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Abstract

Let E(0, 00) be a separable symmetric function space, let M be a semifinite von Neumann algebra with
normal faithful semifinite trace u, and let E(M, u) be the symmetric operator space associated with
E(0, 00). If E(0, 00) has the uniform Kadec-Klee property with respect to convergence in measure then
E(M, ) alsohas this property. Inparticular, if L (0, 00)(A, (0, 00)) is a separable Orlicz (Lorentz) space
then Lo (M, n)(A,(M, p)) has the uniform Kadec-Klee property with respect to convergence in measure.
It is established also that E(0, oo) has the uniform Kadec-Klee property with respect to convergence in
measure on sets of finite measure if and only if the norm of E(0, oo) satisfies G. Birkhoff’s condition of
uniform monotonicity.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 46B20; secondary 46E30, 46L50.

0. Introduction

Let (X, || - |lx) be a Banach space, and let T be a topological vector space topology
on X that is weaker than the norm topology. The space (X, || - {|,) is said to have
the uniform Kadec-Klee property with respect to T (notation X € (UH,)) if for all
€ > 0 there exists 6(¢) > 0 such that for every sequence (x,) C X with |[x,], = 1,
X, — Xmll. > € (m # n) and with limit x in the topology 7, we have || x|, < 1—4§(¢).

We will consider the following cases:

(1) X is a Banach space with a Schauder basis (e,), T = o (X, I") where I' = [eX];

(2) X is a symmetric function space E (0, 00), T = convergence locally in measure
and

3)X =E@©,00) (X = E(M, w)), T =convergence in Lebesgue measure m (1 =
convergence in the measure topology on the set of all u-measurable operators (see
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[5])). We will denote the (UH,)-property by (UHr) in the first case; by (UHIm) in
the second and by (UHm)((UHw)) in the third.

See [8,10,11] for general information concerning Banach spaces and symmetric
function spaces. For relevant terminology from the theory of the von Neumann

algebras we refer to [17], and for the theory of non-commutative integration we refer
to [5].

1. Property (UHr) in spaces with Schauder basis

Let (X, | - ||) be a Banach space with a Schauder basis (e,). Throughout this
section (e;;) are the bi-orthogonal functionals associated with (e,), and P, are the
projections onto [e,J;_, with kernel [e,]52, . ,; that is for every x = ) ;7| e (x)ex, we
have P.x = 3 _, e;(x)e;.

The basis (e,) is said to satisfy the condition (C) if for every ¢ > O there exists
8 = 8(c) > 0 such that for every x € X and for each integer # it follows from the
conditions || P,x|| = 1 and ||(I — P,)x]| > c that

x|l = 1 +4.

The Theorem below is due (in implicit form) to D. van Dulst and V. de Valk [4] for
the case when X is an Orlicz sequence space; however, it is also true more generally.
We omit the proof and refer to [4, Proposition 3].

THEOREM 1. If a basis (e,) satisfies the condition (C) then X € (UHr), where
I'=1[el12,.

It is well known that every Banach space with an unconditional basis (e,), whose
unconditional constant is equal to 1, is a Banach lattice when the order is defined by
Z::x a,e, > 0if and only if a, > O for all n. A Banach lattice (X, || - [|,) is called
a UMB-lattice (notation: (X, || - {|,) € (UMB)) if its norm satisfies G. Birkhoff’s
condition of uniform monotonicity; that is for all ¢ > 0 there exists §(¢) > 0 such
thatif f,g € X, f 20, >0, | fll. = land || f + gll. <1+ 5(¢) then gl <€
(see [2]). In addition, if we suppose that f A g = 0, then X is said to have the
property (UMBd) (notation: (X, || - |I,) € (UMBd)). We remark that the property
(UMBd) coincides with the property (C) which is considered in [3]. Evidently, if
(X, |l - lIx) € (UMBJd) and the order on X is defined by the unconditional basis (e,),

then (e,) satisfies condition (C). So, we have the following

COROLLARY 1. (See also [3]). Let X be a Banach lattice whose order is induced
by the -unconditional basis (e,). If (X, || - I|,) € (UMBQ) then X € (UHr).
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The next theorem shows that in the preceding corollary the condition (X, || - ||,) €
(UMBAJ) is also necessary if basis (e,) is symmetric.

THEOREM 2. Let X be a Banach lattice whose order is induced by the 1-symmetric
basis (e,). Then the following conditions are equivalent:

@® X, € (UMB);
G (X, |- 1) € (UMBd);
@) (X, - 1l:) € (UHr).

PROOF. The implication (ii)—(iii) follows from Corollary 1. The implication
(i)—(ii) is obvious.

Before proving the implication (iii)— (i) of the theorem, we recall the following
facts. Leta = (a;), b = (b)) € ¢, leta* = (a?), b* = (b}) be the sequences (|a;!),
(1b;]) arranged in non-increasing order. We say that a is weakly submajorized by
b and write a <, b if 35, a* < 3+ b* fork = 1,2,3,.... Itis well known
thatif a <, b, b = (b)) € X (we identify b = Y, b;e; with (b;)) thena € X and
lallx < 1Bl

Divide the set N into two disjoint subsets A and B with card A = card B = oc.
Letw, : N > A, m, : N — B be arbitrary injections. Put @’ = Y, e}(a)er,u),
b =3, e;(b)en,w. Itis clear that a* = (a')*, b* = (b')*.

The proof of the following lemma is straightforward. The details are therefore
omitted. It should be pointed out that the lemma which follows is a special case of
Lemma 3 below.

LEMMA 1. Leta,b € X,a > 0, b = 0. Then a' + b <, a + b and therefore
la"+ &', < lla+b|.

We remark that it follows immediately from Lemma 1 that (ii) implies (i).

Let us continue the proof of Theorem 2. Assume that X € (UHr) but that
the condition of uniform monotonicity fails to hold for X. Then there exist € > 0;
(xa), (%) C X, X5, yn = O,suchthat ||x, [, = 1, [lyalls > €, and ||lx, + yull, < 14171
Fix the integer n and divide the set N into an infinite family of disjoint subsets C,
with card C, = 00, k = 0,1,2,... Let 1, : N — C, be arbitrary bijections. Put
a =7y e@xeni b =Y ;€ (Yn)en . Itis clear that (a + by)* = (a + b,)* for
kkm=1,2,...,and 6(X, ") — lim; b, = 0. Using Lemma 1, we have

¢y 1< lla+belle < %+ yulle < 1407

Therefore o™ (a + b))l = 1, lla™ (b — bl = o H|bille = o7l yalls = 7' >
27'€ and o(X,T") — lim(a@ (@ + b)) = a'a, where ¢ = |la + bil,. Since
X € (UHy) we have [ja~!a|, < 1 —8(27'¢). Using (1), it now follows that

1= |xalle = llall < A +n7)(1 - 8Q7'€)
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foralln = 1,2, ... This contradicts the fact that §(2~'¢) > 0 and thus completes the
proof of Theorem 2.

REMARK. The equivalence of (ii) and (iii) has been established also in [6].

2. (UHIm)-property for the symmetric function spaces E (0, co)

Throughout this section E (0, 00) is a separable symmetric function space. It is
well known (see [11]), that every space X with a symmetric basis (e,) is a symmetric
function space on an infinite discrete measure space €2 in which the mass of every point
is one. In this context o (X, I')-convergence coincides with convergence in measure
on sets of finite measure on the unit sphere of X. The following question therefore
naturally arises from Theorem 2: are the properties (UHIm)and (UMB) equivalent in
E (0, 00)? The theorem below gives a positive answer to this question.

THEOREM 3. For a separable symmetric space (E (0, 00), || - ||) the following con-
ditions are equivalent:

(@) (E(0,00), |- Il € (UMB),
(ii) (E(0,00), | - |l € (UMBA);
(i) (E(0,00), |l - || € (UHIm).

PROOF. Assertion (ii) is a consequence of assertion (i). It follows from [3], Theorem
3.3, that assertion (iii) is a consequence of (ii). The implication (iii)— (i) is proved
exactly in the same way as in Theorem 2. Instead of relation a <, b between
sequences a = (a,) and b = (b,) we consider the relation f < g between functions
fig € Li(0, 00) + Lo(0, 00), where f < g means that forevery 0 < s < 00

fﬁmmsfymm
0 0

Here f*(¢) is the decreasing rearrangement of { f (¢)]. Lemma 1 is reformulated for
this situation in the obvious way (see also Lemma 3 and Remark 2 below). Instead of
a partition of N into disjoint subsets C; and bijections m; we use a partition of (0, co)
into an infinite family of disjoint subsets of infinite measure and measure preserving
transformations.

COROLLARY 2. Let @ be an Orlicz function, and let L4(0, 00) be the corresponding
Orlicz space equipped with the Luxemburg norm. Then the following conditions are
equivalent:

(1) @ satisfies the As-condition;
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(2) L&(0, 00) € (UHIm).

PROOF. By [1] the A, condition for @ is equivalent to (UMB) property for
L (0, 00).

The Banach lattice FE is said to satisfy a lower g-estimate if there exists a constant
C > 0 such that for all finite sequence (x,) of mutually disjoint elements in £

1/q
(Dmu%) <c> x

Combining Theorem 3 and Corollary 2.11 [3] we obtain the following:

E

COROLLARY 3. If E is a symmetric function space on (0, 00), then E satisfies a
lower q-estimate for some 1 < q < oo if and only if there is an equivalent symmetric
norm || - |lo on E such that (E, || - ||o) € (UMB).

3. (UHp)-property for the symmetric operator spaces E(M, )

In this section (M, ©) will be a semifinite von Neumann algebra M with a faithful
semifinite normal trace © on M. Let K (M, ) denote the space of all u-measurable
operators affiliated with M (see [5]). K (M, w) is the closure of M with respect to
the measure topology generated by the trace u with fundamental system of neigh-
bourhoods around 0 given by V (e, 8) = {T € K(M, n); there exists a projection P
in M such that ||TP|lo < € and (1 — P) < 8} for ¢, 8 > 0. Here 1 is the unit of
M and || - ||« is the C*-norm on M. We shall denote by x, —£5 x the convergence
of the sequence (x,) to x in the measure topology generated by the trace . Let

A € K(M, ). The t-th singular number of A u,(A) is
1 (A) = inf{||AP|| : P is a projectionin M with u(1 — P) <t},t >0

(see, for example [5, Definition 2.1]). It is known [5] that w,(A) = u,(A*) = w,(|A])
where |A| = (A*A)/2,

Let E(0, u(1)) be a separable symmetric function space. The symmetric operator
space E(M, u) is the space of operators A € K(M, ) such that 1, (A) belongs to
E(0, u(1)) and

”A”E(M,u) = ”l’L(A)”E(O,[L(l))'

Before formulating the main result of this section which concemns the (UHu)
property, we note that if E(M, ) € (UHp) then E(M, u) possesses the Kadec-Klee
property with respect to measure convergence (notation: E(M,u) € (Hw)). In
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the setting of symmetric function spaces, the property (Hm) has been investigated
in {13, 14]. It has been shown ([5, 7]) that the non-commutative L?-spaces have
property (Hu); subsequently, it was proved in [16] that E(0, (1)) € (Hm) implies
E(M, ) € (Hm). Further, it has been established in [16] that if E(0, n(1)) is an
arbitrary separable symmetric space then E(M, 1) can be renormed equivalently so
that E(M, u) endowed with the new norm || - |’ is a symmetric operator space and
(E(M, p), I+ 1) € (Hp).

The main result of this section shows the uniform Kadec-Klee property with respect
to convergence in measure extends from the symmetric function space E(0, i(1)) to
EM, n).

THEOREM 4. If E(0, (1)) € (UHm), then E(M, ) € (UHw).

The proof of Theorem 4 is based mainly on the following result (cf. [9, Theorem
2.1D.

LEMMA 2. Let M, i, E(0, u(1)), E(M, 1) be as above, and let (x,) € E(M, u),
satisfy x, —— 0. There exist two sequences of pairwise orthogonal projections
(), (qv) S M and subsequence (x,,) such that

”xm - qunkpk”E(m,u.) - 0.

We also need the following non-commutative analog of Lemma 1 (see also proof
of the implication (iii)— (i) of Theorem 3).

LEMMA 3. Leta, b, c,d € E(M, u) be positive operators such that u,(b) = pu,(c),
(@) < . (d) forallt > 0and ac = 0. Then

la +cllemw < Id + bll g,

PROOF OF LEMMA 3. Let x, y € K(M, p). The notation x < y means

/uf(X)drff me(y)dz
0 0

forallt > 0. Since E (0, (1)) is a separable symmetric space the relationx < y, y €
E(M, ) implies x € E(M, ) and || x(|gary < 1Yl (se€, for example [16]).
So, it suffices to prove that a + ¢ < d + b. Fix ¢t > 0. Without loss of generality
we can assume that M has no minimal projections and therefore there are projections
P, P, € M suchthatP, P, = 0, u(P, + P;) = t and [, p.(a +c)dt = u(aP +cPy)
(see [5, Lemma 4.1 and subsequent remarks]). Since u,(c) = u,(b), u,(a) < u,(d)

we can find the projections P;, Py € M such that w(P;) = u(Py), u(Py) = u(Py)
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and [L(bP:;) = [,L(CPz), p,(aPl) < [L(dP4) Put P5 = P4 \2 P3. Then [L(P5) <t and it
follows that

fur(d +b)ydt = u((d + b)Ps) = u(dPy) + (b Fy))
0

t
> uah + cP2)=f 1. (a +c)dr.
0

REMARK. Lemma 1, and its continuous analog in the implication (iii)—(i) of
Theorem 3, follow from Lemma 3 as particular cases.

PROOF OF THEOREM 4, Suppose that x,,x € E(M, w), | Xl = 1, IIxy —
XmlleM.y = € (m # n), and x, %5 x. We can assume that x #0. Putx, = x + y,.
It is clear that y, %5 0and l¥. — Ymlleam,y > €. By Lemma 2 we may assume
by passing to a subsequence, if necessary, that there exist (p,), (g.) C M such that
Pn=D, =D qn=qr =q foralln = 1,2,..., p.pp = guqn =0 (n # m)
and ||y, — PaYndnllz.u — O. Put P, = \/°: pi» @u=\/ _ g:. Ttis evident that
P, |0, 0, | Oand hence P} 1 1, QF 1 1. Our first objective is to show that

) |x = Px0y 0

||E(M,u) -

for all x € E(M, n). Indeed, without loss of generality we can assume that x >
0. Since x = P xQt + P.xQF + PrxQ, + P.xQ, it is sufficient to prove that
I PanQ,, It Ea. ) ||P,,Lx Oullemwy, 1PaxQn ”E(M,u) - 0.

By ([16, Lemma 3]), we have

” Pan Qn ” EMu) “ Pnl\/;‘/;Q" ” E(M,u) = “ﬁPnL‘/';”::"/(ZM,M) 1 Qnx Qn ”}5/(21‘4#)'

Since
“\/-;Pnl\/‘;"E(M,u) = | PixP; "E(M.//.) < Ixllza  and

" anQn ”E(M,u.) —> 0

([16, Proposition 4]) we have |P;'xQ, |l e,y — 0. Similarly, || Pox O lleap,
| PuxQh "E(M,y.) — 0.

Now, using (2) and the fact that ||y, — p,y.gnlizm.y — O, we may assume by
passing to a subsequence and relabelling if necessary, that

3) Xn = Pnle;tL + PaYngn + Za

where ||z, || ey < €277,
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Fix € > 0. Now let § = 8(27'¢) be chosen as in the definition of (UHm) for
E(0, (1)), and let the integer N simultaneously satisfy the inequalities

) Ix = Pix Qx )l s < 827
) 1Px 08 | g = 27 Il -

Divide (0, x(1)) into an infinite family of disjoint subsets (A4,)%, such thatm(Ay) =

w(Qy), m(A;) = u(g), i = N+ 1,... and choose sequence (fi(t))2y C
E(0, u(1)) such that f;(t)xa (t) = fi(t) forall i > N and fj() = /,L,(P,ij,%,),
@) = n(piyiqi), i = N. Notice that forn > N

|PEx Q% + payatn” = (Q5x* P + 4y;ps) (P X Q% + Puyntts)
= |PEx Q5" + 1Payadnl?
Hence |Px Q0% + Puyndnl = |Piyx Ox| + | Pnyngal, and therefore
®) e (PyxQy + Puyadn) = (fv + £)7(0)
for all t > 0 and for all # > N. Using (6) it then follows that forn > N,
(7) I fv + Fullcoway = | PYX Q8 + Paads HE(M.m‘

Since P} > Py, Qf > Qy forn > N wehave u,(PyxQy) = i (Py P}x Q0 O3) <
w(Prx Q) for all t > 0 (see [5]) and hence by Lemma 3

|Pyx Q% + Puyntn] = |Pyx Qx| + | Puyntal <
= ‘PanQj +p,,y,,q,,] .

P xQr| + | PnYndnl

It follows that |Pyx Ox + PuYaGelem < 1PxQF + PuyYagull£m.u and so, by (7)
and (3)

| fv + fulleopay <1+ €27" forn > N.
Using (5) and passing to a subsequence if necessary we may assume that || fy +

full o,y = @, where 27 x N gy < @ < 1. Itfollowsthat || 87 (fv+ f)ll ey =
1 and

1B (v + 1) = B (v + Fod) | gy = 27€

for sufficiently large m, n, where 8, = || fv + falleo..0) (the last inequality is the
simple consequence of the following correlations

”pnynq'r - yn”E(M,p.) - 0, ”pnynqn — PmYmqm ”E(M,,u) = ”fn - fm ”E(O.p.(l))v

ﬂn —> and “yn - ym”E(M,,u,) > E)-
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Observe that p,y.g, —> O implies f, —— 0 and therefore ' (fx + f.) —>
a ' fy. So, E(0, u(1)) € (UHm) implies ||la™! fy|lgo.nay < 1 — 8. It follows that
I Pix Oxlley = I fvlleonay < 1 — 8. Then, by (4), [Ix]] <1 — 8+ 827N, This
completes the proof of Theorem 4.

The following corollary extends results of [5, 7] which assert L,(M, u) € (Hu)
forall p > 1.

COROLLARY 4. If ® € Ay, then Lo(M, 1) € (UHu).

The proof immediately follows from Corollary 2 and Theorem 4.

COROLLARY 5. If ¢(2), $(0) = O, is a concave, increasing function on (0, u(1))
such that ¢ (00) = oo if (1) = 00, then the Lorentz space A,(M, ) has the uniform
Kadec-Klee property with respect to convergence in measure.

PROOF. By Theorem 4 it is sufficient to prove that A,(0, (1)) € (UHm). But this
is easy follows from the results [14, 15] which assert that if y — 0, y, € A,(0, (1))
then

%0 + Yullas0.nap = 1xa,0ua) + 1Yalla, 000y + 0o(1).
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