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On the class of weak U-Dunfords-
Pettis operators

Adil Driouich, Larbi Zraoula and Bouazza El Wahbi

Abstract. In this paper we define a new class of operators called weak U-Dunford-Pettis, which gener-
alizes the U-Dunford-Pettis, weak Dunford-Pettis and order Dunford-Pettis classes, then we also give
a characterization for this class, which we compare with some lattice properties, we then set out the
conditions under which this class coincides with the U-Dunford-Pettis class, the weak Dunford-Pettis
class and the order Dunford-Pettis class.

1 Introduction

We recall from [1, Definition 3.1] that an operator T : E — Y from a Banach lat-
tice E to a Banach space Y is called a U-Dunford-Pettis operator if ||Tx,| — O for
every order bounded weakly null sequence (x,) in E. Alternatively, T maps order
bounded weakly relatively compact subsets of E to relatively compact subsets of ¥
(see [1, Theorem 3.2]).

Furthermore, as defined in [3, Section 2, page 231], an operator T from the Banach
space Z to the Banach space X is called weak Dunford-Pettis if for every weakly
null sequence (x;,) in X’ and every weakly null sequence (z,) in Z, it holds that
lim, 0 X;,(T'z,) = 0. Alternatively, T maps a weakly compact subset of Z onto a
Dunford-Pettis set in X.

From [6, section 1, page 186] we define an operator T : E — X to be order
Dunford-Pettis if it maps order bounded subsets onto Dunford-Pettis sets in X. In
this paper, we introduce a new class of operators from a Banach lattice to a Banach
space, nominated ” weak U-Dunford-Pettis operators ” (abbreviated as weak U-DP),
which generalizes the classes of U-Dunford-Pettis operators, weakly Dunford-Pettis
operators (abbreviated as weak DP) and order Dunford-Pettis operators (abbreviated
as order DP). This article is organized as follows: First, we defined the weak U-DP
operator in Definition 3.1. Then we used some examples to show the strict inclusions
between the class of weak U-DP operators and other classes of operators. In Theorem
3.4, we present a characterization of the new class. In the Corollaries 3.5 and 3.6, we
give a sufficient and necessary condition on Banach lattices such that for every oper-
ator (or order bounded operator) is weak U-Dunford-Pettis. In Theorem 3.10, we
establish sufficient conditions under which certain lattice properties in Banach lat-
tices coincide. Finally, Propositions 3.14, 3.16, 3.18, 3.19 and Theorem3.20 provide
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necessary or sufficient conditions for a weak U-DP operator to be classified as U-DP,
weak DP and order DP, respectively.

2 Preliminaries

A norm bounded subset A of a Banach space X is called a Dunford-Pettis set
if, for every weakly convergent sequence (x),) in the dual space X’, we have
Sup,c4 X5, (x)] — O (see [2, Theorem 5.98 (Andrews)]). A Banach space X has the
Dunford-Pettis property (or simply DPP), if every weakly compact operator T from
X into another Banach space Y is Dunford-Pettis operator (Andrews [2]), if and only
if for every weakly null sequence (y;,) of X’ and weakly null sequence (x,) of X we

have y}, (xp) 2o ([6, Proposition 2.2 and Proposition 2.3 ]). A Banach lattice E has
the U-Dunford-Pettis property (or simply UDPP), if each weakly compact operator
T : E — Y is U-Dunford-Pettis for each Banach space Y. To illustrate, co has UD PP.
In fact, for each weakly compact operator T : ¢y — Y, by applying [11, Proposition
3.1] the operator T = T o Id,, is U-Dunford-Pettis because /d,, is U-Dunford-Pettis.
This is due to the fact that ¢ is discrete and its norm is order continuous, as outlined in
[1, Proposition 3.1]. We note that L?[0, 1] does not have UD PP. This is due to the fact
that Id;2( 1] is a weakly compact operator. Furthermore, as L?[0, 1] is not discrete,
as per [1, Proposition 3.1], /d;2(¢ 1} is not U-Dunford-Pettis.

A Banach lattice E is said to have the order U-Dunford-Pettis property (or simply
0-UDPP) if every order weakly compact operator T : E — Y is U-Dunford-Pettis
for every Banach space Y (see [11, Definition 3.2]). Note that if a Banach lattice is o-
UDPP, it is necessarily UDPP, (L?[0.1] does not have o-UDPP, and [* has o-UDPP).
A Banach lattice E is said to have the AM-compactness property, if every weakly com-
pact operator defined on E into a Banach space X is AM-compact [7, section 3, page
169]. The lattice operations of a Banach lattice FE is said to be weakly sequentially con-
tinuous, if every weakly null sequence (x,) in E we have |x,| 50, x5 % 0and
X, % 0.An operator T : X — Y between two Banach spaces called a Dunford-Pettis,
if |[Tx,|| — O for all weakly null sequence (x;) in X (see [2, Section 5.4,page 340]). An
operator R : G — X from a normed vector lattice G into a Banach space X is order
weakly compact if, and only if, ||S(z,)|| — O as for every order bounded weak null
sequence (z,),in the positive cone G* (see [11, Corollary 3.4.9] ).

We need to establish some notations and definitions. A Banach lattice is a Banach
space (E, ||||) such that E is a vector lattice and its norm satisfies the following prop-
erty: for each x,y € E such that |x| < |y|, we have ||x|| < ||y||. Note that if E is a
Banach lattice, then its topological dual £/, endowed with the dual norm and the dual
order, is also a Banach lattice. A norm ||.|| of a Banach lattice G is order continuous if,
for any generalized sequence (zg) such that zg | 0in E, (zg) converges to O for the
norm [|.||, where the notation zg | 0 means that (zg) is decreasing, its infimum exists,
and inf(zg) = 0. An operator T : E — F between two Banach lattices is a bounded
linear mapping.

* Itis positive if 0 < T'(x) in F whenever 0 < x in E.
* Itis order bounded if T(A) is order bounded in F for every order bounded subset
AinE.
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* Itis regular if there are two positive operators 77, T, such that T = T1 — T5.
We note by:

* DP,(E,Y): The collection of all U-Dunford-Pettis operators from Banach lattice
E to Banach space Y.

* DP,(E,Y): The collection of all order Dunford-Pettis operators from Banach
lattice E to the Banach space Y.

* wDP(E,Y): The collection of all weak Dunford-Pettis operators from Banach
lattice E to the Banach space Y.

3 Main Results

3.1 The class of weak U-Dunford-Pettis

Definition 3.1 An operator T : E — Y acting between the Banach lattice E and the
Banach space Y is said to be weak U-Dunford-Pettis (abb. weak U-DP) if (Tx”, y;1> —
0 for every order bounded weakly null sequence (x;) in E and for every weakly null
sequence (y;) inY’.

We denote the collection of all weak U-Dunford-Pettis operators from Banach lat-
tice E to Banach space Y by wD P, (E,Y). We note that DP,(E,Y) c wDP,(E,Y),
but the reverse inclusion is not generally true. In fact, let (r,,) denote the sequence of
Rademacher functions on [0, 1], and let S : L'[0, 1] — [ be the positive operator
defined by

1 1
S(g) = (/0 g(x)rf(x)dx,/o g(x)ry (x)dx, . ..|.

Given that r, 2> 0, (r,) C [~1,1], and IS(r)l| = [ ra(Orf(0)dt = 1,
we observe that § is not a U-Dunford-Pettis operator. However, because L! [0,1]
possesses the Dunford-Pettis property, it follows that S is a weak Dunford-Pettis
operator. Therefore, S is a weak U-Dunford-Pettis operator.

Additionally, we have that DP,(E,Y) is strictly included in wD P, (E,Y). Indeed,
the natural embedding J : L*[0,1] — L?[0,1] is a positive U-Dunford-Pettis
operator but is not AM-compact (see [1, Remark 3.4]). Therefore, it is weak U-
Dunford-Pettis (since DP,(E,Y) ¢ wDP,(E,Y)). Moreover, J fails to be an order
Dunford-Pettis operator. If the operator J = Id r2[0,1] © J were AM-compact (see [6,
Theorem 2.7]), it would lead to a contradiction.

We also have that wDP(E,Y) ¢ wDP,(E,Y) strictly. In fact, the operator Id;
is weak U-Dunford-Pettis. This is due to the fact that /> has the AM-compactness
property, which implies that /dj2 is order Dunford-Pettis (see in [9, Proposition 3.4]).
Although Id;: is weak U-Dunford-Pettis, it is not weak Dunford-Pettis. If that’s not
the case, then Id;2 is a Dunford-Pettis operator. This is because /d}2 is weakly compact
(since [? is reflexive) and satisfies Id;z = Idj2 o Id;: (as shown in [2, Theorem 5.99]).
This means that the unit ball of /> would be relatively compact, which is a contradiction
since /2 is infinite-dimensional.
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Now we will mention some algebraic properties related to this class of operators.

Proposition 3.1 Let E and F be two Banach lattices and X and Y be two Banach spaces. We
have the following assertions:

(1) IfT : E — X is a weak U-Dunford-Pettis operator, then S o T is weak U-Dunford-Pettis
operator for every operator S : X — Y.

(2) IfT : F — Y is a weak U-Dunford-DPettis operator and S : E — F is an order bounded
operator, then T o S is weak U-Dunford-Pettis operator.

Proof The proof is straightforward. ]

We note that [0, 1] does not have the AM-compactness property, and its lattice
operations are not weakly sequentially continuous. The identity operator Id;:(q 1,
although positive, is not a weak U-Dunford-Pettis operator. However, since L?[0, 1]
is reflexive, the theorem 3.4 states that Id;21017 = [Idp20,17 © Idp2po,17 is U-
Dunford-Pettis. This leads to the conclusion that L?[0, 1] must be discrete (as shown
in [12, Proposition 3.1]), which is a contradiction. We will now outline the sufficient
conditions on lattices that ensure an operator is weak U-Dunford-Pettis.

Proposition 3.2 Let E and F be two Banach lattices, and let Y be a Banach space.

(1) If the lattice operations of E are weakly sequentially continuous, then every operator T :
E — Y is weak U-DP.

(2) If the lattice operations of F are weakly sequentially continuous, then every order bounded
operator T : E — F is weak U-DP. That is, L,(E, F) c wDP,(E, F).

(3) If F has the AM-compactness property, then every regular operator T : E — F is weak
U-Dunford-Pettis. Alternatively, L, (E, F) c wDP,(E, F).

Proof (1) Let (x,) be an order bounded weak null sequence of E such that E has

weakly sequentially continuous lattice operations, and T be an operator from
Iwl .
E to another Banach space Y. Then x, 20 = X, —> 0 which

implies that {0, x1,x3,....} is order |0 | —weakly compact subset of E. Hence, by
(6, Theorem 2.6], A = {0,x1,X2,.....} is a Dunford-Pettis set of E. So T(A) =
{0,T(x1),T(x3),.....} is also a Dunford-Pettis set of Y.

(2) Let (x,) be an order bounded weakly null sequence of E and T : E — F
be an order bounded operator. Then (7T(x,)) is an order bounded weakly null
sequence in F'. Since F has weakly sequentially continuous lattice operations, then
B = {0,T(x1),T(x2),.....} is an order |o-| —weakly compact subset of F. Hence,
by [6, Theorem 2.6], B is a Dunford-Pettis set of F.

(3) Let T : E — F be a regular operator. Then there exist two positive operators
T,,T, : E —» FsuchthatT =T — T>.

Now let (x,,) be an order bounded weakly null sequence in E. Then there exists
x € E* such that (x,) C [—x,x], and let (f;;) be a weakly null sequence in F’. We
have

L (Toxn) | < |ful (ITxn]) < [fal (AT1x0]) + [ ful (1T2X0]).
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Since F satisfies the AM-compactness property, by [6, Theorem 3.7], forall y €
F, | ful(y) — 0. This implies that

|/l (1Tixnl) < 1ful (Til(Ixn])) < 1ful(Tix) =0, i=1,2.

So | f(Tx,)| — 0, showing that T is weak U-Dunford-Pettis.
|

Remark 3.3 1In general, if a Banach lattice E has the AM-compactness property, its
lattice operations are not necessarily weakly sequentially continuous. For example,
the Banach lattice L'[0, 1] has the AM-compactness property, but its lattice oper-
ations are not necessarily weakly sequentially continuous. Conversely, the weakly
sequentially continuity of the lattice operations of E does not imply that E admits the
AM-compactness property. Indeed, the lattice operations of [ are weakly sequen-
tially continuous, but /*° does not have the AM-compactness property (see [5, Remark
2.2 (4)).

The next result characterizes the weak U-Dunford-Pettis operator and it is an
analogue of [2, Theorem 5.99].

Theorem 3.4  For an operator T : E — X from a Banach lattice E to a Banach space X,
the following statements are equivalent:

(1) T is a weak U-Dunford-Pettis operator.

(2) T carries order bounded relatively weakly compact subsets of E to Dunford-Pettis subsets
of X.

(3) If S is a weakly compact operator from X to an arbitrary Banach space, then S o T is an
U-Dunford-Pettis operator.

Proof The proof is similar to that of [2, Theorem 5.99].
n

In the following results, we give a some characterisation of of the weak U-DP class
of operators, using the U-Dunford-Pettis property (UDPP) that it is defined in [10,
Definition 3.2], as well as in corollaries 3.5 and 3.6.

Corollary 3.5 Let E be a Banach lattice. The following assertions are equivalent:

(1) Every operator S : E — Y is weak U-Dunford-Pettis for every Banach space Y.
(2) 1dg is weak U-Dunford-Pettis.
(3) E has UDPP.

Proof (1) = (2) is obvious.

(2) = (1) LetS : E — Y be an operator, since Idg is weak U-DP operator
then S = S o IdE, is also a weak U-DP operator see Proposition 3.1.

(2) = (3) LetS : E — Y be a weakly compact operator, since Idg is a weak
U-DP operator then S = S o IdE is also an U-Dunford-Pettis operator see Theorem
3.4(1) = 3)), then E has UDPP.
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3 = 2)LetS: E — Y be aweakly compact operator and E has UDPP then §
is an U-Dunford-Pettis operator, since S = S o Idg then by (3) = 1)) of Theorem
3.4, Idg is weak U-DP. ]

We have also similarly,

Corollary 3.6  Let F be a Banach lattice. The following assertions are equivalent:

(1) Every order bounded operator S : E — F is weak U-Dunford-Pettis for every Banach
lattice E.

(2) Idp is weak U-Dunford-Pettis.

(3) F has UDPP.

By using the Corollary 3.5 and Definition 3.1, we can give an explicit version of the
UDPP.

Corollary 3.7  Let E be a Banach lattice. The following assertions are equivalent:

(1) E has UDPP.

(2) For every order bounded weakly null sequence (x,,) in E, and every weakly null sequence
(fn) in E’, we have f,,(x,;) — O.

(3) For every order bounded weakly null sequence (x,) in E, the set {x1,x2, ..., Xn,..} is a
Dunford-Pettis set.

As consequence of corollary 3.5 and proposition 3.2 we have the following result,

Corollary 3.8  Let E be a Banach lattice. If the lattice operations of E are weakly sequentially
continuous or E has the AM compactness property, then E has the UDPP.

Proof (1) If the lattice operations of E are weakly sequentially continuous, then the
positive operator Idg is weakly U-DP (see Proposition 3.2) and by the Corollary
3.5, E has UDPP.

(2) If E has the AM-compactness property, then Idg is order Dunford-Pettis (see [9,
Proposition 3.1]). Then it is weak U-Dunford-Pettis, so E has UDPP.
|

Remark 3.9 We note that if E is a Banach lattice with an order unit ¢, then B =
[—e, e]. In this case, every order weakly compact operator from E to any Banach space
Y is also weakly compact. Which implies that E has the UDPP, if and only if E has the
0-UDPP). According to [1, Proposition 3.2], E has o-UDPP if and only if the lattice
operations of E are weakly sequentially continuous, since every weakly null sequence
in E is also an order bounded weakly null sequence.

It is obvious that if £ has o-UDPP, then it has UDPP. But the converse is not gen-
erally true. In fact, if we take E = L'[0,1], then E’ = L*[0, 1], since the lattice
operations of E’ are weakly sequentially continuous, then E has AM-compactness
property according to [3, Theorem 3.3]), which implies that Idg is order DP (see [9,
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Proposition 3.4]), so it is weak U-DP, thus E has UDPP (see Corollary 3.5). In addi-
tion, E does not have o-UDPP. In fact, the operator S : L'[0,1] — [* defined in
subsection 3.1 is an order weakly compact operator, but not an U-DP operator. Note
that the norm of (L'[0, 1])’ = L*[0, 1] is not order continuous. Now we will give
some other important characterizations of the UDPP on a Banach lattice.

Theorem 3.10 Let E be a Banach lattice such that the norm of E and the norm of E’ are
order continuous, then the following statements are equivalent:

(1) E has the UDPP.

(2) E has the AM-compactness property .

(3) E has the o-UDPP.

(4) E is discrete.

(5) The lattice operations of E are weakly sequentially continuous.

Proof * (1) = (2)if E has UDPP, then Idg is weak U-DP, since the norm of E
is order continuous(see Proposition 3.20), then Idg is order DP, implying that E
has the AM compactness property (see [9, Proposition 3.4]).

* (2) = (1) (see Corollary 3.8)

* (1) = (3) Let us demonstrate this by contradiction: let us assume that E has
the UDPP but not the o-UDPP. According to [1, Proposition 3.2], there exists a

weakly null and order bounded sequence (x,) in E such that |x,| 5 0. This
implies the existence of a positive functional f € E’* such that f(]x,|) - O.
Consequently, for any € > 0, there exists a subsequence (y,) of ((x,)) such that
f(ynl) > e foralln € N*,

We have:

F(ynl) =sup{lg(yn)l: g € E", 8| < f}
which implies that there exist functional g,, € E’ with |g,,| < f such that:

1
FQynl) < lgn(y)l + ~ foralln € N*.

Since the norm of E”’ is order continuous and ( |g,| < f), the sequence ((g,))
must have a weakly convergent subsequence (g4(»)), converging to some g (i.e.,

(8o(n) N £)). Thus, we also have:

€< fyom) < 18om) Yo+ <1(8em)=8) Yo+ g I+——=

¢>()_ ¢()

(This conclusion follows because E has the UDPP, and since (g4 (1) — &) 2 0in

(E’) and y () 2, 0 (which means (Ie(yam))| — 0)), in addition (y4(n)) is
order bounded in E, which implies (g4(n) — 8)(Y¢(n)) — 0 see corollary 3.7).
However, this is a contradiction, as we initially assumed that the sequence
(x1,x2, . ..) forms a Dunford-Pettis set (see [6, Proposition 2.2]).

* (3) = (1) (obvious).
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* (3) = (4): Given that the norm of E is order continuous, it follows that Idg is
order weakly compact. As E has o-UDPP, we can conclude that Idg is U-DP,
which in fact implies that E is discrete (see [12, Proposition 3.1]).

* (4) = (5)If E is discrete, then E’ is discrete (see [3, Corollary 2.3]), which
implies that the lattice operations of E are weakly sequentially continuous (see [8,
Corollary 2.2]).

* (5) = (3): Let T be an order weakly compact operator from E to an arbitrary
Banach space X. Since the lattice operations of E are weakly sequentially
continuous, T is an U-DP operator. In fact, for any order bounded weakly null
sequence (x,), we have

ITxull = ITx5; = T, || < | Txpll + || Tx, | = O.

This follows from [11, Corollary 3.4.9], which shows that 7' is U-DP, and thus E
has o-UDPP.

Remark 3.11 The order continuity condition of the norm of E is essential. In fact,
we assume that E = L*[0, 1]. Note that E = (L*[0, 1])’ is order continuous, but
E is not. In this case, note that £ has UDPP, o-UDPP and the lattice operations of
E are weakly sequentially continuous. But E is not discrete and does not have AM-
compactness property.

In the following result we study the domination problem for the class of weak U-
Dunford-Pettis operators.

Theorem 3.12  If a positive operator S : E — F is dominated by a weak U-Dunford-Pettis
operator T : E — F, then S is a weak U-Dunford-Pettis operator.

Proof :LetS,T :E — F be two positive operators between Banach lattices such
that 0 < § < T, with T being a weak U-Dunford-Pettis operator. Let A be an order
bounded relatively weakly compact subset of E.

By Theorem 3.4, T(A) is a Dunford-Pettis set. Therefore, for every weakly null
sequence (y;,) in F’, it converges uniformly to zero on the set 7'(A) (as established in
(10, Theorem 1]).

Additionally, since S(A) C T(A) (because 0 < S < T implies S[—x,x] C T[—x, x]
for all x € E*), we have:

sup [y, (x)| < sup [y, (x)l.
xeS(A) x€T(A)
This implies that (y;) converges uniformly to zero on the set S(A). Therefore, we
conclude that S is a weak U-Dunford-Pettis operator.
]
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3.2 The relationship between the class of weak U-Dunford-Pettis and other
classes

We note that:

* Idp~[o,1] is weak U-Dunford Pettis (because the lattice operations of L*[0, 1] are
weakly sequentially continuous). However, Idy~[o,1] is not an order weakly
compact operator, and therefore it is not a weakly compact operator.

* Furthermore, Id; 2o 1) is a weakly compact (respectively order-weakly compact)
operator, but it is not weak U-Dunford-Pettis.

Similar to the DPP, UDPP and o-UDPP properties, we can define new properties on
Banach lattices.

Definition 3.2 (1) A Banach lattice G is said to have the weak U-Dunford-Pettis
property (wWUDPP) if, for every weakly compact operator S : G — X, the operator
S is weak U-Dunford-Pettis for any Banach space X.

(2) A Banach lattice G is said to have the order weak U-Dunford-Pettis property
(owUDPP) if, for every order weakly compact operator S : G — X, the operator
S is weak U-Dunford-Pettis for any Banach space X.

(3) A Banach lattice G is said to have the reciprocal weak U-Dunford-Pettis property
(RwWUDPP) if, for every weak U-Dunford-Pettis operator S : G — X, the operator
S is weakly compact for any Banach space X.

(4) A Banach lattice G is said to have the reciprocal order weak U-Dunford-Pettis
property (RowUDPP) if, for every weak U-Dunford-Pettis operator S : G — X,
the operator S is order weakly compact for any Banach space X.

Remark 3.13 Itisevident thatif a Banach lattice E has o-UDPP, then it must also have
owUDPP. For example, we may consider the Banach lattices [”, where 1 < p < oo.
These have owUDPP, however, L?[0, 1] does not possess this property. This is due to
the fact that Id;pg 17 is order weakly compact and is not weak U-DP.

3.21 Comparison of the weak U-DP operator with the U-DP and the
weak DP operators

Now, we give necessary and sufficient conditions for a weak U-Dunford-Pettis

operator to be U-Dunford-Pettis.

Proposition 3.14 If any positive weak U-Dunford-Pettis operator T from E to F is U-
Dunford-Pettis, then one of the following assertion is valid:

(1) E has o-UDPP.
(2) The norm of F is order continuous.

Proof If we assume that neither E has o-UDPP nor the norm of F is order continu-
ous, then [1, Theorem 3.1 ] proves that there exist S,7 : E — F suchthat0 < S < T,
T is U-Dunford-Pettis and S is not U-Dunford-Pettis.
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Since T is an U-Dunford-Pettis operator, it is also weak U-Dunford-Pettis. By
applying Theorem 3.12, we can also conclude that S is weak U-Dunford-Pettis. How-
ever, our hypothesis implies that S is U-Dunford-Pettis, which is a contradiction. m

Remark 3.15 + Condition 2) of Proposition 3.14 is not sufficient. Indeed, for
E = F = L'[0, 1], we have that Id; i [0,1] is weak U-Dunford-Pettis, since it
admits UDPP. However, it is not U-Dunford-Pettis because L! [0, 1] is not discrete
(see [12, Proposition 3.1] ), although the norm of L' [0, 1] is order continuous.

+ Similarly, condition 1) of Proposition 3.14 is not sufficient. For example, if we
take E = F = ¢, we find that the identity operator /d, is weak U-Dunford-Pettis.
This is because the space ¢ has the U-Dunford-Pettis property UDPP due to the
continuity of its lattice operations. Consequently, it also satisfies the o-UDPP,
which implies it has the UDPP. However, ¢ does not possess the RowUDP
property, since Id, is not order weakly compact, as its norm is not order
continuous. Additionally, /d, is not U-Dunford-Pettis either, because its norm
fails to be order continuous (see [12, Proposition 3.1]).

Proposition 3.16 Let E and F be two Banach lattices.

(1) If E has the o-UDPP and the RowUDPP, then every weak U-DP operator T from E to every
Banach space X is U-DP.

(2) If F is discrete and its norm is order continuous, then for every order bounded weak U-
Dunford-Pettis operator T : G — F, it follows that T is U-Dunford-Pettis for every
Banach lattice G.

Proof (1) LetT : E — X be a weak U-Dunford-Pettis operator. Given that E sat-
isfies the de Row UDPP condition, it follows that T is an order weakly compact.
Moreover, since E also satisfies the o-UDPP condition, we conclude that T is an
U-Dunford-Pettis operator.

(2) Let T : G — F be an order bounded weak U-Dunford-Pettis operator. If F is a
discrete space with an order continuous norm, then the identity operator Idp is
U-Dunford-Pettis (as shown in [12, Proposition 3.2]). Since T = Idp o T, we can
apply [1, Proposition 3.1] to conclude that T is also U-Dunford-Pettis.

[

Other sufficient condition,

Proposition 3.17  Let be E a Banach lattice and Y a Banach space, if Y is reflexive, then every
weak U-Dunford-Pettis operator T : E — Y is U-Dunford-Pettis .

Proof obvious (T = Idy o T and Idy is weakly compact, by Proposition 3.1 T is
U-DP). ]

We now provide sufficient conditions for weak U-Dunford-Pettis operators to be
weak Dunford-Pettis operators in the following result.
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Proposition3.18 LetS : E — Z be a weak U-Dunford-Pettis operator, where E is a Banach
lattice that admits an order unit, and Z is a Banach space, then S is a weak Dunford-Pettis
operator.

Proof Assume that a Banach lattice E has an order unit e, and let S be a weak U-
Dunford-Pettis operator from E to a Banach space Z. We need to show that S is a
weak Dunford-Pettis operator, which is equivalent to proving that for any relatively
weakly compact subset A of E, the image S(A) is a Dunford-Pettis set in Z. Since A
is norm-bounded in E, it is also order-bounded. This is because there exists r > 0
such that A € rBg = r[—e, e]. Given that S is a weak U-Dunford-Pettis operator, it

follows that S(A) is a Dunford-Pettis set in Z (see Theorem 3.4).
[ ]

3.2.2 Comparison of the weak U-DP operator with the order DP operator
We give sufficient conditions for a weak U-DP operator from Banach lattice to Banach
space to be an order DP operator.

Proposition 3.19 Let E be a Banach lattice and Y a Banach space. Then, every weak U-
Dunford-Pettis operator T : E — Y is an order Dunford-Pettis operator. Whenever one of the
following assertions is valid:

(1) the norm of E is order continuous.
(2) E has the AM-compactness property.
(3) Y has the DPP and is reflexive.

Proof LetbeT : E — Y aweak U-Dunford-Pettis operator.

(1) If the norm of E is order continuous, then for all x € E* the [—x, x] is an order
bounded relatively weakly compact subset of E by the hypothesis that T'([—x, x])
is a Dunford-Pettis set of F, so T is order Dunford-Pettis.

(2) If E has AM-compactness property then /dg is order Dunford-Pettis operator (see
[9, Proposition 3.4]) and since that T = T o Idg then T is order Dunford-Pettis (see
[12, Proposition 3.1]).

(3) Let u € E*. Then T[—u,u] is a norm-bounded set in Y, since Y is reflexive.
Therefore, T'[—u, u] is relatively weakly compact (see [2, Theorem 3.32]) and by the
hypothesis that ¥ has DPP, we can conclude that T'[—u, u] is a Dunford-Pettis set (
see [6, Proposition 2.3)). Thus, T is an order Dunford-Pettis operator.

In the following we characterize weak U-Dunford-Pettis operators between two
Banach lattices as order Dunford-Pettis operators under equivalent conditions.

Theorem 3.20 Let E and F be two Banach lattices such that E and F are o -Dedekind
complete and F has the DPP. The following assertions are equivalent:

(1) Every weak U-Dunford-Pettis operator T : E — F is order Dunford-Pettis operator.
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(2) Every positive weak U-Dunford-Pettis operator T : E — F is order Dunford-Pettis
operator.
(3) One of this assertions is valid:

(@) The norm of E is order continuous.
(b) The norm of F is order continuous.

Proof It is obvious that (3) implies (1) and (1) implies (2).

To show that (2) implies (3), it is assumed that if the norm of E and the norm of F are
not order continuous, then there exists a positive operator T : E — F which is weak
U-Dunford-Pettis and such that T is not order Dunford-Pettis. Since E and F' are
o -Dedekind complete, it follows from Theorem 4.56 [2] that there exist two positive
projections Py : E — [® and P, : F — [* and two canonical injections i1 : [ — E
and i3 : [ — F which are all weak U-Dunford-Pettis because the lattice operations
of [*° are sequentially continuous (applying the Proposition 3.2). Then the composition
operators T = i, o Py : E — F is weak U-Dunford-Pettis see Proposition 3.1, but
not order Dunford-Pettis ( see [5, Remark 2.2(4)] and [9, Proposition 3.4]). This is clear
from the fact that Id;~= = P, o T o iy is not order Dunford-Pettis. [

The proposition 3.20 states that if £ = F we get the following result.
Corollary 3.21 Let E be a 0-Dedekind complete Banach lattice. Then the following asser-

tions are equivalent:

(1) Every weak U-Dunford-Pettis operator T : E — E is an order Dunford-Pettis. operator.

(2) Every positive weak U-Dunford-Pettis operator T : E — E is an order Dunford-Dettis.
operator.

(3) the norm of E is order continuous.

3.3 Conclusion

The following diagram provides a summary of the relationships between the different
classes of operators that have been the subject of this work:
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DP,(E.Y)

* (1): E has o-UDPP and RowUDPP orY is reflexive.

* (2): E is order continuous or E has AM-compactness or Y is reflexive and has DPP.
* (3): E has order unit.

* (4): E has owUDPP.

* (5): E has RowUDPP.
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