
Canad. Math. Bull. Vol. 00 (0), 2020 pp. 1–14
http://dx.doi.org/10.4153/xxxx
© Canadian Mathematical Society 2020

On the class of weak U-Dunfords-
Pettis operators

Adil Driouich, Larbi Zraoula and Bouazza El Wahbi

Abstract. In this paper we define a new class of operators called weak U-Dunford-Pettis, which gener-
alizes the U-Dunford-Pettis, weak Dunford-Pettis and order Dunford-Pettis classes, then we also give
a characterization for this class, which we compare with some lattice properties, we then set out the 
conditions under which this class coincides with the U-Dunford-Pettis class, the weak Dunford-Pettis 
class and the order Dunford-Pettis class.

1 Introduction

We recall from [1, Definition 3.1] that an operator 𝑇 : 𝐸 → 𝑌 from a Banach lat-
tice 𝐸 to a Banach space 𝑌 is called a U-Dunford-Pettis operator if ∥𝑇𝑥𝑛∥ → 0 for
every order bounded weakly null sequence (𝑥𝑛) in 𝐸 . Alternatively, 𝑇 maps order
bounded weakly relatively compact subsets of 𝐸 to relatively compact subsets of 𝑌
(see [1, Theorem 3.2]).

Furthermore, as defined in [3, Section 2, page 231], an operator𝑇 from the Banach
space 𝑍 to the Banach space 𝑋 is called weak Dunford-Pettis if for every weakly
null sequence (𝑥′𝑛) in 𝑋 ′ and every weakly null sequence (𝑧𝑛) in 𝑍 , it holds that
lim𝑛→∞ 𝑥′𝑛 (𝑇𝑧𝑛) = 0. Alternatively, 𝑇 maps a weakly compact subset of 𝑍 onto a
Dunford-Pettis set in 𝑋 .

From [6, section 1, page 186] we define an operator 𝑇 : 𝐸 → 𝑋 to be order
Dunford-Pettis if it maps order bounded subsets onto Dunford-Pettis sets in 𝑋 . In
this paper, we introduce a new class of operators from a Banach lattice to a Banach
space, nominated ” weak U-Dunford-Pettis operators ” (abbreviated as weak U-DP),
which generalizes the classes of U-Dunford-Pettis operators, weakly Dunford-Pettis
operators (abbreviated as weak DP) and order Dunford-Pettis operators (abbreviated
as order DP). This article is organized as follows: First, we defined the weak U-DP
operator in Definition 3.1. Then we used some examples to show the strict inclusions
between the class of weak U-DP operators and other classes of operators. In Theorem
3.4, we present a characterization of the new class. In the Corollaries 3.5 and 3.6, we
give a sufficient and necessary condition on Banach lattices such that for every oper-
ator (or order bounded operator) is weak U-Dunford-Pettis. In Theorem 3.10, we
establish sufficient conditions under which certain lattice properties in Banach lat-
tices coincide. Finally, Propositions 3.14, 3.16, 3.18, 3.19 and Theorem3.20 provide
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2 A. Driouich, L. Zrouala and B. El Wahbi

necessary or sufficient conditions for a weak U-DP operator to be classified as U-DP,
weak DP and order DP, respectively.

2 Preliminaries

A norm bounded subset 𝐴 of a Banach space 𝑋 is called a Dunford-Pettis set
if, for every weakly convergent sequence (𝑥′𝑛) in the dual space 𝑋 ′, we have
sup𝑥∈𝐴 |𝑥′𝑛 (𝑥) | → 0 (see [2, Theorem 5.98 (Andrews)]). A Banach space 𝑋 has the
Dunford-Pettis property (or simply DPP), if every weakly compact operator 𝑇 from
𝑋 into another Banach space 𝑌 is Dunford-Pettis operator (Andrews [2]), if and only
if for every weakly null sequence (𝑦′𝑛) of 𝑋 ′ and weakly null sequence (𝑥𝑛) of 𝑋 we
have 𝑦′𝑛 (𝑥𝑛)

𝑤→ 0 ( [6, Proposition 2.2 and Proposition 2.3 ]). A Banach lattice 𝐸 has
the U-Dunford-Pettis property (or simply UDPP), if each weakly compact operator
𝑇 : 𝐸 → 𝑌 is U-Dunford-Pettis for each Banach space𝑌 . To illustrate, 𝑐0 has𝑈𝐷𝑃𝑃.
In fact, for each weakly compact operator 𝑇 : 𝑐0 → 𝑌 , by applying [11, Proposition
3.1] the operator𝑇 = 𝑇 ◦ 𝐼𝑑𝑐0 is U-Dunford-Pettis because 𝐼𝑑𝑐0 is U-Dunford-Pettis.
This is due to the fact that 𝑐0 is discrete and its norm is order continuous, as outlined in
[1, Proposition 3.1]. We note that 𝐿2 [0, 1] does not have𝑈𝐷𝑃𝑃. This is due to the fact
that 𝐼𝑑𝐿2 [0,1] is a weakly compact operator. Furthermore, as 𝐿2 [0, 1] is not discrete,
as per [1, Proposition 3.1], 𝐼𝑑𝐿2 [0,1] is not U-Dunford-Pettis.

A Banach lattice 𝐸 is said to have the order U-Dunford-Pettis property (or simply
o-UDPP) if every order weakly compact operator 𝑇 : 𝐸 → 𝑌 is U-Dunford-Pettis
for every Banach space 𝑌 (see [11, Definition 3.2]). Note that if a Banach lattice is o-
UDPP, it is necessarily UDPP, (𝐿2 [0.1] does not have o-UDPP, and 𝑙∞ has o-UDPP).
A Banach lattice 𝐸 is said to have the AM-compactness property, if every weakly com-
pact operator defined on 𝐸 into a Banach space 𝑋 is AM-compact [7, section 3, page
169]. The lattice operations of a Banach lattice 𝐸 is said to be weakly sequentially con-
tinuous, if every weakly null sequence (𝑥𝛼) in 𝐸 we have |𝑥𝛼 |

𝑤→ 0, 𝑥+𝛼
𝑤→ 0 and

𝑥−𝛼
𝑤→ 0. An operator𝑇 : 𝑋 → 𝑌 between two Banach spaces called a Dunford-Pettis,

if ∥𝑇𝑥𝑛∥ → 0 for all weakly null sequence (𝑥𝑛) in 𝑋 (see [2, Section 5.4,page 340]). An
operator 𝑅 : 𝐺 → 𝑋 from a normed vector lattice 𝐺 into a Banach space 𝑋 is order
weakly compact if, and only if, ∥𝑆(𝑧𝑛)∥ → 0 as for every order bounded weak null
sequence (𝑧𝑛)𝑛in the positive cone 𝐺+ (see [11, Corollary 3.4.9] ).

We need to establish some notations and definitions. A Banach lattice is a Banach
space (𝐸, ∥∥) such that 𝐸 is a vector lattice and its norm satisfies the following prop-
erty: for each 𝑥, 𝑦 ∈ 𝐸 such that |𝑥 | ≤ |𝑦 |, we have ∥𝑥∥ ≤ ∥𝑦∥. Note that if 𝐸 is a
Banach lattice, then its topological dual 𝐸 ′, endowed with the dual norm and the dual
order, is also a Banach lattice. A norm ∥.∥ of a Banach lattice 𝐺 is order continuous if,
for any generalized sequence (𝑧𝛽) such that 𝑧𝛽 ↓ 0 in E, (𝑧𝛽) converges to 0 for the
norm ∥.∥, where the notation 𝑧𝛽 ↓ 0 means that (𝑧𝛽) is decreasing, its infimum exists,
and 𝑖𝑛 𝑓 (𝑧𝛽) = 0. An operator 𝑇 : 𝐸 → 𝐹 between two Banach lattices is a bounded
linear mapping.

• It is positive if 0 ≤ 𝑇 (𝑥) in 𝐹 whenever 0 ≤ 𝑥 in 𝐸 .
• It is order bounded if 𝑇 (𝐴) is order bounded in 𝐹 for every order bounded subset
𝐴 in 𝐸 .
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• It is regular if there are two positive operators 𝑇1, 𝑇2 such that 𝑇 = 𝑇1 − 𝑇2.

We note by:

• 𝐷𝑃𝑢 (𝐸,𝑌 ): The collection of all U-Dunford-Pettis operators from Banach lattice
𝐸 to Banach space𝑌 .

• 𝐷𝑃𝑜 (𝐸,𝑌 ): The collection of all order Dunford-Pettis operators from Banach
lattice 𝐸 to the Banach space𝑌 .

• 𝑤𝐷𝑃(𝐸,𝑌 ): The collection of all weak Dunford-Pettis operators from Banach
lattice 𝐸 to the Banach space𝑌 .

3 Main Results

3.1 The class of weak U-Dunford-Pettis

Definition 3.1 An operator 𝑇 : 𝐸 → 𝑌 acting between the Banach lattice 𝐸 and the
Banach space𝑌 is said to be weak U-Dunford-Pettis (abb. weak U-DP) if

〈
𝑇𝑥𝑛, 𝑦

′
𝑛

〉
→

0 for every order bounded weakly null sequence (𝑥𝑛) in 𝐸 and for every weakly null
sequence (𝑦′𝑛) in𝑌 ′.

We denote the collection of all weak U-Dunford-Pettis operators from Banach lat-
tice 𝐸 to Banach space 𝑌 by 𝑤𝐷𝑃𝑢 (𝐸,𝑌 ). We note that 𝐷𝑃𝑢 (𝐸,𝑌 ) ⊂ 𝑤𝐷𝑃𝑢 (𝐸,𝑌 ),
but the reverse inclusion is not generally true. In fact, let (𝑟𝑛) denote the sequence of
Rademacher functions on [0, 1], and let 𝑆 : 𝐿1 [0, 1] → 𝑙∞ be the positive operator
defined by

𝑆(𝑔) =
(∫ 1

0
𝑔(𝑥)𝑟+1 (𝑥)𝑑𝑥,

∫ 1

0
𝑔(𝑥)𝑟+2 (𝑥)𝑑𝑥, . . .

)
.

Given that 𝑟𝑛
𝑤→ 0, (𝑟𝑛) ⊂ [−1, 1], and ∥𝑆(𝑟𝑛)∥ ≥

∫ 1
0 𝑟𝑛 (𝑡)𝑟+𝑛 (𝑡)𝑑𝑡 = 1

2 ,
we observe that 𝑆 is not a U-Dunford-Pettis operator. However, because 𝐿1 [0, 1]
possesses the Dunford-Pettis property, it follows that 𝑆 is a weak Dunford-Pettis
operator. Therefore, 𝑆 is a weak U-Dunford-Pettis operator.

Additionally, we have that 𝐷𝑃𝑜 (𝐸,𝑌 ) is strictly included in 𝑤𝐷𝑃𝑢 (𝐸,𝑌 ). Indeed,
the natural embedding 𝐽 : 𝐿∞ [0, 1] → 𝐿2 [0, 1] is a positive U-Dunford-Pettis
operator but is not AM-compact (see [1, Remark 3.4]). Therefore, it is weak U-
Dunford-Pettis (since 𝐷𝑃𝑢 (𝐸,𝑌 ) ⊂ 𝑤𝐷𝑃𝑢 (𝐸,𝑌 )). Moreover, 𝐽 fails to be an order
Dunford-Pettis operator. If the operator 𝐽 = 𝐼𝑑𝐿2 [0,1] ◦ 𝐽 were AM-compact (see [6,
Theorem 2.7]), it would lead to a contradiction.

We also have that 𝑤𝐷𝑃(𝐸,𝑌 ) ⊂ 𝑤𝐷𝑃𝑢 (𝐸,𝑌 ) strictly. In fact, the operator 𝐼𝑑𝑙2

is weak U-Dunford-Pettis. This is due to the fact that 𝑙2 has the AM-compactness
property, which implies that 𝐼𝑑𝑙2 is order Dunford-Pettis (see in [9, Proposition 3.4]).
Although 𝐼𝑑𝑙2 is weak U-Dunford-Pettis, it is not weak Dunford-Pettis. If that’s not
the case, then 𝐼𝑑𝑙2 is a Dunford-Pettis operator. This is because 𝐼𝑑𝑙2 is weakly compact
(since 𝑙2 is reflexive) and satisfies 𝐼𝑑𝑙2 = 𝐼𝑑𝑙2 ◦ 𝐼𝑑𝑙2 (as shown in [2, Theorem 5.99]).
This means that the unit ball of 𝑙2 would be relatively compact, which is a contradiction
since 𝑙2 is infinite-dimensional.
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Now we will mention some algebraic properties related to this class of operators.

Proposition 3.1 Let 𝐸 and 𝐹 be two Banach lattices and 𝑋 and𝑌 be two Banach spaces. We
have the following assertions:

(1) If𝑇 : 𝐸 −→ 𝑋 is a weak U-Dunford-Pettis operator, then 𝑆◦𝑇 is weak U-Dunford-Pettis
operator for every operator 𝑆 : 𝑋 −→ 𝑌 .

(2) If𝑇 : 𝐹 −→ 𝑌 is a weak U-Dunford-Pettis operator and 𝑆 : 𝐸 −→ 𝐹 is an order bounded
operator, then 𝑇 ◦ 𝑆 is weak U-Dunford-Pettis operator.

Proof The proof is straightforward. ■

We note that 𝐿2 [0, 1] does not have the AM-compactness property, and its lattice
operations are not weakly sequentially continuous. The identity operator 𝐼𝑑𝐿2 [0,1] ,
although positive, is not a weak U-Dunford-Pettis operator. However, since 𝐿2 [0, 1]
is reflexive, the theorem 3.4 states that 𝐼𝑑𝐿2 [0,1] = 𝐼𝑑𝐿2 [0,1] ◦ 𝐼𝑑𝐿2 [0,1] is U-
Dunford-Pettis. This leads to the conclusion that 𝐿2 [0, 1] must be discrete (as shown
in [12, Proposition 3.1]), which is a contradiction. We will now outline the sufficient
conditions on lattices that ensure an operator is weak U-Dunford-Pettis.

Proposition 3.2 Let 𝐸 and 𝐹 be two Banach lattices, and let 𝑌 be a Banach space.

(1) If the lattice operations of 𝐸 are weakly sequentially continuous, then every operator 𝑇 :
𝐸 → 𝑌 is weak U-DP.

(2) If the lattice operations of 𝐹 are weakly sequentially continuous, then every order bounded
operator 𝑇 : 𝐸 → 𝐹 is weak U-DP. That is, 𝐿𝑏 (𝐸, 𝐹) ⊂ 𝑤𝐷𝑃𝑢 (𝐸, 𝐹).

(3) If 𝐹 has the AM-compactness property, then every regular operator 𝑇 : 𝐸 → 𝐹 is weak
U-Dunford-Pettis. Alternatively, 𝐿𝑟 (𝐸, 𝐹) ⊂ 𝑤𝐷𝑃𝑢 (𝐸, 𝐹).

Proof (1) Let (𝑥𝑛) be an order bounded weak null sequence of 𝐸 such that 𝐸 has
weakly sequentially continuous lattice operations, and 𝑇 be an operator from

𝐸 to another Banach space 𝑌 . Then 𝑥𝑛
𝑤−→ 0 =⇒ 𝑥𝑛

|𝑤 |
−→ 0 which

implies that {0, 𝑥1, 𝑥2, ....} is order |𝜎 | −weakly compact subset of 𝐸 . Hence, by
[6, Theorem 2.6], 𝐴 = {0, 𝑥1, 𝑥2, .....} is a Dunford-Pettis set of 𝐸 . So 𝑇 (𝐴) =

{0, 𝑇 (𝑥1), 𝑇 (𝑥2), .....} is also a Dunford-Pettis set of𝑌 .
(2) Let (𝑥𝑛) be an order bounded weakly null sequence of 𝐸 and 𝑇 : 𝐸 → 𝐹

be an order bounded operator. Then (𝑇 (𝑥𝑛)) is an order bounded weakly null
sequence in 𝐹 . Since 𝐹 has weakly sequentially continuous lattice operations, then
𝐵 = {0, 𝑇 (𝑥1), 𝑇 (𝑥2), .....} is an order |𝜎 | −weakly compact subset of 𝐹 . Hence,
by [6, Theorem 2.6], 𝐵 is a Dunford-Pettis set of 𝐹 .

(3) Let 𝑇 : 𝐸 → 𝐹 be a regular operator. Then there exist two positive operators
𝑇1, 𝑇2 : 𝐸 → 𝐹 such that 𝑇 = 𝑇1 − 𝑇2.

Now let (𝑥𝑛) be an order bounded weakly null sequence in 𝐸 . Then there exists
𝑥 ∈ 𝐸+ such that (𝑥𝑛) ⊂ [−𝑥, 𝑥], and let ( 𝑓𝑛) be a weakly null sequence in 𝐹′. We
have

| 𝑓𝑛 (𝑇𝑥𝑛) | ≤ | 𝑓𝑛 | ( |𝑇𝑥𝑛 |) ≤ | 𝑓𝑛 | ( |𝑇1𝑥𝑛 |) + | 𝑓𝑛 | ( |𝑇2𝑥𝑛 |).
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Since 𝐹 satisfies the AM-compactness property, by [6, Theorem 3.7], for all 𝑦 ∈
𝐹 , | 𝑓𝑛 | (𝑦) → 0. This implies that

| 𝑓𝑛 | ( |𝑇𝑖𝑥𝑛 |) ≤ | 𝑓𝑛 | ( |𝑇𝑖 | ( |𝑥𝑛 |)) ≤ | 𝑓𝑛 | (𝑇𝑖𝑥) → 0, 𝑖 = 1, 2.

So | 𝑓𝑛 (𝑇𝑥𝑛) | → 0, showing that 𝑇 is weak U-Dunford-Pettis.
■

Remark 3.3 In general, if a Banach lattice 𝐸 has the AM-compactness property, its
lattice operations are not necessarily weakly sequentially continuous. For example,
the Banach lattice 𝐿1 [0, 1] has the AM-compactness property, but its lattice oper-
ations are not necessarily weakly sequentially continuous. Conversely, the weakly
sequentially continuity of the lattice operations of 𝐸 does not imply that 𝐸 admits the
AM-compactness property. Indeed, the lattice operations of 𝑙∞ are weakly sequen-
tially continuous, but 𝑙∞ does not have the AM-compactness property (see [5, Remark
2.2 (4)]).

The next result characterizes the weak U-Dunford-Pettis operator and it is an
analogue of [2, Theorem 5.99].

Theorem 3.4 For an operator 𝑇 : 𝐸 → 𝑋 from a Banach lattice 𝐸 to a Banach space 𝑋 ,
the following statements are equivalent:

(1) 𝑇 is a weak U-Dunford-Pettis operator.
(2) 𝑇 carries order bounded relatively weakly compact subsets of 𝐸 to Dunford-Pettis subsets

of 𝑋 .
(3) If 𝑆 is a weakly compact operator from 𝑋 to an arbitrary Banach space, then 𝑆 ◦ 𝑇 is an

U-Dunford-Pettis operator.

Proof The proof is similar to that of [2, Theorem 5.99].
■

In the following results, we give a some characterisation of of the weak U-DP class
of operators, using the U-Dunford-Pettis property (UDPP) that it is defined in [10,
Definition 3.2], as well as in corollaries 3.5 and 3.6.

Corollary 3.5 Let 𝐸 be a Banach lattice. The following assertions are equivalent:

(1) Every operator 𝑆 : 𝐸 → 𝑌 is weak U-Dunford-Pettis for every Banach space 𝑌 .
(2) 𝐼𝑑𝐸 is weak U-Dunford-Pettis.
(3) 𝐸 has UDPP.

Proof (1) =⇒ (2) is obvious.
(2) =⇒ (1) Let 𝑆 : 𝐸 → 𝑌 be an operator, since 𝐼𝑑𝐸 is weak U-DP operator

then 𝑆 = 𝑆 ◦ 𝐼𝑑𝐸 is also a weak U-DP operator see Proposition 3.1.
(2) =⇒ (3) Let 𝑆 : 𝐸 → 𝑌 be a weakly compact operator, since 𝐼𝑑𝐸 is a weak

U-DP operator then 𝑆 = 𝑆 ◦ 𝐼𝑑𝐸 is also an U-Dunford-Pettis operator see Theorem
3.4 (1) =⇒ 3)), then 𝐸 has UDPP.
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3 =⇒ 2) Let 𝑆 : 𝐸 → 𝑌 be a weakly compact operator and 𝐸 has UDPP then 𝑆

is an U-Dunford-Pettis operator, since 𝑆 = 𝑆 ◦ 𝐼𝑑𝐸 then by (3) =⇒ 1)) of Theorem
3.4, 𝐼𝑑𝐸 is weak U-DP. ■

We have also similarly,

Corollary 3.6 Let 𝐹 be a Banach lattice. The following assertions are equivalent:

(1) Every order bounded operator 𝑆 : 𝐸 → 𝐹 is weak U-Dunford-Pettis for every Banach
lattice 𝐸 .

(2) 𝐼𝑑𝐹 is weak U-Dunford-Pettis.
(3) 𝐹 has UDPP.

By using the Corollary 3.5 and Definition 3.1, we can give an explicit version of the
UDPP.

Corollary 3.7 Let 𝐸 be a Banach lattice. The following assertions are equivalent:

(1) 𝐸 has UDPP.
(2) For every order bounded weakly null sequence (𝑥𝑛) in 𝐸 , and every weakly null sequence

( 𝑓𝑛) in 𝐸 ′, we have 𝑓𝑛 (𝑥𝑛) → 0.
(3) For every order bounded weakly null sequence (𝑥𝑛) in 𝐸 , the set {𝑥1, 𝑥2, ..., 𝑥𝑛, ..} is a

Dunford-Pettis set.

As consequence of corollary 3.5 and proposition 3.2 we have the following result,

Corollary 3.8 Let 𝐸 be a Banach lattice. If the lattice operations of 𝐸 are weakly sequentially
continuous or 𝐸 has the AM compactness property, then 𝐸 has the UDPP.

Proof (1) If the lattice operations of 𝐸 are weakly sequentially continuous, then the
positive operator 𝐼𝑑𝐸 is weakly U-DP (see Proposition 3.2) and by the Corollary
3.5, 𝐸 has UDPP.

(2) If 𝐸 has the AM-compactness property, then 𝐼𝑑𝐸 is order Dunford-Pettis (see [9,
Proposition 3.1]). Then it is weak U-Dunford-Pettis, so 𝐸 has UDPP.

■

Remark 3.9 We note that if 𝐸 is a Banach lattice with an order unit 𝑒, then 𝐵𝐸 =

[−𝑒, 𝑒]. In this case, every order weakly compact operator from 𝐸 to any Banach space
𝑌 is also weakly compact. Which implies that 𝐸 has the UDPP, if and only if 𝐸 has the
o-UDPP). According to [1, Proposition 3.2], 𝐸 has o-UDPP if and only if the lattice
operations of 𝐸 are weakly sequentially continuous, since every weakly null sequence
in 𝐸 is also an order bounded weakly null sequence.

It is obvious that if 𝐸 has o-UDPP, then it has UDPP. But the converse is not gen-
erally true. In fact, if we take 𝐸 = 𝐿1 [0, 1], then 𝐸 ′ = 𝐿∞ [0, 1], since the lattice
operations of 𝐸 ′ are weakly sequentially continuous, then 𝐸 has AM-compactness
property according to [3, Theorem 3.3]), which implies that 𝐼𝑑𝐸 is order DP (see [9,
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Proposition 3.4]), so it is weak U-DP, thus 𝐸 has UDPP (see Corollary 3.5 ). In addi-
tion, 𝐸 does not have o-UDPP. In fact, the operator 𝑆 : 𝐿1 [0, 1] → 𝑙∞ defined in
subsection 3.1 is an order weakly compact operator, but not an U-DP operator. Note
that the norm of (𝐿1 [0, 1])′ = 𝐿∞ [0, 1] is not order continuous. Now we will give
some other important characterizations of the UDPP on a Banach lattice.

Theorem 3.10 Let 𝐸 be a Banach lattice such that the norm of 𝐸 and the norm of 𝐸 ′ are
order continuous, then the following statements are equivalent:

(1) 𝐸 has the UDPP.
(2) 𝐸 has the AM-compactness property .
(3) 𝐸 has the o-UDPP.
(4) 𝐸 is discrete.
(5) The lattice operations of 𝐸 are weakly sequentially continuous.

Proof • (1) =⇒ (2) if 𝐸 has UDPP, then 𝐼𝑑𝐸 is weak U-DP, since the norm of 𝐸
is order continuous(see Proposition 3.20), then 𝐼𝑑𝐸 is order DP, implying that 𝐸
has the AM compactness property (see [9, Proposition 3.4]).

• (2) =⇒ (1) (see Corollary 3.8)
• (1) =⇒ (3) Let us demonstrate this by contradiction: let us assume that 𝐸 has

the UDPP but not the o-UDPP. According to [1, Proposition 3.2], there exists a
weakly null and order bounded sequence (𝑥𝑛) in 𝐸 such that |𝑥𝑛 |

𝑤
↛ 0. This

implies the existence of a positive functional 𝑓 ∈ 𝐸 ′+ such that 𝑓 ( |𝑥𝑛 |) ↛ 0.
Consequently, for any 𝜖 > 0, there exists a subsequence (𝑦𝑛) of ((𝑥𝑛)) such that
𝑓 ( |𝑦𝑛 |) > 𝜖 for all 𝑛 ∈ N★.
We have:
𝑓 ( |𝑦𝑛 |) = sup {|𝑔(𝑦𝑛) | : 𝑔 ∈ 𝐸 ′, |𝑔 | ≤ 𝑓 }
which implies that there exist functional 𝑔𝑚 ∈ 𝐸 ′ with |𝑔𝑚 | ≤ 𝑓 such that:

𝑓 ( |𝑦𝑛 |) ≤ |𝑔𝑛 (𝑦𝑛) | +
1
𝑛

for all 𝑛 ∈ N★.

Since the norm of 𝐸 ′ is order continuous and ( |𝑔𝑛 | ≤ 𝑓 ), the sequence ((𝑔𝑛))
must have a weakly convergent subsequence (𝑔𝜙 (𝑛) ), converging to some 𝑔 (i.e.,
(𝑔𝜙 (𝑛)

𝑤→ 𝑔)). Thus, we also have:

𝜖 < 𝑓 ( |𝑦𝜙 (𝑛) |) ≤ |𝑔𝜙 (𝑛) (𝑦𝜙 (𝑛) ) |+
1

𝜙(𝑛) ≤ |(𝑔𝜙 (𝑛)−𝑔) (𝑦𝜙 (𝑛) ) |+|𝑔(𝑦𝜙 (𝑛) ) |+
1

𝜙(𝑛) → 0.

(This conclusion follows because 𝐸 has the UDPP, and since (𝑔𝜙 (𝑛) − 𝑔) 𝑤→ 0 in
(𝐸 ′) and 𝑦𝜙 (𝑛)

𝑤→ 0 ( which means ( |𝑔(𝑦𝜙 (𝑛) ) | → 0)), in addition (𝑦𝜙 (𝑛) ) is
order bounded in 𝐸 , which implies (𝑔𝜙 (𝑛) − 𝑔) (𝑦𝜙 (𝑛) ) → 0 see corollary 3.7 ).
However, this is a contradiction, as we initially assumed that the sequence
(𝑥1, 𝑥2, . . .) forms a Dunford-Pettis set (see [6, Proposition 2.2]).

• (3) =⇒ (1) (obvious).
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• (3) =⇒ (4): Given that the norm of 𝐸 is order continuous, it follows that 𝐼𝑑𝐸 is
order weakly compact. As 𝐸 has o-UDPP, we can conclude that 𝐼𝑑𝐸 is U-DP,
which in fact implies that 𝐸 is discrete (see [12, Proposition 3.1]).

• (4) =⇒ (5) If 𝐸 is discrete, then 𝐸 ′ is discrete (see [3, Corollary 2.3]), which
implies that the lattice operations of 𝐸 are weakly sequentially continuous (see [8,
Corollary 2.2]).

• (5) =⇒ (3): Let 𝑇 be an order weakly compact operator from 𝐸 to an arbitrary
Banach space 𝑋 . Since the lattice operations of 𝐸 are weakly sequentially
continuous, 𝑇 is an U-DP operator. In fact, for any order bounded weakly null
sequence (𝑥𝑛), we have

∥𝑇𝑥𝑛∥ = ∥𝑇𝑥+𝑛 − 𝑇𝑥−𝑛 ∥ ≤ ∥𝑇𝑥+𝑛 ∥ + ∥𝑇𝑥−𝑛 ∥ → 0.

This follows from [11, Corollary 3.4.9], which shows that 𝑇 is U-DP, and thus 𝐸
has o-UDPP.

■

Remark 3.11 The order continuity condition of the norm of 𝐸 is essential. In fact,
we assume that 𝐸 = 𝐿∞ [0, 1]. Note that 𝐸 ′ = (𝐿∞ [0, 1])′ is order continuous, but
𝐸 is not. In this case, note that 𝐸 has UDPP, o-UDPP and the lattice operations of
𝐸 are weakly sequentially continuous. But 𝐸 is not discrete and does not have AM-
compactness property.

In the following result we study the domination problem for the class of weak U-
Dunford-Pettis operators.

Theorem 3.12 If a positive operator 𝑆 : 𝐸 → 𝐹 is dominated by a weak U-Dunford-Pettis
operator 𝑇 : 𝐸 → 𝐹 , then 𝑆 is a weak U-Dunford-Pettis operator.

Proof : Let 𝑆, 𝑇 : 𝐸 → 𝐹 be two positive operators between Banach lattices such
that 0 ≤ 𝑆 ≤ 𝑇 , with 𝑇 being a weak U-Dunford-Pettis operator. Let 𝐴 be an order
bounded relatively weakly compact subset of 𝐸 .

By Theorem 3.4, 𝑇 (𝐴) is a Dunford-Pettis set. Therefore, for every weakly null
sequence (𝑦′𝑛) in 𝐹′, it converges uniformly to zero on the set 𝑇 (𝐴) (as established in
[10, Theorem 1] ).

Additionally, since 𝑆(𝐴) ⊂ 𝑇 (𝐴) (because 0 ≤ 𝑆 ≤ 𝑇 implies 𝑆[−𝑥, 𝑥] ⊂ 𝑇 [−𝑥, 𝑥]
for all 𝑥 ∈ 𝐸+), we have:

sup
𝑥∈𝑆 (𝐴)

|𝑦′𝑛 (𝑥) | ≤ sup
𝑥∈𝑇 (𝐴)

|𝑦′𝑛 (𝑥) |.

This implies that (𝑦′𝑛) converges uniformly to zero on the set 𝑆(𝐴). Therefore, we
conclude that 𝑆 is a weak U-Dunford-Pettis operator.

■
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3.2 The relationship between the class of weak U-Dunford-Pettis and other
classes

We note that:

• 𝐼𝑑𝐿∞ [0,1] is weak U-Dunford Pettis (because the lattice operations of 𝐿∞ [0, 1] are
weakly sequentially continuous). However, 𝐼𝑑𝐿∞ [0,1] is not an order weakly
compact operator, and therefore it is not a weakly compact operator.

• Furthermore, 𝐼𝑑𝐿2 [0,1] is a weakly compact (respectively order-weakly compact)
operator, but it is not weak U-Dunford-Pettis.

Similar to the DPP, UDPP and o-UDPP properties, we can define new properties on
Banach lattices.

Definition 3.2 (1) A Banach lattice 𝐺 is said to have the weak U-Dunford-Pettis
property (wUDPP) if, for every weakly compact operator 𝑆 : 𝐺 → 𝑋 , the operator
𝑆 is weak U-Dunford-Pettis for any Banach space 𝑋 .

(2) A Banach lattice 𝐺 is said to have the order weak U-Dunford-Pettis property
(owUDPP) if, for every order weakly compact operator 𝑆 : 𝐺 → 𝑋 , the operator
𝑆 is weak U-Dunford-Pettis for any Banach space 𝑋 .

(3) A Banach lattice 𝐺 is said to have the reciprocal weak U-Dunford-Pettis property
(RwUDPP) if, for every weak U-Dunford-Pettis operator 𝑆 : 𝐺 → 𝑋 , the operator
𝑆 is weakly compact for any Banach space 𝑋 .

(4) A Banach lattice 𝐺 is said to have the reciprocal order weak U-Dunford-Pettis
property (RowUDPP) if, for every weak U-Dunford-Pettis operator 𝑆 : 𝐺 → 𝑋 ,
the operator 𝑆 is order weakly compact for any Banach space 𝑋 .

Remark 3.13 It is evident that if a Banach lattice𝐸 has o-UDPP, then it must also have
owUDPP. For example, we may consider the Banach lattices 𝑙 𝑝 , where 1 ≤ 𝑝 < ∞.
These have owUDPP, however, 𝐿2 [0, 1] does not possess this property. This is due to
the fact that 𝐼𝑑𝐿2 [0,1] is order weakly compact and is not weak U-DP.

3.2.1 Comparison of the weak U-DP operator with the U-DP and the
weak DP operators

Now, we give necessary and sufficient conditions for a weak U-Dunford-Pettis
operator to be U-Dunford-Pettis.

Proposition 3.14 If any positive weak U-Dunford-Pettis operator 𝑇 from 𝐸 to 𝐹 is U-
Dunford-Pettis, then one of the following assertion is valid:

(1) 𝐸 has o-UDPP.
(2) The norm of 𝐹 is order continuous.

Proof If we assume that neither 𝐸 has o-UDPP nor the norm of 𝐹 is order continu-
ous, then [1, Theorem 3.1 ] proves that there exist 𝑆, 𝑇 : 𝐸 → 𝐹 such that 0 ≤ 𝑆 ≤ 𝑇 ,
𝑇 is U-Dunford-Pettis and 𝑆 is not U-Dunford-Pettis.

2025/05/25 14:04
https://doi.org/10.4153/S0008439525101410 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101410


10 A. Driouich, L. Zrouala and B. El Wahbi

Since 𝑇 is an U-Dunford-Pettis operator, it is also weak U-Dunford-Pettis. By
applying Theorem 3.12, we can also conclude that 𝑆 is weak U-Dunford-Pettis. How-
ever, our hypothesis implies that 𝑆 is U-Dunford-Pettis, which is a contradiction. ■

Remark 3.15 • Condition 2) of Proposition 3.14 is not sufficient. Indeed, for
𝐸 = 𝐹 = 𝐿1 [0, 1], we have that 𝐼𝑑𝐿1 [0,1] is weak U-Dunford-Pettis, since it
admits UDPP. However, it is not U-Dunford-Pettis because 𝐿1 [0, 1] is not discrete
(see [12, Proposition 3.1] ), although the norm of 𝐿1 [0, 1] is order continuous.

• Similarly, condition 1) of Proposition 3.14 is not sufficient. For example, if we
take 𝐸 = 𝐹 = 𝑐, we find that the identity operator 𝐼𝑑𝑐 is weak U-Dunford-Pettis.
This is because the space 𝑐 has the U-Dunford-Pettis property UDPP due to the
continuity of its lattice operations. Consequently, it also satisfies the o-UDPP,
which implies it has the UDPP. However, 𝑐 does not possess the RowUDP
property, since 𝐼𝑑𝑐 is not order weakly compact, as its norm is not order
continuous. Additionally, 𝐼𝑑𝑐 is not U-Dunford-Pettis either, because its norm
fails to be order continuous (see [12, Proposition 3.1]).

Proposition 3.16 Let 𝐸 and 𝐹 be two Banach lattices.

(1) If 𝐸 has the o-UDPP and the RowUDPP, then every weak U-DP operator𝑇 from 𝐸 to every
Banach space 𝑋 is U-DP.

(2) If 𝐹 is discrete and its norm is order continuous, then for every order bounded weak U-
Dunford-Pettis operator 𝑇 : 𝐺 → 𝐹 , it follows that 𝑇 is U-Dunford-Pettis for every
Banach lattice 𝐺 .

Proof (1) Let 𝑇 : 𝐸 → 𝑋 be a weak U-Dunford-Pettis operator. Given that 𝐸 sat-
isfies the de Row UDPP condition, it follows that 𝑇 is an order weakly compact.
Moreover, since 𝐸 also satisfies the o-UDPP condition, we conclude that 𝑇 is an
U-Dunford-Pettis operator.

(2) Let 𝑇 : 𝐺 → 𝐹 be an order bounded weak U-Dunford-Pettis operator. If 𝐹 is a
discrete space with an order continuous norm, then the identity operator 𝐼𝑑𝐹 is
U-Dunford-Pettis (as shown in [12, Proposition 3.2] ). Since 𝑇 = 𝐼𝑑𝐹 ◦ 𝑇 , we can
apply [1, Proposition 3.1] to conclude that 𝑇 is also U-Dunford-Pettis.

■

Other sufficient condition,

Proposition 3.17 Let be 𝐸 a Banach lattice and𝑌 a Banach space, if𝑌 is reflexive, then every
weak U-Dunford-Pettis operator 𝑇 : 𝐸 → 𝑌 is U-Dunford-Pettis .

Proof obvious (𝑇 = 𝐼𝑑𝑌 ◦ 𝑇 and 𝐼𝑑𝑌 is weakly compact, by Proposition 3.1 𝑇 is
U-DP). ■

We now provide sufficient conditions for weak U-Dunford-Pettis operators to be
weak Dunford-Pettis operators in the following result.
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Proposition 3.18 Let 𝑆 : 𝐸 → 𝑍 be a weak U-Dunford-Pettis operator, where 𝐸 is a Banach
lattice that admits an order unit, and 𝑍 is a Banach space, then 𝑆 is a weak Dunford-Pettis
operator.

Proof Assume that a Banach lattice 𝐸 has an order unit 𝑒, and let 𝑆 be a weak U-
Dunford-Pettis operator from 𝐸 to a Banach space 𝑍 . We need to show that 𝑆 is a
weak Dunford-Pettis operator, which is equivalent to proving that for any relatively
weakly compact subset 𝐴 of 𝐸 , the image 𝑆(𝐴) is a Dunford-Pettis set in 𝑍 . Since 𝐴

is norm-bounded in 𝐸 , it is also order-bounded. This is because there exists 𝑟 > 0
such that 𝐴 ⊂ 𝑟𝐵𝐸 = 𝑟 [−𝑒, 𝑒]. Given that 𝑆 is a weak U-Dunford-Pettis operator, it
follows that 𝑆(𝐴) is a Dunford-Pettis set in 𝑍 (see Theorem 3.4).

■

3.2.2 Comparison of the weak U-DP operator with the order DP operator
We give sufficient conditions for a weak U-DP operator from Banach lattice to Banach
space to be an order DP operator.

Proposition 3.19 Let 𝐸 be a Banach lattice and 𝑌 a Banach space. Then, every weak U-
Dunford-Pettis operator𝑇 : 𝐸 → 𝑌 is an order Dunford-Pettis operator. Whenever one of the
following assertions is valid:

(1) the norm of 𝐸 is order continuous.
(2) 𝐸 has the AM-compactness property.
(3) 𝑌 has the DPP and is reflexive.

Proof Let be 𝑇 : 𝐸 → 𝑌 a weak U-Dunford-Pettis operator.

(1) If the norm of 𝐸 is order continuous, then for all 𝑥 ∈ 𝐸+ the [−𝑥, 𝑥] is an order
bounded relatively weakly compact subset of 𝐸 by the hypothesis that 𝑇 ( [−𝑥, 𝑥])
is a Dunford-Pettis set of 𝐹 , so 𝑇 is order Dunford-Pettis.

(2) If 𝐸 has AM-compactness property then 𝐼𝑑𝐸 is order Dunford-Pettis operator (see
[9, Proposition 3.4]) and since that𝑇 = 𝑇 ◦ 𝐼𝑑𝐸 then𝑇 is order Dunford-Pettis (see
[12, Proposition 3.1]).

(3) Let 𝑢 ∈ 𝐸+. Then 𝑇 [−𝑢, 𝑢] is a norm-bounded set in 𝑌 , since 𝑌 is reflexive.
Therefore,𝑇 [−𝑢, 𝑢] is relatively weakly compact (see [2, Theorem 3.32]) and by the
hypothesis that𝑌 has DPP, we can conclude that𝑇 [−𝑢, 𝑢] is a Dunford-Pettis set (
see [6, Proposition 2.3]). Thus, 𝑇 is an order Dunford-Pettis operator.

■

In the following we characterize weak U-Dunford-Pettis operators between two
Banach lattices as order Dunford-Pettis operators under equivalent conditions.

Theorem 3.20 Let 𝐸 and 𝐹 be two Banach lattices such that 𝐸 and 𝐹 are 𝜎-Dedekind
complete and 𝐹 has the DPP. The following assertions are equivalent:

(1) Every weak U-Dunford-Pettis operator 𝑇 : 𝐸 → 𝐹 is order Dunford-Pettis operator.
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(2) Every positive weak U-Dunford-Pettis operator 𝑇 : 𝐸 → 𝐹 is order Dunford-Pettis
operator.

(3) One of this assertions is valid:

(a) The norm of 𝐸 is order continuous.
(b) The norm of 𝐹 is order continuous.

Proof It is obvious that (3) implies (1) and (1) implies (2).
To show that (2) implies (3), it is assumed that if the norm of𝐸 and the norm of𝐹 are

not order continuous, then there exists a positive operator 𝑇 : 𝐸 → 𝐹 which is weak
U-Dunford-Pettis and such that 𝑇 is not order Dunford-Pettis. Since 𝐸 and 𝐹 are
𝜎-Dedekind complete, it follows from Theorem 4.56 [2] that there exist two positive
projections 𝑃1 : 𝐸 → 𝑙∞ and 𝑃2 : 𝐹 → 𝑙∞ and two canonical injections 𝑖1 : 𝑙∞ → 𝐸

and 𝑖2 : 𝑙∞ → 𝐹 which are all weak U-Dunford-Pettis because the lattice operations
of 𝑙∞ are sequentially continuous (applying the Proposition 3.2). Then the composition
operators 𝑇 = 𝑖2 ◦ 𝑃1 : 𝐸 → 𝐹 is weak U-Dunford-Pettis see Proposition 3.1, but
not order Dunford-Pettis ( see [5, Remark 2.2(4)] and [9, Proposition 3.4]). This is clear
from the fact that 𝐼𝑑𝑙∞ = 𝑃2 ◦ 𝑇 ◦ 𝑖1 is not order Dunford-Pettis. ■

The proposition 3.20 states that if 𝐸 = 𝐹 we get the following result.

Corollary 3.21 Let 𝐸 be a 𝜎-Dedekind complete Banach lattice. Then the following asser-
tions are equivalent:

(1) Every weak U-Dunford-Pettis operator 𝑇 : 𝐸 → 𝐸 is an order Dunford-Pettis. operator.
(2) Every positive weak U-Dunford-Pettis operator 𝑇 : 𝐸 → 𝐸 is an order Dunford-Pettis.

operator.
(3) the norm of 𝐸 is order continuous.

3.3 Conclusion

The following diagram provides a summary of the relationships between the different
classes of operators that have been the subject of this work:
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𝐴𝑀 (𝐸,𝑌 )

𝐿𝑤𝑐 (𝐸,𝑌 )

K(E,Y) DP(E,Y) DP𝑢(E,Y) 𝐿𝑜𝑤𝑐 (𝐸,𝑌 )

𝑤𝐷𝑃(𝐸,𝑌 ) wDP𝑢(E,Y)

𝐷𝑃𝑜 (𝐸,𝑌 )

wDP𝑢(E,Y)

(1)

wDP𝑢(E,Y)

(2)

wDP𝑢(E,Y)

(3)

𝐿𝑜𝑤𝑐 (𝐸,𝑌 )
(4)

wDP𝑢(E,Y)

(5)

• (1): 𝐸 has o-UDPP and RowUDPP or𝑌 is reflexive.
• (2): 𝐸 is order continuous or 𝐸 has AM-compactness or𝑌 is reflexive and has DPP.
• (3): 𝐸 has order unit.
• (4): 𝐸 has owUDPP.
• (5): 𝐸 has RowUDPP.
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