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Abstract

Let £(0, oo) be a separable symmetric function space, let M be a semifinite von Neumann algebra with
normal faithful semifinite trace /x, and let E(M, fx.) be the symmetric operator space associated with
£(0, oo). If £(0, oo) has the uniform Kadec-Klee property with respect to convergence in measure then
E(M, ft) also has this property. In particular, if L$(0, oo)(Av(0, oo)) is a separable Orlicz (Lorentz) space
then L<f,(M, /*)(AV(M, fi)) has the uniform Kadec-Klee property with respect to convergence in measure.
It is established also that £(0, oo) has the uniform Kadec-Klee property with respect to convergence in
measure on sets of finite measure if and only if the norm of £(0, oo) satisfies G. Birkhoff's condition of
uniform monotonicity.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46B20; secondary 46E30, 46L50.

0. Introduction

Let (X, || • II,) be a Banach space, and let r be a topological vector space topology

on X that is weaker than the norm topology. The space (X, || • ||,) is said to have

the uniform Kadec-Klee property with respect to x (notation X e (UHr)) if for all

€ > 0 there exists <5(e) > 0 such that for every sequence (xn) C X with ||^B||, = 1,

I!** — xm\\x > e (m # n) and with limit x in the topology x, we have ||;c||, < 1— <5(e).

We will consider the following cases:

(1) X is a Banach space with a Schauder basis (en), x = a(X, F) where F = [e*];

(2) X is a symmetric function space £(0 , oo), x = convergence locally in measure

and

(3) X = E(0, oo) (X = E(M, /x)), x = convergence in Lebesgue measure m ( t =

convergence in the measure topology on the set of all /x-measurable operators (see
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[5])). We will denote the (UHr)-property by (UHr) in the first case; by (UHlm) in
the second and by (UHm)((UH/x)) in the third.

See [8,10,11] for general information concerning Banach spaces and symmetric
function spaces. For relevant terminology from the theory of the von Neumann
algebras we refer to [17], and for the theory of non-commutative integration we refer
to [5].

1. Property (UHr) in spaces with Schauder basis

Let (X, || • ||) be a Banach space with a Schauder basis (en). Throughout this
section (e*) are the bi-orthogonal functionals associated with (en), and Pn are the
projections onto [e*]*=1 with kernel [ek]%Ln+1; that is for every x = Y1T=\ ekWek< w e

have Pnx = E L i <(*)**•
The basis (en) is said to satisfy the condition (C) if for every c > 0 there exists

S = S(c) > 0 such that for every x e X and for each integer n it follows from the
conditions \\Pnx\\ = 1 and | | ( / — Pn)x\\ > c that

11*11 > i + « .

The Theorem below is due (in implicit form) to D. van Dulst and V. de Valk [4] for
the case when X is an Orlicz sequence space; however, it is also true more generally.
We omit the proof and refer to [4, Proposition 3].

THEOREM 1. If a basis (en) satisfies the condition (C) then X e (UHr), where

It is well known that every Banach space with an unconditional basis (en), whose
unconditional constant is equal to 1, is a Banach lattice when the order is defined by
E^li antn > 0 if and only if an > 0 for all n. A Banach lattice (X, || • ||,) is called
a UMB-lattice (notation: (X, || • ||,) e (UMB)) if its norm satisfies G. Birkhoff's
condition of uniform monotonicity; that is for all e > 0 there exists 8(e) > 0 such
that iff,geX,f>0,g>0, | | / 1 | , = 1 and | | / + g\\x < 1 + S(e) then \\g\\x < e

(see [2]). In addition, if we suppose that / A g = 0, then X is said to have the
property (UMBd) (notation: (X, || • \\x) e (UMBd)). We remark that the property
(UMBd) coincides with the property (C) which is considered in [3]. Evidently, if
(X, || • ||,) € (UMBd) and the order on X is defined by the unconditional basis (en),
then (en) satisfies condition (C). So, we have the following

COROLLARY 1. (See also [3]). Let X be a Banach lattice whose order is induced
by the I-unconditional basis (en). If(X, \\ • ||,) e (UMBd) then X <= (UHr).
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The next theorem shows that in the preceding corollary the condition (X, || • ||,) e
(UMBd) is also necessary if basis (en) is symmetric.

THEOREM 2. Let X be a Banach lattice whose order is induced by the 1-symmetric
basis (en). Then the following conditions are equivalent:

(i) (X, || • ||,) e (UMB);
(ii) (X, || • ||,) € (UMBd);

(hi) (X, || • ||,) € (UHr).

PROOF. The implication (ii)->(iii) follows from Corollary 1. The implication
(i)—Kii) is obvious.

Before proving the implication (iii)—>(i) of the theorem, we recall the following
facts. Let a = (a,-), b = (&,•) e c0, let a* — (a*), b* = (b*) be the sequences (|a,-|),
(\bi\) arranged in non-increasing order. We say that a is weakly submajorized by
b and write a <w b if £*=1 a* < £*=, b*, for k = 1, 2, 3 , . . . . It is well known
that if a <w b, b = (bj) € X (we identify b = £ \ fye, with (&,-)) then a e X and

Ml* < l|6|lx.
Divide the set N into two disjoint subsets A and B with card A = card B = oo.

Let 7T] : N —> A, n2 : N —> B be arbitrary injections. Put a' = ^ke*k{a)enx(k),
v = E * «;(6)^lC*)-II is clear that «* = («')*> ** = (ft/)*.

The proof of the following lemma is straightforward. The details are therefore
omitted. It should be pointed out that the lemma which follows is a special case of
Lemma 3 below.

LEMMA 1. Let a,b e X, a > 0, b > 0. Then a' + b' <w a + b and therefore
\W + b'\\x<\\a + b\\x.

We remark that it follows immediately from Lemma 1 that (ii) implies (i).
Let us continue the proof of Theorem 2. Assume that X e (UHr) but that

the condition of uniform monotonicity fails to hold for X. Then there exist e > 0;
(xn),(yn) cX,xn,yn > 0 , such that ||xJU = l . l lyj* > e,and \\xn + yn\\x < 1+/T1.
Fix the integer n and divide the set N into an infinite family of disjoint subsets Ck

with card Ck = oo, k = 0, 1, 2 , . . . Let nk : iV -» Ck be arbitrary bijections. Put
a = E,- <(*«Ko(<> bk = E , e*(yn)entU). It is clear that (a + bk)* = (a + bm)* for
k, m = 1, 2 , . . . , and CT(X, F) — lim* bk = 0. Using Lemma 1, we have

(1) I < \\a + bk\\x < \\xn + yn\\x < 1 + n~K

Therefore \\a~\a + bk)\\x = 1, \\a~\h - bn)\\x > a - ' I I^L = "" ' I I^L > a~l€ >
2~le and a(X, F) — limk(a~l(a + bk)) = a~la, where a = \\a + bk\\x. Since
X e (UHr) we have Hor'all, < 1 - <5(2~'<O. Using (1), it now follows that

l = ll*JI, = IHI < d +«-1)d
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for all « = 1, 2, . . . This contradicts the fact that 8(2~le) > 0 and thus completes the
proof of Theorem 2.

REMARK. The equivalence of (ii) and (iii) has been established also in [6].

2. (UHlm)-property for the symmetric function spaces £(0, oo)

Throughout this section £(0, oo) is a separable symmetric function space. It is
well known (see [11]), that every space X with a symmetric basis (en) is a symmetric
function space on an infinite discrete measure space Q in which the mass of every point
is one. In this context cr(X, F)-convergence coincides with convergence in measure
on sets of finite measure on the unit sphere of X. The following question therefore
naturally arises from Theorem 2: are the properties (UHlm)and (UMB) equivalent in
£"(0, oo)? The theorem below gives a positive answer to this question.

THEOREM 3. For a separable symmetric space (£(0, oo), || • ||) the following con-
ditions are equivalent:

(i) (£(0, oo), || • || € (UMB);
(ii) (£(0, oo), || • || € (UMBd);

(iii) (£(0, oo), || • || e (UHlm).

PROOF. Assertion (ii) is a consequence of assertion (i). It follows from [3], Theorem
3.3, that assertion (iii) is a consequence of (ii). The implication (iii)—KD is proved
exactly in the same way as in Theorem 2. Instead of relation a <w b between
sequences a = (an) and b = (bn) we consider the relation f < g between functions
/, g e L\ (0, oo) + Loo(0, oo), where f < g means that for every 0 < s < oo

f f*(t)dt < f
Jo Jo

g\t)dt.

Here /*(?) is the decreasing rearrangement of |/(?)l- Lemma 1 is reformulated for
this situation in the obvious way (see also Lemma 3 and Remark 2 below). Instead of
a partition of N into disjoint subsets Ck and bijections nk we use a partition of (0, oo)
into an infinite family of disjoint subsets of infinite measure and measure preserving
transformations.

COROLLARY 2. Let <I> be an Orlicz function, and let L* (0, oo) be the corresponding

Orlicz space equipped with the Luxemburg norm. Then the following conditions are

equivalent:

(1) <$> satisfies the A2-condition;
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(2) L*(0, oo) € (UHlm).

PROOF. By [1] the A2 condition for 4> is equivalent to (UMB) property for
, oo).

The Banach lattice E is said to satisfy a lower q -estimate if there exists a constant
C > 0 such that for all finite sequence (xn) of mutually disjoint elements in E

E*
n

Combining Theorem 3 and Corollary 2.11 [3] we obtain the following:

COROLLARY 3. If E is a symmetric function space on (0, oo), then E satisfies a
lower q -estimate for some 1 < q < oo if and only if there is an equivalent symmetric
norm || • ||0 on E such that (E, || • ||0) 6 (UMB).

3. (UH/x)-property for the symmetric operator spaces E(M, /x)

In this section (M, /z) will be a semifinite von Neumann algebra M with a faithful
semifinite normal trace fx on M. Let K{M, fx) denote the space of all /^-measurable
operators affiliated with M (see [5]). K{M, fx) is the closure of M with respect to
the measure topology generated by the trace /x with fundamental system of neigh-
bourhoods around 0 given by V(e, 8) = {T e K(M, /x); there exists a projection P
in M such that ||rP||oo < e and /x(l - P) < 8} for €, 8 > 0. Here 1 is the unit of
M and || • H^ is the C*-norm on M. We shall denote by xn —> x the convergence
of the sequence (xn) to x in the measure topology generated by the trace /x. Let
A e K(M, /x). The t-th singular number of A fxt(A) is

lx,{A) = infdlAPIloo : P is a projection in M with ^(1 - P) < t), t > 0

(see, for example [5, Definition 2.1]). It is known [5] that fx, (A) = /x,(A*) = fi,(\A\)
where |A| = (A*A)l/2.

Let £(0, /x(l)) be a separable symmetric function space. The symmetric operator
space E(M, fx) is the space of operators A e K(M, fx) such that ix,{A) belongs to

Before formulating the main result of this section which concerns the (UH/i)
property, we note that if E(M, (x) e (UH/x) then E(M, /x) possesses the Kadec-Klee
property with respect to measure convergence (notation: E(M, /x) e (H/x)). In
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the setting of symmetric function spaces, the property (Hm) has been investigated
in [13, 14]. It has been shown ([5, 7]) that the non-commutative Lp-spaces have
property (H/x); subsequently, it was proved in [16] that £(0, /x(l)) 6 (Hm) implies
£(M, ix) e (Hm). Further, it has been established in [16] that if £(0, /x(l)) is an
arbitrary separable symmetric space then £(M, /x) can be renormed equivalently so
that £(M, ix) endowed with the new norm || • ||' is a symmetric operator space and
(£(M, /x), II • ||') e (H/x).

The main result of this section shows the uniform Kadec-Klee property with respect
to convergence in measure extends from the symmetric function space £(0, /x(l)) to
£(M,/x).

THEOREM 4. / /£(0, /x(l)) e (UHm), then E(M,/x) e (\JU/x).

The proof of Theorem 4 is based mainly on the following result (cf. [9, Theorem
2.1]).

LEMMA 2. Let M, /x, £(0, /x(l)), £(M, /x) be as above, and let (xn) c £(M, /x),
satisfy xn —• 0. There exist two sequences of pairwise orthogonal projections

)»(<?*) c M and subsequence (xnt) such that

\\Xnk ~ QkXntPk^E(m,ii) ~* 0-

We also need the following non-commutative analog of Lemma 1 (see also proof
of the implication (iii)—>(i) of Theorem 3).

LEMMA 3. Let a, b,c,d e £(M, /z) be positive operators such that ix,(b) =
Mr (a) < li,{d) for all t > Oandac = 0. Then

PROOF OF LEMMA 3. Let x, y e K(M, /x). The notation x < y means

/ fiT(x)dr < / nx(y)dr
Jo Jo

for all t > 0. Since £(0 , /x(l)) is a separable symmetric space the relation x < y,y e
E(M,(i) implies x e £(Af,/x) and | |x| |£ (M,^ < I I J I U M , ^ (see, for example [16]).
So, it suffices to prove that a + c < d + b. Fix t > 0. Without loss of generality
we can assume that M has no minimal projections and therefore there are projections
PuP2e M such thatP,P2 = 0, /x(A + P2) = t and /„' fir(a + c)dr - ix{aPx+ cP2)
(see [5, Lemma 4.1 and subsequent remarks]). Since JU.,(C) = ixt(b), ii,(a) < n,(d)
we can find the projections P3, P4 e M such that fi(Ps) = ix(P2), fx(P4) =
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and n(bP3) = n(cP2), ^(aPx) < n.(dP4). Put P5 = P4v P3. Then ix(P5) < t and it
follows that

/ Mr
Jo

(d + b)dx > udd + b)P5) > n(dP4) + tx(bP3))

cP2)= hxr(a + c)dx.
Jo

REMARK. Lemma 1, and its continuous analog in the implication (iii)—>(i) of
Theorem 3, follow from Lemma 3 as particular cases.

PROOF OF THEOREM 4. Suppose thatxn ,x e £(M, /x), ||xn||£(W,M) = 1, \\xn -
Xm\\E(M,n) > € (m ^ n), and xn —> x. We can assume that x ^ 0. Put xn = x + yn.
It is clear that yn - % 0 and \\yn — ym\\E(M,n) > e. By Lemma 2 we may assume
by passing to a subsequence, if necessary, that there exist (pn), (qn) C M such that
Pn = P* = Pi, Qn = q* = q2

n, for all n = \, 2,..., pnpm = qnqm = 0 (n ^ m)

and \\yn - pnynqn\\E(M^) ^ °- P"1 p» = V ~ n ^ " Q" = W7=nqh lt i s e v i d e n t t h a t

^ 4 - 0 , Qn iO and hence P^ f 1, C "̂ t 1- Our first objective is to show that

(2) I'-'-'G-U.,.)-*0

for all x e E(M, /A). Indeed, without loss of generality we can assume that x >
0. Since x = P^xQj + PnxQ^ + P^xQn + PnxQn it is sufficient to prove that

By ([16, Lemma 3]), we have

Since

I | V ^ ^ | | M M ) = | | ^ ^ L ( M M ) < IWU(AM) and

([16, Proposition 4]) we have \\P^xQn\\E{Mtll) -> 0. Similarly, \\PnxQ^\\E(Mtll),

IIP-JCG-II^M,/.) -*- 0.

Now, using (2) and the fact that \\yn — pnynqn\\E(M,n) ~^ 0, we may assume by
passing to a subsequence and relabelling if necessary, that

(3) xn = Pn
Lx QL

n + pnynqn + zn

where||zn||£(M,M) < t2"".
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Fix € > 0. Now let 8 = <5(2~'e) be chosen as in the definition of (UHm) for
£(0, /z(l)), and let the integer N simultaneously satisfy the inequalities

F - rNxyN\\ < di ,

(5)

Divide (0, /x(l)) into an infinite family of disjoint subsets (At)°lN such that m{AN) =
N), m(Aj) = fi(qi), i = N + 1 , . . . and choose sequence (fi(t))°lN C

(l)) such that Mt)xA,(t) = /,(0 for all i > W and /J(r) = n,(P^xQ^),
f*(t) = /j,,(piy,qi), i > N. Notice that for « > N

Hence \P^xQ^ + pnynqn\ = \PfrxQjj\ + \pnynqn\, and therefore

(6) ii, (P^xQJ, + pnynqn) = (/A, + /„)*(*)

for all r > 0 and for all n > N. Using (6) it then follows that for n > N,

(7) ||/v +

Since/*/ > />£, Gn
x > G)tf o r« > ^ we have ^ ( ^ 2 ^

P^xQ^) for all r > 0 (see [5]) and hence by Lemma 3

\pnynqn\ ^\ + \pnynqn\

It follows that \P£xQ-jj + pnynqn\Ew.iL) < 1 1 ^
and (3)

"̂ + Pny»qn\\Ew,n) md so> by (7)

Using (5) and passing to a subsequence if necessary we may assume that \\fN +
/ JE(O, M (0) -^ a,where2-1||x||£(M,M) < a < 1. It follows that \\P;l(fN+fn
1 and

iAT'Cfo + fn) - fi-\fN + /m

fn)\\E(o.n(i)) =

for sufficiently large m, n, where j6n = \\fN + /„ ||£(O,M(D) (me last inequality is the
simple consequence of the following correlations

,M) = II/n — fm

a and ||yn - >
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Observe that pnynqn — • 0 implies /„ -—> 0 and therefore /^""'(//v + /«) — *

a'lfN. So, £(0,/x(l)) e (UHm) implies HoT1/w||£(o,M(i)) < 1 - 5. It follows that

II/tf* Gjfc II£<*.*) = U M U . M O ) ) < 1 - «• Then, by (4), ||x|| < 1 - 5 + &2~N. This
completes the proof of Theorem 4.

The following corollary extends results of [5, 7] which assert LP(M, ix) e (H/z)

for all p > 1.

COROLLARY 4. //<& e A2, then LQ(M, fi) e (UH/t).

The proof immediately follows from Corollary 2 and Theorem 4.

COROLLARY 5. If<p(t), 0(0) = 0, is a concave, increasing function on (0, /x(l))

such that(j>(oo) = oo iffi(l) = oo, J/zen theLorentz space A^(M, /A) /za^ ?/je uniform

Kadec-Klee property with respect to convergence in measure.

PROOF. By Theorem 4 it is sufficient to prove that A0(O, ix(l)) e (UHm). But this

is easy follows from the results [14, 15] which assert that if v -—> 0, yn e

then

References

[1] M. A. Akcoglu and L. Sucheston, 'LamonotoniciK: uniforme des normes et theoremes ergodiques',
C. R. Acad. Sc. Paris, t. 301, Serie I, N 7 (1985), 359-360.

[2] G. Birkhoff, Lattice theory, A.M.S. Colloquium Publications, XXV, 3rd edition, (Amer. Math.
Soc., Providence, 1967).

[3] P. G. Dodds, T. K. Dodds, P. N. Dowling, C. J. Lennard and F. A. Sukochev, 'A uniform Kadec-Klee
property for symmetric operator spaces', Math. Proc. Cambridge Philos. Soc, to appear.

[4] D. van Dulst and V. de Valk, '(KK) properties, normal structure and fixed points of nonexpansive
mapping in Orlicz sequence spaces', Canad. J. Math. 38 (1986), 728-750.

[5] T. Fack and H. Kosaki, 'Generalized ^-numbers of r-measurable operators', Pacific J. Math. 123
(1986), 269-300.

[6] Y.-P. Hsu, 'The lifting of the UKK property from E to CE\ (1993), preprint.
[7] H. Kosaki, 'Applications of uniform convexity of noncommutative Z.p-spaces', Trans. Amer. Math.

Soc. 283 (1984), 265-282.
[8] S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of linear operators, Translation of

Mathematical Monographs 54 (Amer. Math. Soc, 1982).
[9] A. V. Krygin, F. A. Sukochev and V. E. Sheremetjev, 'Convergence by measure, weak convergence

and structure of subspaces in the symmetric spaces of measurable operators', Dep. VINITIN2487-
B92 , 1-34 (Russian).

https://doi.org/10.1017/S1446788700037241 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037241


352 F. A. Sukochev [10]

[10] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I. Sequence spaces (Springer, Berlin,
1977).

[11] , Classical Banach spaces, II. Function spaces (Springer, Berlin, 1979).
[12] S. Y. Novikov, 'Type and cotype of Lorentz function spaces', Mat. zametki 32 (2) (1982), 213-221.
[13] W. P. Novinger, 'Mean convergence in Lp-spaces\ Proc. Amer. Math. Soc. 34 (1972), 627-628.
[14] A. A. Sedaev, 'On (//)-property in the symmetric spaces', Teoriyafunkcii.funkc. anal, iprilozenia

11 (1970), 67-80 (Russian).
[15] , 'On weak and norm convergence in interpolation spaces', Trudy 6 zimney shkoly po mat.

programm. i smezn. voprosam, Moskow (1975), 245-267 (Russian).
[16] F. A. Sukochev and V. I. Chilin, 'Convergence in measure in admissible non-commutative sym-

metric spaces', Izv. Vyss. Uceb. Zaved. 9 (1990), 63-70 (Russian).
[17] M. Takesaki, Theory of operator algebras I (Springer- Verlag, New York, 1979).

Department of Mathematics and Statistics
The Flinders University
G.P.O. Box 2100
Adelaide, SA 5001
Australia
e-mail: sukochev@ist.flinders.edu.au

https://doi.org/10.1017/S1446788700037241 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037241

