
Canad. Math. Bull. Vol. 56 (4), 2013 pp. 683–694
http://dx.doi.org/10.4153/CMB-2012-029-3
c©Canadian Mathematical Society 2012

Envelope Dimension of Modules and the
Simplified Radical Formula
A. Nikseresht and A. Azizi

Abstract. We introduce and investigate the notion of envelope dimension of commutative rings and
modules over them. In particular, we show that the envelope dimension of a ring, R, is equal to that
of the R-module R(N). We also prove that the Krull dimension of a ring is no more than its envelope
dimension and characterize Noetherian rings for which these two dimensions are equal. Moreover, we
generalize and study the concept of simplified radical formula for modules, which we defined in an
earlier paper.

1 Introduction

In this paper all rings are commutative and with identity, all modules are unitary, R
denotes a ring, and M denotes an R-module. Also, by N we mean the set of positive
integers and N* = N ∪ {0}. We indicate the relation of containment and strict con-
tainment by⊆ and⊂, respectively. Furthermore, N ≤ M (resp., N < M) means that
N is a submodule (resp., proper submodule) of M.

Prime ideals of rings play an important role in commutative ring theory, hence
many have tried to generalize this concept to modules. A proper submodule P of M
is called prime, when from rm ∈ P for some r ∈ R and m ∈ M, we can conclude
either m ∈ P or rM ⊆ P (see, for example, [2, 4, 11, 12, 14]). Let (P :M) be the set of
all r ∈ R such that rM ⊆ P. If P is a prime submodule, then P = (P :M) is a prime
ideal of R and we say that P is P-prime.

Another generalization of prime ideals was proposed in [6]. There a proper sub-
module W of M is said to be weakly prime if from rsm ∈W for r, s ∈ R, and m ∈ M,
we can conclude either rm ∈ W or sm ∈ W . One can easily see that it is equivalent
to asserting that (W :m) is a prime ideal for every m ∈ M \W .

If W is weakly prime, then we consider C(W ) (or just C) to be

C(W ) =
{

(W :m) | m ∈ M \W
}
,

and we say that W is C-weakly prime.
Recall that for an ideal I of R, the intersection of all prime ideals of R containing

I is called the radical of I and is denoted by
√

I. Similarly, if N is a submodule
of M, the intersection of prime (resp., weakly prime) submodules of M containing
N is called the radical (resp., weak radical) of N and we denote it by radM(N) (resp.,
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wradM(N)) (or rad(N) (resp., wrad(N)) if there is no subtlety). If M has no prime
(resp., weakly prime) submodule containing N, then we say radM(N) = M (resp.,
wradM(N) = M).

A well-known and very useful theorem in commutative ring theory is
√

I = {r ∈ R | rk ∈ I for some k ∈ N}.

To find a similar characterization for the radical of a submodule, the notion of enve-
lope of a submodule was introduced in [11]. The envelope of a submodule N of M,
EM(N) (or E(N) if no ambiguity) is the set of all x ∈ M for which, there exist r ∈ R,
m ∈ M, and k ∈ N such that x = rm and rkm ∈ N. The envelope of a submodule
is not necessarily itself a submodule (see [4, Proposition 2.1]), so we usually use the
submodule generated by it, denoted by RE(N).

One can easily verify that for every submodule N of M, we have N ⊆ RE(N) ⊆
wrad(N) ⊆ rad(N). Now if rad(N) = RE(N) (resp., wrad(N) = RE(N)), it is said
that N satisfies (resp., weakly satisfies) the radical formula (r.f.) in M. A module M
(weakly) satisfies the r.f. when every submodule of M (weakly) satisfies the r.f. in M.
We also say that R (weakly) satisfies the r.f. if every R-module (weakly) satisfies the
r.f. Clearly if a ring satisfies the r.f., then it weakly satisfies the r.f.

Many have studied when a ring or a module satisfies the r.f. (see [2,9,11,12]). For
example in [9], Noetherian rings that satisfy the r.f. are characterized, and in [12] it is
proved that every finite dimensional arithmetic ring (that is, a ring in which for every
three ideals I, J, and K, we have I + J ∩ K = (I + J) ∩ (I + K)) satisfies the r.f. Also,
the weak radical of submodules of a module is investigated in [3, 5, 13].

In [4] we said that R satisfies the simplified radical formula (s.r.f.) if radM(0) =
EM(0) (in particular, EM(0) is a submodule) for every R-module M. There we proved
(see [4, Theorem 2.15]) that a Noetherian ring satisfies the s.r.f. if and only if it is a
ZPI-ring (a ring every non-zero ideal of which is a product of prime ideals).

In this paper, we will study a generalization of this notion. We will say that R
satisfies (resp., weakly satisfies) the simplified radical formula of degree k for a k ∈ N* if

radM(N) = kEM(N) + N
(

resp., wradM(N) = kEM(N) + N
)

for every submodule N of every R-module M. Therefore R satisfies the s.r.f. if and
only if it satisfies the s.r.f. of degree 1 (see Lemma 2.3), and by [14, Theorem 2.1] R
satisfies the s.r.f. of degree 0 if and only if it is absolutely flat.

Among some other results, in Section 4 we will show that for every valuation
domain or Artinian ring R there exists a k ∈ N* such that R satisfies the s.r.f. of
degree k, and we find the smallest such k. Moreover, we will prove that if R weakly
satisfies the s.r.f. of degree k, then it has Krull dimension ≤ k. Furthermore, we will
prove that every finite dimensional semi-local arithmetic ring satisfies the s.r.f. of
degree k for some k ∈ N*.

2 Envelope Dimension and the Simplified Radical Formula

Let M be an R-module. If M = R, then RE(N) = E(N) for every N ≤ M, but for
general M this is not true. Motivated by this, in this section we try to find rings, such
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as R, for which RE(N) is not “too far” from E(N), for every N of every R-module M,
especially those rings that (weakly) satisfy the r.f.

Recall that in general E(N) is not a submodule of M, although 0 ∈ E(N) and
E(N) is closed under multiplication from R. So for each k ∈ N*, the sum of k copies
of E(N) (denoted by kE(N)) is a subset of RE(N) including E(N). Thus a reasonable
question is for which k, do we have RE(N) = N + kE(N) or rad(N) = N + kE(N)?
This k is a kind of measure that shows how “far apart” RE(N) and E(N) are.

Definition 2.1 Let k ∈ N* and let M be an R-module. If radM(N) = kEM(N) + N
(resp., wradM(N) = kEM(N) + N) for each N ≤ M, then we will say that M satisfies
(resp., weakly satisfies) the simplified radical formula of degree k. Also, we will say that
R (weakly) satisfies the simplified radical formula of degree k when every R-module
does so.

If k = 1 in the above definition, we drop “of degree 1” and simply say that R
(weakly) satisfies the s.r.f. This concept was studied in [4].

Let N ≤ M and k ∈ N*. As kEM(N) + N ⊆ RE(N), if M (or R) (weakly) satisfies
the s.r.f. of degree k, then obviously M (or R) (weakly) satisfies the r.f.

Note that if M satisfies the s.r.f. of degree k, then evidently M satisfies the s.r.f. of
degree k ′ for each k ′ > k, hence we need to consider the smallest such k.

Definition 2.2 If k ∈ N* is the smallest integer such that REM(N) = kEM(N) + N,
for every N ≤ M, then we will say that k is the envelope dimension of M and write
edim M = k; otherwise we write edim M =∞. Also, we define

edim R = sup{edim M | M is an R-module}.

One may ask why we have chosen kE(N) + N and not kE(N). One reason is that,
in the case k = 1, if RE(N) = E(N) for every N ≤ M, then by [4, Proposition 2.1]
R is an absolutely flat ring, which implies that RE(N) = N. Another reason is that
in general kE(N) + N is a subset of (k + 1)E(N). Also, elements of kE(N) + N have
a simpler form in comparison with those of (k + 1)E(N). Furthermore, if we used
kE(N) instead of kE(N) + N, part (vii) of the following useful lemma could not be
asserted.

Lemma 2.3 Let k ∈ N* and let M be an R-module, N and K submodules of M with
K ⊆ N. Also suppose that S is a multiplicatively closed subset of R and L is a subset of
M containing K.

(i) E M
K

(
N
K

)
= EM (N)

K ; rad M
K

(
N
K

)
= radM (N)

K ; wrad M
K

(
N
K

)
= wradM (N)

K .

(ii) N
K = L

K if and only if N = L + K.
(iii) E(NS) = (E(N))S; (rad(N))S ⊆ rad(NS); (wrad(N))S ⊆ wrad(NS).
(iv) If M =

⊕
i∈I Mi and N =

⊕
i∈I Ni , where Ni ≤ Mi ≤ M for each i ∈ I, then

REM(N) =
⊕

i∈I REMi (Ni).
(v) If MM (weakly) satisfies the r.f. for all maximal ideals M of R, then M (weakly)

satisfies the r.f.
(vi) The ring R satisfies (resp., weakly satisfies) the r.f. if and only if radM ′(0) =

REM ′(0) (resp., wradM ′(0) = REM ′(0)) for every R-module M ′.
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(vii) A ring R satisfies the s.r.f. of degree k, (resp. weakly satisfies the s.r.f. of degree k),
edim R ≤ k, if and only if radM(0) = kEM(0) (resp. wradM(0) = kEM(0),
REM(0) = kEM(0)), for every R-module M.

Proof Parts (i), (ii), and (iv) are easy. For part (iii), see, for example, [5, Proposition
2.1] and the proof of [14, Proposition 1.6]. Part (v) follows from (iii), (vi) follows
from (i), and (vii) can be deduced from (i) and (ii).

Note that in part (ii) of the lemma, although K ⊆ L, since L is not necessarily a
submodule, the set L + K need not be equal to L.

Notation 2.4 Let N ≤ M and x ∈ RE(N). If kx is the smallest integer such that

(∗) x = n +
kx∑

i=1

xi ,

where n ∈ N and xi ∈ E(N) for each 1 ≤ i ≤ kx, then we say (∗) is a reduced
summation in E(N) for x.

Suppose x = n +
∑kx

i=1 rimi is a reduced summation in E(N) for x, where ri ∈ R
and mi ∈ M with ri ∈

√
(N :mi). Then all ris are non-zero and no ri is a unit element

of R. Also, note that we can find a t ∈ N such that rt
i mi ∈ N for all 1 ≤ i ≤ kx, and

clearly edim M = sup{kx | x ∈ RE(N)}.
Obviously R (weakly) satisfies the s.r.f. of degree k if and only if R (weakly) satisfies

the r.f. and edim R ≤ k. So first we focus on rings with the envelope dimension≤ k.

Theorem 2.5 Suppose that (R,M) is a local ring and n ∈ N. Then the following are
equivalent:

(i) edim M ≤ n, for the R-module M = Rn+1.
(ii) For every 1 < α ∈ N and ai ∈ M, 1 ≤ i ≤ n + 1, there exist β ∈ N, r j ∈ M

and ci j ∈ R, 1 ≤ j ≤ n such that ai =
∑n

j=1 r jci j and rβj ci j ∈ Raαi , for all
1 ≤ i ≤ n + 1, 1 ≤ j ≤ n.

(iii) edim R ≤ n.

Proof (i)⇒ (ii): Let 1 < α ∈ N and a1, a2, . . . , an+1 ∈M and set N = Raα1 ⊕Raα2 ⊕
· · · ⊕ Raαn+1. Then, according to Lemma 2.3(iv),

REM(N) =
n+1⊕
i=1

RER(Raαi ) =
n+1⊕
i=1

√
Raαi =

n+1⊕
i=1

√
Rai .

Therefore (ai) ∈ REM(N) (where (ai) denotes (a1, . . . , an+1)).
Let (ai) = (biaαi ) +

∑k
j=1 r j(c ′i j) be a reduced summation in E(N) for (ai), where

for each 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ k we have bi , r j , c ′i j ∈ R and there is a β ∈ N such
that rβj (c ′i j) ∈ N. But since the envelope dimension of M ≤ n and this summation is
reduced, the r j s are in M and k ≤ n. One can assume that k = n, because if necessary
we can consider r j = ci j = 0 for all k < i ≤ n and 1 ≤ j ≤ n.
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Then ai = biaαi +
∑n

j=1 r jc ′i j , for each 1 ≤ i ≤ n + 1, and hence

ai(1− bia
α−1
i ) =

n∑
j=1

r jc
′
i j .

Note that α − 1 > 0, so ui = 1 − bia
α−1
i is a unit in R. Now if ci j = u−1

i c ′i j , then β,
the r j s and the ci j s satisfy the claimed conditions of (ii).

(ii)⇒ (iii): Let N be a submodule of an arbitrary R-module M and x ∈ RE(N).
Assume that x = a +

∑t
i=1 aimi is a reduced summation in E(N) for x, where aαi mi ∈

N for each 1 ≤ i ≤ t , for some 1 < α ∈ N. We must show that t ≤ n. Suppose not
and apply (ii) to a1, . . . , an+1 and α to get a natural number β and r j s in M and ci j s
in R satisfying the conditions of (ii).

Now
n+1∑
i=1

aimi =

n+1∑
i=1

n∑
j=1

r jci jmi =

n∑
j=1

r j

( n+1∑
i=1

ci jmi

)
.

Note that rβj ci j ∈ Raαi , so for m ′j =
∑n+1

i=1 ci jmi , we have rβj m ′j ∈
∑n+1

i=1 Raαi mi ⊆ N.

Consequently, by replacing
∑n+1

i=1 aimi with
∑k

j=1 r jm ′j , we get a summation for x
as elements of E(N), in which the number of summands is less than t . But this is
contrary to x = a +

∑t
i=1 aimi being a reduced summation in E(N) for x, and the

result follows.
(iii)⇒ (i): This is trivial.

Throughout this paper, the Krull dimension of a ring R is denoted by dim R.

Lemma 2.6 Let M be an R-module, and I an ideal of R. Then

(i) edim MP ≤ edim M;
(ii) edim RP ≤ edim R;
(iii) edim R

I ≤ edim R;
(iv) dim R = sup{dim R/P | P is a prime ideal of R}, and if dim R is finite, then

there exists a prime ideal P of R such that dim R = dim R/P.

Proof (i) Suppose edim M = k ∈ N*. Evidently, for each N ≤ M, E(N) is closed
with respect to multiplication from R, thus (kE(N))P = k(E(N))P, and hence by
Lemma 2.3(iii), edim MP ≤ k.

Parts (ii), (iii), and (iv) are easy.

Corollary 2.7 If n ∈ N and edim R ≤ n, then for every prime ideal P of R, every
finitely generated proper ideal of RP is contained in a proper ideal that can be generated
by n elements. If (R,M) is a zero dimensional local ring or a one dimensional local
domain, the converse also holds.

Proof By Lemma 2.6(ii), edim RP ≤ n. Now let I be a proper ideal of RP generated
by a1, a2, . . . , am. As edim M ≤ n, by Theorem 2.5(ii), there exist r1, r2, . . . , rn ∈ PP

such that each ai ∈
∑n

i=1 Rri , that is I ⊆
∑n

i=1 Rri .
Now assume that R is zero dimensional or a one dimensional integral domain. Let

a1, a2, . . . , an+1 ∈ M and α ∈ N be given. If one of the ai s, say an+1, is zero, then for
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all 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n, choose β = α, r j = a j , and ci j = δi j , where δ
denotes the Kronecker delta. Then these elements satisfy the conditions of Theorem
2.5(ii), which completes the proof.

If all ai s are non-zero, then by our assumption there are r1, . . . , rn such that each
ai ∈

∑n
i=1 Rri ⊆M. Now because r j ∈M =

√
Rai for all i s and j s, hence rβj ∈ Raαi

for some β ∈ N. Therefore again the result follows from Theorem 2.5(ii).

The first part of the following result generalizes [4, Theorem 2.6].

Corollary 2.8 Let (R,M) be a local ring and k ∈ N*.

(i) If R is zero dimensional, then R satisfies the s.r.f. of degree k if and only if ev-
ery finitely generated proper ideal of R is contained in a proper ideal that can be
generated by k elements.

(ii) If R is a one dimensional integral domain, then R weakly satisfies the s.r.f. of degree
k if and only if every finitely generated proper ideal of R is contained in a proper
ideal that can be generated by k elements.

Proof If k ∈ N, then the proof follows from Corollary 2.7, [13, Corollary 3.3], and
[14, Theorem 2.8], which state that zero dimensional rings (resp., one dimensional
domains) satisfy (resp., weakly satisfy) the r.f. For the case k = 0 use [4, Proposition
2.1], which shows that R satisfies the s.r.f. of degree 0 if and only if R is absolutely
flat.

Throughout this paper, the set of maximal ideals of R will be denoted by Max(R).

Theorem 2.9 For every ring R, dim R ≤ edim R.

Proof Let Min(R) be the set of minimal prime ideals of R. We will prove that
dim RM/P ≤ edim RM/P, for every M ∈ Max(R) and P ∈ Min(RM). So by
Lemma 2.6(iv), (iii), and (ii),

dim RM = sup
{

dim
RM

P

∣∣∣ P ∈ Min(RM)
}
≤ sup

{
edim

RM

P

∣∣∣ P ∈ Min(RM)
}

≤ edim RM ≤ edim R.

Thus dim R = sup{dim RM |M ∈ Max(R)} ≤ edim R.
Note that RM

PM
is a local integral domain, hence we can assume that R is a local

integral domain. If edim R = ∞, there is nothing to prove. Now suppose that
edim R = n ∈ N*. On the contrary, assume that there is a chain of prime ideals
of R with length n + 1, such as 0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn+1. Let ai ∈ Pi \ Pi−1

(1 ≤ i ≤ n + 1). Assume that the ri s in M, the ci j s in R and β, k ∈ N are as in
Theorem 2.5(ii) for the above ai s and α = 2.

If r = (r1r2 · · · rk)β , then ra1 ∈
∑k

j=1 Rrβj c1 j ∈ Ra2
1. But since R is an integral

domain and a1 6= 0, we have (Ra2
1 :Ra1) = Ra1 and thus r ∈ Ra1 ⊆ P1. Hence one

of the ri s, say r1, must be in P1.
Now consider R̄ = R/P1. If for each x ∈ R we denote its image in R̄ by x̄, then

for 2 ≤ i ≤ n + 1 and 2 ≤ j ≤ k we have āi 6= 0̄, āi =
∑k

j=2r̄ j c̄i j and r̄βi c̄i j ∈ R̄ā2
i .
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Therefore, by an argument similar to that in the last paragraph, we conclude that
some r̄i ∈ P̄2, say r̄2. Whence r2 ∈ P2 and continuing this way we see that after a
possible reordering of ri s, we can assume that ri ∈ Pi , for each 1 ≤ i ≤ k.

But this implies that an+1 ∈
∑k

i=1 Rri ⊆ Pn, in contrast to how we chose an+1.
Therefore, n ≤ k, as asserted.

Now we are in a position to determine some types of rings that weakly satisfy the
s.r.f. The following corollaries characterize local integral domains and Noetherian
rings that weakly satisfy the s.r.f. In [4], we called a ring R weakly Bezout if each
finitely generated proper ideal of R is contained in a proper principal ideal.

Corollary 2.10 If R is an integral domain, then the following are equivalent:

(i) R weakly satisfies the s.r.f.;
(ii) edim R ≤ 1.

If moreover R is local, then the above statements are also equivalent to R being weakly
Bezout and dim R ≤ 1.

Proof (i) ⇒ (ii): This is trivial. (ii) ⇒ (i): This follows from Theorem 2.9 and
[13, Corollary 3.3], which states that one dimensional domains weakly satisfy the r.f..
The assertion on local domains is clear by Theorem 2.9 and Corollary 2.8(ii).

Lemma 2.11 A ring R is a ZPI-ring if and only if it is Noetherian and the localization
of R at every maximal ideal is a ZPI-ring.

Proof This follows from [8, p. 224, Exercise 10] and [8, Theorem 9.27].

Corollary 2.12 If R is Noetherian ring then the following are equivalent:

(i) R satisfies the s.r.f.;
(ii) R weakly satisfies the s.r.f.;
(iii) edim R ≤ 1;
(iv) R is a ZPI-ring.

Proof (i)⇒ (ii)⇒ (iii) is trivial, and for (iv)⇒(i), see [4, Theorem 2.15].
(iii)⇒ (iv) By Lemma 2.6(ii), edim RM ≤ 1 for each maximal ideal M of R, and

due to Lemma 2.11, we can assume that R is local with the maximal ideal M. Since
M is finitely generated and R is weakly Bezout by Corollary 2.7, we deduce that M is
principal, say M = Rx. Now, by the Krull intersection theorem,

⋂∞
n=1 Rxn = 0. If I

is an ideal of R such that I ⊆ Rxn but I 6⊆ Rxn+1, then it is easy to see that I = Rxn.
Therefore every non-zero proper ideal of R is of the form Rxn for some n ∈ N and
R is either a discrete valuation domain or an SPIR. In particular, R is a ZPI-ring, as
required.

An immediate consequence of Theorem 2.5 is that if R is a local ring, then
edim R = edim M, where M is the R-module

⊕
i∈N R. The following proposition

implies that this equality holds, even if R is not local.

Proposition 2.13 Let I be a directed set and let ({Mi}i∈I , {φi j}i≤ j∈I) be a directed
system of modules and homomorphisms. Also suppose that for each i ∈ I, Ni is a
submodule of Mi such that φi j(Ni) ⊆ N j for all i ≤ j ∈ I. Set M = lim−→Mi and
N = lim−→Ni . Then
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(i) EM(N) = lim−→ EMi (Ni);
(ii) lim−→ radMi (Ni) ⊆ radM(N) and lim−→ wradMi (Ni) ⊆ wradM(N);
(iii) if N satisfies (resp., weakly satisfies) the r.f. in M, then

lim−→ radMi (Ni) = radM(N) (resp., lim−→ wradMi (Ni) = wradM(N)).

Proof (i) First note that if φ : A → B and C ≤ A, then φ(EA(C)) ⊆ EB(φ(C)).
Therefore for all i ≤ j ∈ I, we have

φi j

(
EMi (Ni)

)
⊆ EM j

(
φi j(Ni)

)
⊆ EM j (N j).

Thus lim
−→

EMi (Ni) exists. Also, if φi : Mi → M is the canonical mapping, then

φi

(
EMi (Ni)

)
⊆ EM(N),

and since every x ∈ lim
−→

EMi (Ni) is in φi

(
EMi (Ni)

)
for some i ∈ I, we deduce that

lim
−→

EMi (Ni) ⊆ EM(N).

Now suppose that x ∈ EM(N). Then there exist r ∈ R, m ∈ M, t ∈ N and n ∈ N
such that x = rm and rt m = n. So for a large enough i, there are xi ,mi ∈ Mi , and
ni ∈ Ni such that φi(xi) = x, φi(mi) = m, φi(ni) = n, xi = rmi , and rt mi = ni . But
this means that xi ∈ EMi (Ni), whence x ∈ lim

−→
EMi (Ni).

(ii) This is similar to the first paragraph of proof of (i).
(iii) By (i) and (ii), if N satisfies the r.f. in M, then

radM(N) = REM(N) = lim
−→

(
REMi (Ni)

)
⊆ lim
−→

(
radMi (Ni)

)
⊆ radM(N),

whence all the inequalities must be equality. The claim on weak radicals can be es-
tablished similarly.

Corollary 2.14 We have edim R = edim M, where M is the R-module
⊕

i∈N R.

Proof Let edim R = d and edim M = d ′. Trivially d ′ ≤ d. If d ′ = ∞, then the
claim is obvious. Now assume that d ′ < ∞. According to Lemma 2.3(i) and (ii),
every quotient module of M, particularly every finitely generated R module, has the
envelope dimension ≤ d ′. Let M ′ be an arbitrary R-module. Then M ′ = lim−→M ′f ,
where M ′f s are all the finitely generated submodules of M ′. therefore by 2.13 we have

REM ′(0) = lim
−→

REM ′f
(0) = lim

−→
d ′EM ′f

(0) = d ′lim
−→

EM ′f
(0) = d ′EM ′(0),

hence d ≤ d ′.

Recall that a chained ring is a ring in which every pair of ideals is comparable. In
particular, every valuation domain is a chained ring. Since for each k ∈ N* there is a
valuation domain R with dim R = k, the following result supplies us with examples
of rings that satisfy the s.r.f. of degree k but not of k− 1.
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Theorem 2.15 Let R be a chained ring and dim R = k ∈ N*. Then R satisfies the s.r.f.
of degree k + 1. If R is an integral domain, then R satisfies the s.r.f. of degree k and k is
the least such integer.

Proof According to [12, Theorem 2.8], R satisfies the r.f. hence we just need to
show that RE(0) = kE(0) for every R-module M. Let x ∈ RE(0) and suppose that
x =

∑n
i=1 rimi is a reduced summation in E(0) for x, where rαi mi = 0. We must prove

that n ≤ k + 1. Otherwise, by the pigeon hole principle there are 1 ≤ i 6= j ≤ n, such
that ht Rri = ht Rr j , where ht I is the height of the ideal I.

We can assume that Rri ⊆ Rr j , say ri = ar j . Let P =
⋂∞

t=1 Rrt
j . Then P = 0 or P

is a prime ideal of R by [2, Lemma 2.3]. We show that ri 6∈ P.
On the contrary, suppose that ri ∈ P. If P = 0, then obviously ri = 0, which

is impossible. Hence P is a prime ideal and Rri ⊆ P. Note that r j 6∈ P, otherwise
r j = rr2

j for some r ∈ R, then r j(1− rr j) = 0 and 1− rr j is a unit, thus r j = 0, which
is impossible. Hence Rri ⊆ P ⊆ Rr j , and consequently ht Rri < ht Rr j , which is a
contradiction.

Then ri 6∈ P, and so ri /∈ Rrt
j for some t ∈ N, and whence Rrt

j ⊆ Rri . Conse-
quently,

rimi + r jm j = r j(ami + m j) and rtα
j (ami + m j) = rtα

j ami ∈ Rrαi ami = 0.

Thus we can replace rimi + r jm j with r j(ami + m j) and get that
∑n

i=1 rimi is not a
reduced summation in E(0) for x, which is a contradiction.

Now if R is an integral domain, then since the above ri s are non-zero, 1 ≤ ht Rri

for each i. Hence if n > k, then, again by the pigeon hole principle, there exist i 6= j
with ht Rri = ht Rr j , which leads to a similar contradiction. So n ≤ k when R is a
valuation domain, and therefore R satisfies the s.r.f. of degree k. Also, k ≤ edim R by
Theorem 2.9, so k is the least integer that R satisfies the s.r.f. of degree k.

It follows from Lemma 2.3(iii), that if RM (weakly) satisfies the r.f. for each max-
imal ideal M of R, then R (weakly) satisfies the r.f. But we neither could prove nor
reject the similar assertion for the simplified radical formula (see [4, p. 12, Ques-
tion]). Nevertheless we have the following result.

Proposition 2.16 Let R be a ring and let N be a submodule of M such that the only
maximal ideals of R containing (N :M) are M1, . . . ,Mn. If for each 1 ≤ i ≤ n there ex-
ists ki ∈ N such that REMMi

(
NMi

)
= kiEMMi

(
NMi

)
+ NMi , then REM(N) = kEM(N) +

N where k =
∑n

i=1 ki . Hence if R is semi-local, then edim R ≤
∑

M∈Max(R) edim RM.

Proof Let x ∈ RE(N). Then

x

1
∈ RE

(
NMi

)
= kiE

(
NMi

)
+ NMi =

(
kiE(N) + N

)
Mi
.

Therefore there is an si ∈ R \Mi , such that six ∈ kiE(N) + N (note that although
kiE(N) + N is not necessarily a submodule, it is closed under multiplication from R).
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If I = 〈s1, s2, . . . , sn〉 + (N :M), then I is not contained in any maximal ideal of R.
Hence for some ri in R and r ∈ (N :M), we have 1 = r +

∑n
i=1 risi . Now

x = rx +
n∑

i=1

risix ∈ N +
n∑

i=1

kiE(N) = kE(N) + N,

as required.

Corollary 2.17 If R is a finite dimensional semi-local arithmetic ring (resp., Prüfer
domain) with maximal ideals M1, . . . ,Mn, then R satisfies the s.r.f. of degree n +∑n

i=1 ht(Mi) (resp., degree
∑n

i=1 ht(Mi)).

Proof The proof is an immediate consequence of Proposition 2.16, Theorem 2.15,
and the well-known fact that each localization of an arithmetic ring at a maximal
ideal is a chained ring.

By Corollary 2.8 a local Artinian ring with maximal ideal M satisfies the s.r.f. of
degree k and not of k− 1, where k is the minimum number of generators of M. Thus
one can apply Proposition 2.16 to Artinian rings to show that they satisfy the s.r.f. of
degree k for some k ∈ N*; but more can be proved.

The proof of the following lemma is easy and it is similar to that of [4, Lemma 2.7].

Lemma 2.18 Let R = R1 × R2, where R1 and R2 are rings. Then for the ring R,
edim R = max{edim R1, edim R2}.

Theorem 2.19 Let R be an Artinian ring. Then

edim R = max
{

dim R
M

M

M2

∣∣∣ M ∈ max(R)
}

and R satisfies the s.r.f. of degree k = edim R.

Proof Let M1, . . . ,Mn be all of the maximal ideals of R. According to [1, Theo-
rem 8.7], R ∼=

∏n
i=1 Ri , where the Artinian local ring Ri is R/M

ki
i for some ki ∈ N.

Hence by the previous lemma and the fact that every zero dimensional ring satisfies
the r.f., we just need to show that edim Ri = dimR/Mi

Mi/M2
i .

If we set Mi = Mi/M
ki
i to be the maximal ideal of Ri , then R/Mi

∼= Ri/Mi and

Mi/M2
i
∼= Mi/M

2
i . If dimRi/Mi

Mi/M
2
i = 0, then Mi = M

2
i , and by Nakayama’s

Lemma, Mi = 0, whence Ri is a field and edim Ri = 0. Now assume that

dimRi/Mi

Mi

M
2
i

6= 0.

In this case, by [1, Proposition 2.8], dimRi/Mi
Mi/M

2
i is equal to the number of gen-

erators of Mi , which according to Corollary 2.7 is edim Ri , as required.
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The following theorem shows that, at least for Noetherian rings, the condition
that dim R = edim R is a strong condition. Recall that in commutative algebra, a
Noetherian local ring of dimension n is called regular if its maximal ideal can be
generated by n elements.

Theorem 2.20 Let R be a Noetherian ring. Then dim R = edim R < ∞ if and only
if either R is a finite direct product of fields or is a ZPI-ring with dim R = 1.

Proof If R is a one dimensional ZPI-ring, then by Corollary 2.12 and Theorem 2.9,
1 = dim R ≤ edim R ≤ 1. Also, if R is a finite direct product of fields, then the result
follows by Lemma 2.18.

Conversely suppose that dim R = edim R < ∞. Then for some maximal ideal
M of R, dim R = ht M. For any such M we have dim RM ≤ edim RM ≤ edim R =
dim R = dim RM, and hence dim RM = edim RM. Since RM is Noetherian, MM

is finitely generated, say MM = 〈a1, . . . , an〉. If n > dim RM = edim RM, then
according to Theorem 2.5, MM can be generated by n−1 elements. Therefore we can
assume that n = dim RM and RM is regular.

Suppose that n > 1. Then RM has infinitely many height one prime ideals. (Oth-
erwise, if P1, . . . ,Pt are the height one primes of RM, then by the Principal Ideal
Theorem, every x ∈ MM is in some Pi and hence MM ⊆

⋃t
i=1 Pi . Consequently,

MM ⊆ Pi for some i and dim R ≤ 1, which is a contradiction.) Also, according to
the Auslander–Buchsbaum theorem ([10, Theorem 20.3]) every regular local ring is
a unique factorization domain (UFD). So every height one prime of RM is principal
and RM has infinitely many prime elements. In particular, RM has a prime element
an+1 that is not associated with ai for each 1 ≤ i ≤ n. Note that since RM is regular
local and {a1, . . . , an} is a minimal generating set for its maximal ideal, each ai is
prime.

Now apply Theorem 2.5(ii) to ai s and α = 2 to get r1, . . . , rn, ci j s and β as in
Theorem 2.5(ii). In particular we have

(∗∗) rβj ci j ∈ 〈a2
i 〉

for all i, j s. Since a1, . . . , an ∈ 〈r1, . . . , rn〉 ⊆ MM, r1, . . . , rn form a minimal gener-
ating set for MM, and therfore are prime. Assume that there is an i such that for all
j, r j /∈ 〈ai〉. Then since RM is a UFD and r j s, and ai are prime, from (∗∗) we deduce
that for all j we have ci j ∈ 〈a2

i 〉. Thus ai ∈ 〈ci1, . . . , cin〉 ⊆ 〈a2
i 〉. That is, ai is a unit,

which is a contradiction.
Therefore, we can assume that for each i there is a ji such that r ji ∈ 〈ai〉. Because

the ai s and ri s are primes we deduce that 〈ai〉 = 〈r ji 〉. Since 1 ≤ i ≤ n + 1 and
1 ≤ ji ≤ n, there must exist i1 6= i2 such that 〈ai1〉 = 〈ai2〉, which is contrary with
the choice of the ai s. From this contradiction we deduce that dim RM = dimR ≤ 1.

If dim R = edim R = 0, then it follows Theorem 2.19 that R is a finite direct
product of fields. Thus we suppose that dim R = 1. By the above argument, for each
height one maximal ideal M of R, RM is regular local and hence a discrete valuation
domain. Also, if M is a height zero maximal ideal of R, then edim RM ≤ edim R = 1,
so MM must be principal; that is, RM is an SPIR. Consequently, localization of R at
each maximal ideal is a ZPI-ring and due to Lemma 2.11, R itself is a ZPI-ring with
dim R = 1, as required.
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Finally, we present an example of a ring that satisfies the r.f., but does not satisfy
the s.r.f. of degree k for any k ∈ N*.

Example 2.21 Let Sn = Z2[x1, x2, . . . , xn] and let In be the ideal of Sn generated by
{x2

i , xix j | 1 ≤ i 6= j ≤ n}. Set Rn = Sn
In

and R =
∏∞

n=1 Rn. Then R satisfies the r.f.,
however edim R =∞.

Proof First note that Rn is zero dimensional local with maximal ideal Mn =
〈x1, . . . , xn〉/In, which can clearly be generated by n elements but not by less. There-
fore, according to Lemma 2.18, edim R ≥ edim Rn = n, by Corollary 2.7. Thus
edim R =∞.

On the other hand, note that if r ∈ Rn, then either r = 1 or r2 = 0, hence always
r4 = r2. Consequently, the same equation holds for every r ∈ R, which implies that
dim R = 0 by [7, Theorem 3.1], so R satisfies the r.f. by [14, Theorem 2.8].
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