John Cremona,
Erik Dofs, and Rene Schoof, who all commented fruitfully on the first draft of this
paper.

2. Two families of elliptic curves

Solutions to (1) are obtained by writing

x, y_ ±Y-nX-4

z 8

so that they correspond to rational points on the elliptic curves

Y2 = n2*3 + (nX + 4)2, ' (6)

the inverse transformation being

4(x + y + z) 4(x — y)
(7)

Similarly, solutions to (2) may be found by putting

x : y : z = -X2 : 2{nX + 4 - Y) : 4X (8)

yielding the family

Y2 = X3 + (nX + 4)2 (9)
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whose rational points are

( ^ ^ ) (10)

In terms of a, b, c at (3), then

The discriminants of (6) and (9) are 2l2n8(n - 27) and 2l2(n3 - 27), respectively, so that
the former is singular just when n — 0 or 27, and the latter only when n = 3. All members
of both families have points of inflexion (0, ±4) of order 3, and the torsion group is, in
general, Z/3Z. Exceptionally, the cubic may have a rational root, giving a point of order
2 and a torsion group Z/6Z. For the first family this occurs just for n = — 1, 2, (27),
32, 54 and 125 and for the second family when n = — 1, (3) and 5. These statements
about the torsion group have been independently verified by the students of Nigel
Boston's 'Elliptic Curves by Computer' class at the University of Illinois, Urbana-
Champaign. One of these students, Sharon Kineke, makes the following interesting
observation [10]: construct four binary trees from the root triples (1,1,1), (1,1,2),
(1, 2, 3) and (1,4, 5) such that the triple (x, y, z) gives rise to the triples (x, z, (x + z)2/y)
and (y, z, (y + zf/x). Each node (X, y, Z) of these trees makes (X + y + Z)2/xyZ an
integer (and, a fortiori, (X + y + Z)3/XyZ an integer). This provides an infinite set of
solutions to the representation problem (x + y -+- zfjxyz = n of [8] for the respective
cases n = 9, 8, 6 and 5, and, by appropriate multiples, for their divisors n = 1, 2, 3 and 4.
The first tree includes the triples (l,^2

B_i,^+i) where ̂  is they-th Fibonacci number, so
these are solutions to (x + y -+- z)2/xyz = 9, and show that 27f2n_lf2n+l can always be
represented by (x + y + z)3/xyz.

Solutions to each of our representation problems occur in orbits of six. In the first,
these are simply the permutations of x, y, z; for the second, cyclic permutations of
(x,y,z) and of their reciprocals in reverse order, (1/z, 1/y, 1/x). Note that in either
instance it suffices to find rational values of (x, y, z); integer solutions are retrieved by
multiplying by a suitable factor. In each problem integer solutions may be normalized
so that gcd (x, y, z) = 1. In the first problem it may further be assumed that x, y, z are
coprime in pairs.

In the first problem the solutions (x, y, z; n) — (1, 1, — 1; — 1), (1,1,—4; 2),
(1,1, 2; 32), (1,1,4; 54), (1,1, 8; 125) come from torsion points and are essentially
unique. For n = 27, the solution (1, 1, 1) is essentially unique as a positive represen-
tation, but

also serves for any rational m, e.g., (1,1, -8) , (1, —27, 8), (27, -125, 8).
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In the second problem, n = 3 is given by (1,1,1) or by

(2(m - I)2, -4(m + 1), (m - 1) (m + I)2)

with m rational, the reciprocal solutions being given by changing the sign of m and
the cyclic order:

(2(m + I)2, -[m + 1) (w - I)2, 4(m - 1)).

There is a 2-isogeny between the curves for n = — 1 and n — 5. They have rank 0, and
the solutions (1, 1,-1; -1) and (1,2,4; 5) come from the respective torsion points of
order six, namely, (4, -8) and (-8, -28).

In the first problem, the curves consist of a single branch if 0 ^ n < 27, and of a
branch and an 'egg' if n > 27. Correspondingly in the second problem, the type of
curve is determined by n < 3 or n > 3. From (5) and (8) we see that in both problems
the necessary and sufficient conditions for a representation of n by positive x, y, z are

M > 0 and X < —4/n

Thus there are positive representations precisely when the curve contains an 'egg'
component possessing a rational point; just as in Melvyn Knight's problem [2].

3. L-series calculations

In order to determine where it would be profitable to search for solutions, the parity
of the rank of each elliptic curve was determined (modulo the Selmer conjecture) by
computing the sign of the functional equation for the appropriate L-series LE(s). When
the sign is +1, then evaluate L£(l). If nonzero, the rank is zero. If L£(l) = 0, then the
rank is at least 2; now evaluate L£(l). If nonzero, as is the case over the range we
considered, then the rank is 2, and the formulae of Gross & Zagier allow an estimate
to be computed of the height regulator of a pair of generators, multiplied by the order
of the Shafarevich-Tate group.

When the sign is —1, then evaluate L'£(l). If nonzero, as is the case over the range we
considered, then the rank is 1, and again we can compute an estimate for the height of a
generator multiplied by the order of the Shafarevich-Tate group. The initial range which
we decided to search for generators of the Mordell-Weil group was -200 < n < 200,
but this had to be shortened to -100 < n < 100. Comparison with the tables in Bremner,
Guy and Nowakowski [2] is instructive, since the latter are far more extensive. The
difference arises from the fact that the elliptic curves at (6) and (9) do not possess
rational 2-torsion. It was the possession of a rational 2-division point that enabled the
descent arguments of [2] to be carried out in an algorithmic method which could be
machine programmed. Here, in order to find the larger entries in Tables 1 and 2, it was
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necessary to treat each case individually as we were unable to construct a generic
descent method. The initial computer searches are responsible for entries in the tables
up to approximate height 10 to 12; and descent arguments, one of which is sketched in
section 5, were needed to fill in the gaps.

Comparison of Table 2 with the table of Dofs [6] shows omissions from the latter
of solutions for n = 64 (which is stated to have no solution), 70, 72, 73 and n = -32,
-48, -50, -53 , -56, -63 , -65, -67, -80. Further, n = 76, 77 correspond to rank two
examples. However, several of these omissions are supplied in the author's recent
paper, Dofs [7].

4. Parametric solutions

There are several parametric solutions to the first problem.
If n = —m2, then permutations of (x, y, z) = (1, — 1, m).
If n = m2(m + 1), then permutations of (x, y, z) = (1, m, -(m + I)2).
If n - -{m + 1) (m - 2)3, then permutations of (x, y, z) = (1, -(m + I)2, m3).
If n = -m2(m + l)(m + 2), then permutations of (x, y, z) = (1, -(m + I)2, m(m + if).
If n — (m2 — m + \)(m — 2)3, then permutations of (x, y, z) = (1, m3, -(m2 — m + I)2).
For the second problem, numerous parametric solutions are known, see Dofs [6],

Mohanty [12], and Thomas and Vasquez [15]. Dofs [7] shows how to produce infinitely
many parametrizations, satisfying a recurrence relation.

5. A descent example

Although descent arguments are well known in principle, most that occur in the
literature correspond to a curve with a rational 2-division point. We feel that it is
instructive to give an example where it is necessary to work over algebraic number
fields, illustrating some of the techniques that must be used.

We find by descent a point on the curve

/ = x3 + (73x 4- 4)2.

Replacing x, y by x/z2, y/z*, we treat this equation in the form

y2 = x3 + (73xz2 + 4z3)2, (x, z) = 1,

so that

Norm(x-0z2) = y2 (12)

where

03 + (730 + 4)2 = 0.
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Using Pari-GP [1] we discover the following facts about the number field K = i
K = Q(a), where a3 - 73a - 2 = 0 and 6 = -5329 - 2a + 73a2; the ring of integers

OK in K is Z[a], the ideal class-group is trivial, and a pair of fundamental units is
£, = -255 + 81a + 13a2

£2 = 2690940741277869467 +98533784900060106769a + 11514090849474001891a2

(normf, = +1, norme2 = —1).
From (12) it follows that there are integers/, g, h with

x - 0z2 = (unit) (/ + ga +ha2)2, norm (unit) = + 1 , (13)

and the unit can be taken without loss of generality as 1, £,, -£2, or -£,£2. The first
choice of unit leads to an infinite descent argument; the second and third choices lead
to 2-adically insolvable equations. With unit = — £,£2, and direct expansion of (13),
there result on equating coefficients of a, a2 quadratic equations with large coefficients
which are unwieldy to treat. Instead, we resort to the following subterfuge: in OK

factor the ideals (2) = p2p2 and (5) = p2p'5 and write p2 = (q'2) = (a),

p5 = (q5) = (29296065 + 1072729742a + 125353022a2).

Calculation then gives qfqli-e^e?) = 5036 + 2a - 69a2. Thus, from (13),

(5036 + 2a - 69a2) (x - 0Z2) = A2, A = 0modp'2p5.

A is accordingly of the form A — (4u + 2v) + (—« + 2v + w)a + wa2, and expanding the
above followed by equating coefficients of a, a2 gives

4029u2 - 34862m; - 152827utv +73748u2 + 635508uw+1350240w2 = 0
(14)

-55u2 + 476uv + 2087ww - 1007u2 - 8678uw - 18437w2 = z2.

Under the unimodular transformation

' u \ (-3049 -9744 2890 \ / U '
v ] = [ -1634 -5220 1549 V
w) \ 212 677 -201 A W,

(14) becomes

-3t/2 -UV- UW - 2VW + 6W2 = 0
9[/2 + 51UV + 91V2 - 11UW. - 54VW + W2 = z2.

The first is parametrized by

U : V : W = s1 + 2st: -3s2 - st + 6t2 : st + 2t2,

and substitution in the second gives

657s4 + 328s3t - 2603s2t2 - 660st3 + 2660t4 = square,
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and under

C)-(s
37S4 - 932S3T + 6157S2T2 - 34845T3 + 516T4 = square. (15)

Now define <f> by (p4 - 932c/>3 + 37.6157<£2 - 372 34840 + 373 516 = 0, so that (15)
becomes

Norm (37S - <£T) = 373 (square) (16)

PARI informs us that K = Q(0) = Q(/J), where y?4 - 2fi - 46/S2 - 1460 + 1673 = 0 and
<f,=mi + 92p-!2p2-3p\ The ring of integers is Z[l , j8, i( l+/J2) , i ( l +/?)(1 +)32)],
the class-group is trivial, and there is one fundamental unit q, where 2t] —

75580819871834997764954569092045859117373866656250251392514670806060859765

+81453509627697458895318103540986339007814171314128313841987479778975171310

-8574132162770733686430399921313822409424090978406737115591614207874149031£2

+854009362121281550166075994803607488276541755336529852261557534405204781i?3

In K we factor the ideals (2) = tylWl, (3) = %% and (37) = ^37^37^37^37 with
4> = m o d ^ ^ ^ ^ P j ' ; . It follows from (16) that

(37S - <f>T) = <P37^3'7^3"7^9I2 (17)

for some integral ideal 91, where 3̂ is one of the ideals (1), %Wv, %Wv, %I%T
We investigated only ^3 = (1) using the identity

(where <P2 = (q2), etc.).
Then (17) becomes

f +66O403

A = mod ^2^3^37^37^837. Accordingly, A can be taken in the form

/4 =(31u + 37u — 18w) + p(—13u + 37i>+ 72w) + I I (u + 3w)
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Expanding (18) and equating coefficients of 1, (5, f}2, /?3 results in quadratic forms
which under the transformation

v
w

{ 195 -140 -253 -74
1500 290 -1594 -359
-660 -179 688 150
179 144 -162 -26

imply

1U2 + 6UV + 24K2 + 41/W + 2VW - Y2 = 0

+ \07UW+55VW+\5W2+2\0UY+90VY+42WY+37Y2 = 0.

At this stage a computer search produces the solution

(U, V, W, Y) = (-815, -645, 2772, 2275),

which in turn can be traced back to the point (x, y) on the original curve, where

x = -1016423305745800678508556328968/1936346342378584154797319700289,

y =92466158602758489876800256772058174984104828292/
2694477486671622761439673888324026754597645087.

6. Tables

The first table gives solutions to the representation problem at (1). Solutions are
listed as pairs {(c0, c,, c2)(u, v, w)} where n = c0ctc2 and x — clu3, y = c]vz, z = c\wz. An
asterisk in the first column denotes a singular curve. The second column provides the
height of the solution in case the rank is 1, and the height regulator in case the rank is
2. In all instances the solutions found generate the group of rational points. The third
column lists the solutions, the number of such being equal to the rank.

The second table gives solutions (a, b, c) to the representation problem at (3). An
asterisk in the first column denotes a singular curve. The second column provides as
above the height regulator of the solutions listed in the third column, whose number
equals the rank.

The third and fourth tables list a pair of independent solutions for the respective
representation problems, in each case in the range 100 < |n| < 200 for which the rank
is 2. (The first problem resulted in 181 curves of rank 0, 199 of rank 1, and 19 of rank
2, in the range 1 < |n| < 200; the second problem in 218 curves of rank 0, 139 of rank
1, and 42 of rank 2, over the same range).

From the remarks at the end of Section 2, positive representation of n at (1) and
(3) occurs precisely when a generator for the group of rational points lies on the 'egg',
that is, a generator itself provides a positive representation. Correspondingly, (u, v, w)
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in Tables 1, 3 and (a, b, c) in Tables 2, 4 must all be positive. Notice, for example, from
Table 4 that at n — 136, although the rank equals 2, neither generator lies on the egg;
consequently there are no rational points on the egg, and there is no positive
representation of « = 136 at (3).

Finally in Table 5 we give the instances where the curves (1) and (3) in the range
100 < |n| < 200 have rank equal to 1. More precisely, we list those n for which the sign
of the functional equation is —1 and where the first derivative of the L-series does
not vanish at 1. By results of Kolyvagin, the rank is equal to 1 provided that the curves
are modular. This is implied by the Taniyama-Weil conjecture, and in any specific
instance is a finite computation to check. Recent results of Wiles [15] prove the
Taniyama-Weil conjecture for semi-stable elliptic curves. Rene Schoof points out that
the curves (3) are semi-stable away from the prime 3, so that the curves (3) are indeed
modular when 3/«. Table 5 (in conjunction with Tables 3 and 4) surely gives precisely
those n in the range 100 < \n\ < 200 for which solutions to our representation problems
exist.

Table 1
Solutions of n = (x + y + zf/xyz

n
2
7
10
12
14
15
19
22
27*
31
32
33
36
37
40
41
42
43
44
49
50
51
53
54
56
61
62
65
66
67
68
72
73
75

h
0

1.06
1.84
0.62
1.70
0.79
5.16
3.59
—

2.29
0

2.34
0.19
10.17
0.99
5.89
1.42
4.64
1.49
0.91
0.44
2.36
14.08

0
1.16
6.88
2.75
4.66
1.69

22.03
2.21
0.53

26.87
0.27

{(co,c,,c2), (u, u, w)}
{(1, 1,2)(1, 1.-01
{(1.1.7)(1,3,-1))
{(5,2,0(1,3,-7))
{(1,4, 3) (2, 1,-2)}
{(1,1,14)0,5,-1)}
{(1,3,5)(1,1,-1)}
{(1,1,19)013,-198,13)}
{(11,2,0(3,17,-41)}
{(3,3,3)0,1,1)}
{(1, 1,31) (—13, 3,1)}
{(1,1, 32) (8, 8, 1)}
{(11, 1,3) (2, 13,5)}
{(1,4,9) (6,3, 2)}
{(1, l] 37)(31419,21622, 2291)}
{(8,5,0(1,2,6)}
{(1. 1,40(301,314,37)}
{(6,7,0(1,1,5)}
{(1, 1,43)075, 111,11)}
{(1,4,10(2,3,-2))
{(1, 1,49)04,21, 1))
{(1,2, 25) (5, 5,1)}
{(1, 17, 3) (5, 1,-6))
{(1, 1,53)(226399,-1427644,81245)}
{(1,1, 54) (9,9,1)}
{(2,2, 14)(2,3, 1)}
{(1, 1,60(4,971,-63)}
{(1,1, 62) (9,17,1)}
{(1,1,65) (106, 59,7)}
{(2, 11, 3) (2, 1,3)}
{(1, 1,67) (2774169542,-4286639393,70122339)}
{(4,17,0(5,2,22)}
{(1,9,8) (6,2,3)}
{(1J.73)(56147357921O, 293489655271,20805706971)}
(n.25.3H5. 1.5)}
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76
78
80
81
82
83
85
86
87
88
89
90
91
96
- 1
- 4
- 6
- 7
- 9

-11
-13
- 1 6
- 1 8
-19
- 2 0
- 2 5
- 2 9
- 3 0
-31
-33
- 3 5
- 3 6
-37
-38
- 4 0
- 4 2
- 4 4
- 4 5
-47
-48
- 4 9
- 5 2
- 5 5
- 5 6
-57
- 5 8
- 5 9
-61
-63
- 6 4
- 6 5
- 6 6
-67
- 6 9
- 7 0
-71

1.54
5.89
0.90
0.68

10.24
19.31
7.04

28.42
4.02
5.91

14.83
1.09
2.38
0.54

0
0.26
0.67
1.62
0.15
3.68
1.86
0.38
0.48
2.03
1.23
0.25
6.85
0.99
6.21
1.65
5.19
0.46
2.36
7.11
1.27
3.13
1.47
0.97

30.23
0.25
0.85
3.08
4.19
3.12
4.39
4.58

12.11
12.35

1.55
0.53

14.94
2.77

20.62
4.73
8.28
8.79

Table 1 (continued)

{(1,1,76)(6, 10,-1)}
((2,3, 13) (241,89,65)}
{(1,2,40) (4,4,-1)}
{(1,1,81)(9,18,1)}
{(l,2,41)(15713,20721,1933)}
{(1,1, 83) (93094675, -289590286, 8561059)}
{(1,5,17)(-1311,307,44)}
{(2,43,1)(3, 1,-19)} and {(1, 1,86)(17, 33, 1)}
{(1,3,29) (59,-35,1)}
{(2,2,22) (430,197,63)}
{(1,1,89)(1294733, -3329273,79972)}
{(9, 5,2)(1,3,6)}
{(1,1,90(9,17,1)}
{(1,32, 3) (8, 1,8)}
K-i.
K-i.
K-i.

K-i.
K-i,
K-i.
K-i.
K-
l(-
((-
K-
((-
U-:
((-
K-
((-
((-
{ ( -
K-
((-
K-
{(-'
{(-'
{ ( -
( ( -
( ( -
( ( -
<(-
{ ( -
{ ( -
( ( -
( ( -
{(-
K-
{ ( -
( ( -
((-:
K-
((-

1,00,1,-0)
1,4) (2,-2,1)}
2 ,3)0 , -1 ,1)}
1,7)(4,5,-1))
l ,9) (3 , -3 , 1)}
1,10(12,43,-7)}
1,13) (2,7,-1)}
1,16) (4,-4,1)}

,9 ,2 ) ( -3 , l ,3 )}
,1,19)(1,8,-1)}
,5,4) (2,-2,3)}
, 1,25) (5,-5,1)}
,1,29) (1084, 453,-73)}

> ,3 ,5 ) ( - l , l , l ) }
,1,30(503,445,-28)}

5,11,0(1,-1,7)}
,1,35) (173, 172.-9)}
,1,36) (6,-6,1)}
, 1,37)(1,-10, 1)}
, l ,38)(-1405, 787,-63)}
,5,8)(1,-1,1)}
,6,7) (-13, 5,7))

», 1,11)(-1,3,1)}
U , 5 ) ( - l , 6 , 3 ) }
, 1,47) (-15725733900560,9548649243309, -457687455901)}
,2,24) (-4,4,1)}
, 1,49) (7 , -7 , I)}and{(-1, 1,49) (-21, 35, 1)}
,1,52) (-34,50,1)}
,5 ,10(68,1 , -13)}

f

,;

,56) (-48, 68,7)}
,57) (113,-65,3)}

'.,29) (103, 53, -5)}
, 59) (-85867, 172479, 11956)}
, 61) (-140537,272152, 8393)}
,63) (3,-12, 1)}

,1,64)(8, -8,1))
,5,13) (9, 1,-1)) and {(-1,1,65) (33,-73,7)}

», 33,1)(5,-1, 19)}
, 1,67) (-607804759,401630884,64753875))
,3,23)(-101,59,2)}

{(-2, 5,7)(4, - 1 , 1)J and ( ( -1 ,1 , 70)(3, -13,1)}
« - , ,70(2000,-9171,691)}
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Table 1 (continued)

- 7 3
- 7 5
- 7 6
- 7 7
- 7 9
- 8 0
- 8 1
- 8 4
- 9 1
- 9 4
- 9 5
- 9 6
- 9 7
•100

3.05
1.21
3.54

11.58
11.12
2.30
0.38
5.84
7.95
1.78

13.34
0.86

56.69
1.66

{(-25,3,0(1,-5,20)}
{-1,1,76)(-21,41,1)}
{(-1,1, 77) (-73081,126970, 2439)}

{(-2,40,0(4,-3,44)}
{(-1, l,81)(9,-9, 1)}
{(-3,4, 7)(-2, 1, 2)} and {(-3, 4, 7)(- l , 2, 1)}
{(-1,1,90(527,-2412,157)}
{(-2, 1,47) (3,-7,1)1
{(-1, 1,95) (-487427,164247,34628)}

{(-1, l!97)(5, —14, I)}and{(-1, 1,97)(699,1435, -31)}
{(-1, 1, 100)(10, -10,1)} and {(-1,25,4)(-5,1, 5)}

n
3*
5
6
9

10
13
14
15
16
17
18
19
20
21
26
29
30
31
35
36
38
40
41
44
47
51
53
54
57
62
63
64
66
67
69

h
—
0

0.93
1.68
2.61
3.32
2.33
1.48
3.96
3.34
4.26
1.62
3.74
2.84
4.19
4.79
3.26
3.29
4.13
4.75
6.01
1.75
8.02
6.53
6.41
3.51
2.45
3.26
4.76

15.91
7.60

13.60
1.51
9.13
9.28

Table 2
Solutions of n = (a3 + bs + c')/abc

(a.b.c)
(1.1,0
(1,1,2)
(1,2,3)
(2, 3, 7)
(5,7,18)
(9, 13,38)
(2,7,13)
(7,-3,-1)
(70,-31,-9)
(5, 18, 37)
(13,42,95)
(1,5,9)
(61,-14,-13)
(2,13,21)
(9,38,91)
(27,43, 182)
(2,21,31)
(37,-27,-1)
(97,-19,-14)
(151,-78,-7)
(70,151,629)
(9,-2,-1)
(1,2, 9) and (1,5,14)
(819,-554,-19)
(845, -367, -38)
(9,13,77)
(2,7,27)
(2,43,57)
(19,91,310)
(1950953, 1513300, -13559153)
(247,903, -3775)
(119479,232736,-1338039)
(1,3,14)
(1133,7525,23517)
(2, 57, 73) and (42, 95,523)
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Table 2 (continued)

70
71
72
73
74
76
77
83
84
86
87
92
94
96
98
99
- 4
- 9
10
11
12
16
17
21
22
•24
25
27
28
29
•32
33

•34
•35
36
37
38
40
44
•45
•46
•47
•48
•49
•50
•53
•55
•56
•57
•59
60
63
•64
65
66
67

13.98
3.50

28.82
35.29

8.18
105.29
89.54

3.22
3.08
4.41
2.38

30.96
157.05

3.07
17.41
22.83
0.53
0.65
1.73
2.69
2.81
8.66
1.91
4.07
1.50
1.02
6.33
5.30
7.09
4.62

13.42
3.03
3.00
9.84
1.34
4.84

14.38
8.17
5.04
4.96
3.29
4.94

17.35
11.02
16.56
22.38
4.78

20.37
1.28
9.39

47.87
26.03

1.56
15.54
8.27

13.67

(27083,896668,-1478979)
(67, - 9 , -7)
(-5450170263655,1012930784383,404512675962)
(89200900157319,2848691279889518,1391526622949983)
(133,2502,4607)
(2, -45,13) and (1327,2196, -14911)
(5, -52,7) and (67, 630, 1763)
(5,9,61)
(56,-31,-1)
(2,73,91)
(21,-5 , -1)
(-35661385544981,548624531286,20446843218005)
(19,746,945) and (27, 182,673)
(38, - 5 , -3)
(14154192,2559169, -59978401)
(1832602198, -14466072543, 1150522313)
(1,-1,2)
(1.-1.3)
(4,-7,-1)
(4,-19,-9)
(3,-19,-14)
(1,-1,4) and (2,-5, 13)
(1.-9.-7)
(37, -78, -7)
(1.-9,-4)
(2,-7,-1)
(1,-1, 5) and (1,-7,-2)
(28,-279,-109)
(325,-1813,-362)
(9, -127, -74)
(401791,927041,-72252)
(3,-35,-13)
(7,-31,-4)
(14220,23233,-1333)
(1,-1,6)
(52,-193,-19)
(28251,1934524,-1581475)
(2692,4345,-217)
(19, -234, -67)
(52, -223, -21)
(8, -43, -5)
(9,-221,-196)
(28843468, 39825737, -1580745)
(1,-1,7) and (1,-18,-7)
(1980727,24383561, -5920704)
(-228354001,4235900895,6254246146)
(7,-163,-76)
(329267696,1064663271, -63278951)
(1,-13,-3)
(817, 17739,-6244)
(2,19,-3) and (5,-117,-158)
(-77354606721,319899185941,20707834820)
(1.-1.8)
(4094597,9326853, -354485)
(3423,4432,-127)
(93733,1399411,-308584)
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Table 2 (continued)

(35,-1251,-914)
(1,26,-9) and (6,91,-19)
(13483,24577,-715)
(10,-73,-7)
(853,12581,-2394)
(823,-1764,-43)
(-134711653167,88915731292,979804259375)
(1.-1.9)
(-1736,67295,73841)
(28, -793, -279)
(307,-12857,-7690)
(5786669814541025089, 319409653453108344, -1208131767609148369)
(-64989513, 2989660076, 2310135877)
(4, -79, 175) and (-27,1147,1220)
(13,-189,-31)
(1,-28,-9)
(9, -208,439) and (38, -1629,2701)
(11,-91,-8)
(1,-13, 36) and (11,-387,-152)
(1,-1.10)

Table 3
Pairs of solutions of n — (x + y + zf/xyz when rank is 2

104 {(1,8,13),(1,1,-1)} {(13,8,0,(2,3,22)}
126 {(1,6,20,(3,1,-1)} {(21,1,6), (1,9,5)}
150 {(1,25,6), (5, 1,-5)} {(2,75,0,(10,1,35)}
157 {(1,1, 157), (-124,75, 1)} {(1, 1,157), (47247, 18175, 1022)}
165 {(3,5,10,(1,2,1)} {(1,5.33), (188, —137,13)}
172 {(1,4,43), (3, - 7 , 1)J {(1, 1,172), (198, 10,-7)}
199 {(1,1, 199), (-81,29, 1)} {(1,1,199), (-21193, 508743,-13718)}

-100 {(-1,1,100), (10,-10, 1)} {(-1,25,4), (-5, 1,5)}

68
72
73
76
77
79
80
81
82
84
85
86
87
88
89
90
92
94
95
100

6.99
35.41
9.68
3.75
8.93
7.16

27.07
1.47

11.16
6.28
9.23

42.69
21.70
134.44
4.53
2.91

170.88
3.95
57.73
1.73

-154 {(-1,7,22), (3,-1,1)}
-163 {(—1,1,163), (—17,8,1)} {(-
-169 {(-1,1,169), (13,-13,1)} {(-
-180 {(-1,36,5), (-6, 1,6)} {(-
-188 {(-1,4,47), (33, 16,-1)} {(-

1, 154), (37, 73,-1)}
,1,163), (79880,156389,-2021)}
, 1,169), (-13,39, 1)}
,4,45), (3,-3,1)}
, 1, 188), (10521,26515,-349)}
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Table 4
Pairs of solutions of n = (a3 + &3 + c3)/abc when rank is 2

105 (2,91,111) (35,1171,1854)
106 (1,35,54) (1342,15929,46683)
126 (2,111,133) (843543, 6610037, 26297374)
129 (31,774,1679) (39,-619,76)
136 (45,-1118,203) (126,2797,-7141)
149 (1,14,45) (2,133,157)
151 (9,-133,13) (9,-1054,637)
154 (2,13,63) (62,1183,3285)
160 (43,-3691,1764) (182,-4559,711)
161 (7,-95,8) (11,38,259)
174 (5,7,78) (2,157,183)
186 (5,-252,67) (2269,15938,81711)
195 (7,15,143) (39,2279,703)
196 (18,19,-259) (4221,378995,-632186)

-116 (74,3951,-1679) (1634,19431,-1991)
-120 (47295,-97256,743681) (670, -12309, -1891)
-129 (1,-63,-37) (21,-341,-43)
-130 (16,-533,-139) (661,-8965,-936)
-135 (-172,-6669,1873) (248,-9581,-2811)
-140 (1,-49,-18) (132842,-14578235,20541483)
-149 (117,-3181,-584) (143,-938,4491)
-152 (103,-1764,-199) (335,-13394,-3591)
-160 (14,-157,-11) (-2993,112329,26702)
-179 (36,-2521,-3395) (976,-4111,26847)
-180 (21,-1333,-494) (-238975823,-23863710,13306223)
-181 (7,-302,-73) (19,-889,-234)
-193 (1,-31,-5) (1,-481,545)
-195 (13,-1204,1983) (539,-14643,-38168)
-196 (1,-1,14) (7540511, -7518559, -105413546)
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Table 5
Values of n (n > 0) such that (1) has rank 1:

101
127
153
176
196

102
119
140
168
190

101
120
147
177

101
123
158
182

109
131
159
177
198

104
121
144
171
191

102
122
148
178

103
124
159
183

111
132
160
179

105
123
148
172
192

103
123
155
181

105
128
163
184

113
133
161
180

114 115
136 138
163 164
182 183

Values of m (n = —m, m
106
124
151
174
193

107 109
126 128
152 153
177 178
194 196

Values of n {n > 0)
107
124
156
185

108 109
127 128
158 159
187 189

Values of m (n = —m, m
108
132
164
186

111 112
136 137
166 168
188 189

116
140
167
184

US
142
169
185

122
145
170
186

> 0) such that (1) has rank 1:
112
129
157
179
197

113
131
158
182
198

such that (3) has rank
110
130
162
190

112
132
164
191

> 0) such that (3) has
113
143
169
192

114
144
170
194

114
133
160
184
199

1:
113
133
166
192

rank 1:
117
145
172
198

123
146
173
187

115
134
162
186

116
142
167
197

118
150
174
199

124
149
174
189

117
136
164
187

117
143
172

121
155
177
200

(125)
152
175
193

118
139
167
189

119
145
175

122
157
178
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