PERTURBATION OF BANACH SPACE OPERATORS WITH A
COMPLEMENTED RANGE

B. P. DUGGAL
8 Redwood Grove, Northfield Avenue, Ealing,
London W3 4SZ, United Kingdom
e-mail: bpduggal@yahoo.co.uk

and C. S. KUBRUSLY
Catholic University of Rio de Janeiro, 22453-900,
Rio de Janeiro, RJ, Brazil
E-mail: carlos@ele.puc-rio.br

(Received 14 February 2016; revised 24 July 2016; accepted 20 October 2016;
first published online 21 March 2017)

Abstract. Let $C[\mathcal{X}]$ be any class of operators on a Banach space \mathcal{X}, and let $Holo^{-1}(C)$ denote the class of operators A for which there exists a holomorphic function f on a neighbourhood \mathcal{N} of the spectrum $\sigma(A)$ of A such that f is non-constant on connected components of \mathcal{N} and $f(A)$ lies in C. Let $R[\mathcal{X}]$ denote the class of Riesz operators in $B[\mathcal{X}]$. This paper considers perturbation of operators $A \in \Phi_+(\mathcal{X}) \cup \Phi_-(\mathcal{X})$ (the class of all upper or lower [semi] Fredholm operators) by commuting operators in $B \in Holo^{-1}(R[\mathcal{X}])$. We prove (amongst other results) that if $\pi_B(B) = \prod_{i=1}^{m} (B - \mu_i)$ is Riesz, then there exist decompositions $\mathcal{X} = \oplus_{i=1}^{m} \mathcal{X}_i$ and $B = \oplus_{i=1}^{m} B |_{\mathcal{X}_i}$ such that: (i) If $\lambda \neq 0$, then $\pi_B(A, \lambda) = \prod_{i=1}^{m} (A - \lambda \mu_i)^{\alpha_i} \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) if and only if $A - \lambda B_0 - \lambda \mu_i \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), and (ii) (case $\lambda = 0$) $A \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) if and only if $A - B_0 \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$), where $B_0 = \oplus_{i=1}^{m} (B_0 - \mu_i)$; (iii) if $\pi_B(A, \lambda) \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$) for some $\lambda \neq 0$, then $A - \lambda B \in \Phi_+(\mathcal{X})$ (resp., $\in \Phi_-(\mathcal{X})$).

1. Introduction. Given an infinite-dimensional complex Banach space \mathcal{X}, let $B[\mathcal{X}]$ denote the algebra of operators (equivalently, bounded linear transformations) of \mathcal{X} into itself. Let $A^{-1}(0)$ and $A(\mathcal{X})$ denote, respectively, the null space and the range of an operator $A \in B[\mathcal{X}]$. The operator A has an inner generalized inverse if there exists an operator $B \in B[\mathcal{X}]$ such that $ABA = A$. It is easily seen that if B is an inner generalized inverse of A, then AB is a projection from \mathcal{X} onto $A(\mathcal{X})$ and $I_{\mathcal{X}} - BA$ is a projection from \mathcal{X} onto $A^{-1}(0)$; Indeed, A is inner regular (i.e., A has an inner generalized inverse) if and only if $A(\mathcal{X})$ and $A^{-1}(0)$ are complemented (in \mathcal{X}). The study of inner regular operators has a long and rich history, and there is a large body of information available on inner regular operators in the extant literature (see, for example, [7]). An important class of inner regular Banach space operators is that of operators $A \in B[\mathcal{X}]$ which are either left or right Fredholm. Here, we say that $A \in B[\mathcal{X}]$ is left Fredholm, $A \in \Phi_+(\mathcal{X})$ (resp, right Fredholm, $A \in \Phi_+(\mathcal{X})$) if $A \in \Phi_+(\mathcal{X})$ and $R(A)$ is complemented (resp., $A \in \Phi_-(\mathcal{X})$ and $A^{-1}(0)$ is complemented), $\Phi_+(\mathcal{X}) = \{ A \in B[\mathcal{X}] : A(\mathcal{X})$ is closed and $\dim(A^{-1}(0)) < \infty \}$ is the class of upper semi-Fredholm operators and
\(\Phi_-(\mathcal{X}) = \{ A \in \mathcal{B}[\mathcal{X}] : \dim(\mathcal{X}/A(\mathcal{X})) < \infty \} \) is the class of lower semi-Fredholm operators (see, e.g., [12]).

The problem of the perturbation of inner regular operators by compact operators is of some interest, and has been considered in the not too distant past. Thus, if an \(A \in \mathcal{B}[\mathcal{X}] \) is left Fredholm (or right Fredholm), and \(S \in \mathcal{B}[\mathcal{X}] \) is a compact operator, then \(A + S \) is left Fredholm (resp., right Fredholm) [5, 10]. This result is in a way the best possible: If \(A \in \mathcal{B}[\mathcal{X}, \mathcal{Y}] \) for Banach spaces \(\mathcal{X} \) and \(\mathcal{Y} \), \(A^{-1}(0) \) is infinite-dimensional and complemented in \(\mathcal{X} \), \(A(\mathcal{X}) \) is closed, complemented and of infinite co-dimension in \(\mathcal{Y} \), then the closure of \((A + S)(\mathcal{X}) \) is complemented in \(\mathcal{Y} \) for every compact \(S \in \mathcal{B}[\mathcal{X}, \mathcal{Y}] \) only if \(A(\mathcal{X}) \) has a complementary subspace isomorphic to a Hilbert space [10, Theorem 3].

For an operator \(A \in \mathcal{B}[\mathcal{X}] \), let \(\mathcal{H}(\sigma(A)) \) denote the set of functions \(f \) which are holomorphic on a neighbourhood \(\mathcal{N} \) of the spectrum \(\sigma(A) \) of \(A \), and let \(\mathcal{H}_s(\sigma(A)) = \{ f \in \mathcal{H}(\sigma(A)) : f \) is non-constant on the connected components of \(\mathcal{N} \} \). Let \(\mathcal{K}[\mathcal{X}] \) denote the ideal of compact operators, and let \(\mathcal{R}[\mathcal{X}] \) denote the class of Riesz operators (i.e., operators whose non-zero translates are Fredholm). The operator \(A \) is holomorphically compact (resp., Riesz), \(A \in \text{Holo}^{-1}(\mathcal{K}[\mathcal{X}]) \) (resp., \(A \in \text{Holo}^{-1}(\mathcal{R}[\mathcal{X}]) \)), if there exists an \(f \in \mathcal{H}_s(\sigma(A)) \) such that \(f(A) \) is compact (resp., Riesz).

This paper considers perturbation of operators in \(\Phi_+(\mathcal{X}) = \Phi_+(\mathcal{X}) \cup \Phi_-(\mathcal{X}) \) by commuting operators in \((\text{Holo}^{-1}(\mathcal{K}[\mathcal{X}]), \text{more generally}) \) \(\text{Holo}^{-1}(\mathcal{R}[\mathcal{X}]) \). It is known that if \(B \in \text{Holo}^{-1}(\mathcal{K}[\mathcal{X}]) \) (resp., \(B \in \text{Holo}^{-1}(\mathcal{R}[\mathcal{X}]) \)), then there exists a polynomial \(\pi_B(z) = \prod_{i=1}^m (z - \mu_i)^{a_i} \) for some complex numbers \(\mu_i \) and positive integers \(a_i \) (resp., \(\pi_B(z) = \prod_{i=1}^m (z_i - \mu_i) \)), which is the minimal polynomial \(\pi_B(\cdot) \) of \(B \), such that \(\pi_B(B) \) is compact (resp., Riesz).

Let \(\Phi_+(\mathcal{X}) \) denote either of \(\Phi_+(\mathcal{X}) \) and \(\Phi_-(\mathcal{X}) \). We prove (a more general version of the result) that if \(\pi_B(A) \in \Phi_+(\mathcal{X}) \), if \([A, B] = AB - BA = 0 \) (or, more generally, \([A, B] \) is in the “perturbation class” \(\text{Ptrb}(\Phi_+(\mathcal{X})) \) of \(\Phi_+(\mathcal{X}) \)) and \(\pi_B(B) \) is Riesz, then \(A - B \in \Phi_+(\mathcal{X}) \). The hypothesis \(B \in \text{Holo}^{-1}(\mathcal{K}[\mathcal{X}]) \) (or, \(B \in \text{Holo}^{-1}(\mathcal{R}[\mathcal{X}]) \)) enforces a decomposition \(\mathcal{X} = \bigoplus_{i=1}^m \mathcal{X}_i \) of \(\mathcal{X} \) such that \(B = \bigoplus_{i=1}^m B_i = \bigoplus_{i=1}^m B_i : \mathcal{X}_i \) with \(\bigoplus_{i=1}^m (B_i - \mu_i)^{c_i} \) compact (resp., \(\bigoplus_{i=1}^m (B_i - \mu_i) \) Riesz). Let \(B_0 = \bigoplus_{i=1}^m B_i - \mu_i \), where \(m \) and \(\mu_i \) are as above. It is proved that if \([A, B] = 0 \) and \(B \in \text{Holo}^{-1}(\mathcal{R}[\mathcal{X}]) \), then (a) \(\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_+(\mathcal{X}) \) for a complex number \(\lambda \neq 0 \) if and only if \(A - \lambda(B_0 - \mu_i) \in \Phi_+(\mathcal{X}), \) and \(A \in \Phi_+(\mathcal{X}) \) if and only if \(A - B_0 \in \Phi_+(\mathcal{X}) \); (b) \(\pi_B(A, \lambda) \in \Phi_+(\mathcal{X}) \) for some \(\lambda \neq 0 \) implies \(A - \lambda B \in \Phi_+(\mathcal{X}) \). The case of operator \(A \) such \(\pi_B(A, \lambda) \) has SVEP, the single-valued extension property, or essential SVEP, at 0 is also considered.

2. Auxiliary results. Let \(\text{Inv}_i(\mathcal{X})(\text{Inv}_i(\mathcal{X})) \) denote the class of operators \(A \in \mathcal{B}[\mathcal{X}] \) which are left invertible (resp., right invertible). Let \(\mathcal{T} \) denote the Calkin homomorphism \(\mathcal{T} : \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathcal{K}[\mathcal{X}] \). Then, \(A \in \mathcal{K}[\mathcal{X}] \) if and only if \(\mathcal{T}(A) = 0 \), \(A \in \mathcal{R}[\mathcal{X}] \) if and only if \(\mathcal{T}(A) \) is a quasinilpotent operator, and an \(A \in \mathcal{B}[\mathcal{X}] \) is in \(\Phi_i(\mathcal{X}) \) (resp., \(\Phi_i(\mathcal{X}) \)) if and only if \(\mathcal{T}(A) \in \text{Inv}_i(\mathcal{X}) \) (resp., \(\mathcal{T}(A) \in \text{Inv}_i(\mathcal{X}) \)). Let \(B \in \text{Holo}^{-1}(\mathcal{K}[\mathcal{X}]) \). Then, there exists a function \(f \in \mathcal{H}_s(\sigma(B)) \) such that \(f(B) \in \mathcal{K}[\mathcal{X}] \), and hence such that \(\mathcal{T}(f(B)) = f(\mathcal{T}(B)) = 0 \). Since \(f(z) \) has at least a finite number of zeros, there exists a polynomial \(p(\cdot) \) such that \(f(\mathcal{T}(B)) = p(\mathcal{T}(B))g(\mathcal{T}(B)) = 0 \), where the (holomorphic on \(\sigma(B) \)) function \(g \) satisfies the property that \(g(z) \neq 0 \) on \(\sigma(B) \). But then \(p(\mathcal{T}(B)) = 0 \), and hence there exists a monic irreducible polynomial, the minimal polynomial of \(B \), which divides every other polynomial \(q(z) \) such that \(q(\mathcal{T}(B)) = 0 \). If we let \(\pi_B(z) = \prod_{i=1}^m (z - \mu_i)^{c_i} \) denote the
minimal polynomial of B, then $\pi_B(B) \in \mathcal{K}[\mathcal{X}]$. In the case in which $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$, so that $f(B) \in \mathcal{R}[\mathcal{X}]$ for some $f \in \mathcal{H}_c(\sigma(B))$, $f(T(B))$ is a quasinilpotent such that $f(T(B)) = p(T(B))g(T(B))$ for some polynomial $p(.)$ such that $p(T(B))$ is quasinilpotent and the function $g(.)$ is invertible. Once again there exists a minimal polynomial $\pi_B(.)$ of B such that $\pi_B(B) \in \mathcal{R}[\mathcal{X}]$ We have ([11, 13, 16]):

PROPOSITION 2.1. The following conditions are equivalent for operators $B \in \mathcal{B}[\mathcal{X}]:$

(i) $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$).

(ii) B is polynomially compact (resp., polynomially Riesz).

(iii) There exists a monic irreducible polynomial $\pi_B(z) = \prod_{i=1}^{m} (z - \mu_i)$ (resp., $\pi_B(z) = \prod_{i=1}^{m} (z - \mu_i)$), the minimal polynomial of B, such that $\pi_B(B)$ is compact (resp., Riesz).

If $f(B) \in \mathcal{K}[\mathcal{X}] \cup \mathcal{R}[\mathcal{X}]$ is such that (the Fredholm essential spectrum) $\sigma_{e}(f(B)) \neq \emptyset$, then (it follows from the considerations above that) there exists a finite subset $\{\mu_1, \mu_2, \ldots, \mu_m\}$ of the set of complex numbers \mathbb{C} such that $f(\mu_i) = 0$ for all $1 \leq i \leq m$, and there exist disjoint countable subsets $S_i = \{\mu_{i_n}\} \subset \mathbb{C}$ such that μ_{i_n} converges to $\mu_i \in S_i$ and $S_1 \cup S_2 \cup \cdots \cup S_m = \sigma(B)$. (Here, either of the sets S_i may consist just of the singleton μ_i, and then the quasinilpotent part $H_0(B - \mu_i) = \{x \in \mathcal{X}: \lim_{n \to \infty} \| (B - \mu_i)^n x \|^{\frac{1}{n}} = 0\}$ of $B - \mu_i$ is infinite dimensional.) Letting P_i denote the spectral projection associated with the spectral set S_i, we then obtain spectral subspaces X_i of \mathcal{X} and operators $B_i = B|_{X_i}$ such that $\mathcal{X} = \bigoplus_{i=1}^{m} X_i$, $B = \bigoplus_{i=1}^{m} B_i$ and $\sigma(B_i) = \{\mu_i\}$. Furthermore, each $(B_i - \mu_i)^{\nu_i}$ is compact in the case in which $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$, and (since, for an operator $E \in \mathcal{B}[\mathcal{X}]$, $E^{\nu_i} \in \mathcal{R}[\mathcal{X}]$ if and only if $E \in \mathcal{R}[\mathcal{X}]$) each $B_i - \mu_i$ is Riesz in the case in which $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$. We have the following:

PROPOSITION 2.2 ([8, 16]). If $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ (resp., $B \in Holo^{-1}(\mathcal{R}[\mathcal{X}])$), then there exists a finite subset $\{\mu_1, \mu_2, \ldots, \mu_m\} \subset \mathbb{C}$, a subset $\{\alpha_1, \alpha_2, \ldots, \alpha_m\}$ of positive integers, a decomposition $\mathcal{X} = \bigoplus_{i=1}^{m} X_i$ of \mathcal{X} into closed B-invariant subspaces and a decomposition $B = \bigoplus_{i=1}^{m} B_i$ of B such that each $(B_i - \mu_i)^{\nu_i}$ is compact (resp., each $B_i - \mu_i$ is Riesz).

3. Riesz perturbations.

Given operators $A, B \in \mathcal{B}[\mathcal{X}]$, let $\delta_{A,B} \in \mathcal{B}[\mathcal{B}[\mathcal{X}]]$ denote the generalized derivation $\delta_{A,B}(X) = AX - XB$, and let $\delta_{A,B}^{\nu}(X) = \delta_{A,B}^{\nu-1}(\delta_{A,B}(X))$. The operators A, B are said to be quasinilpotent equivalent if

$$
\lim_{n \to \infty} \| \delta_{A,B}(I) \|^{\frac{1}{n}} = \lim_{n \to \infty} \| \delta_{B,A}(I) \|^{\frac{1}{n}} = 0.
$$

The following proposition is well known (see [14, Proposition 3.4.11], [6, Theorem 3.1]).

PROPOSITION 3.1. If A, B are quasinilpotent equivalent operators, then $\sigma_{\alpha}(A) = \sigma_{\alpha}(B)$, where σ_{α} stands for either of the left spectrum, the right spectrum, the approximate point spectrum σ_{α}, the surjectivity spectrum σ_{α} and the spectrum σ.

We assume in the following that if an operator $B \in \mathcal{B}[\mathcal{X}]$ is such that $B \in Holo^{-1}(\mathcal{K}[\mathcal{X}])$ or $Holo^{-1}(\mathcal{R}[\mathcal{X}])$, then it has the minimal polynomial function of Proposition 2.1, the Banach space \mathcal{X} and the operator B have the decompositions $X = \bigoplus_{i=1}^{m} X_i$ and $B = \bigoplus_{i=1}^{m} B_i$ of Proposition 2.2. The operator $B_0 \in \mathcal{B}[\mathcal{X}]$ shall henceforth be
Let \(\text{Inv}_x(\mathcal{X}) \) denote operators \(A \in \mathcal{B}[\mathcal{X}] \) which are either bounded below or surjective. Given operators \(A, B \in \mathcal{B}[\mathcal{X}] \), let \([A, B]\) denote the commutator \([A, B] = AB - BA\) of \(A \) and \(B \). If \(\Phi_x(\mathcal{X}) \) denotes either of \(\Phi_+ (\mathcal{X}) \) or \(\Phi_-(\mathcal{X}) \) or \(\Phi_\pm(\mathcal{X}) = \Phi_+(\mathcal{X}) \cup \Phi_-(\mathcal{X}) \), then the perturbation class of \(\Phi_x(\mathcal{X}) \), \(\text{Ptrb}(\Phi_x(\mathcal{X})) \), is the closed two-sided ideal.

\[
\text{Ptrb}(\Phi_x(\mathcal{X})) = \{ A \in \mathcal{B}[\mathcal{X}] : A + B \in \Phi_x(\mathcal{X}) \text{ for every } B \in \Phi_x(\mathcal{X}) \}.
\]

It is seen that

\[
\text{Ptrb}(\Phi_+(\mathcal{X})) = \text{Ptrb}(\Phi_-(\mathcal{X})) = \text{Ptrb}(\Phi_+(\mathcal{X})) \cup \text{Ptrb}(\Phi_-(\mathcal{X})).
\]

Let \(\mathcal{T}_p \) denote the homomorphism

\[
\mathcal{T}_p : \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}] / \text{Ptrb}(\Phi_x(\mathcal{X})),
\]

which is effected by the natural projection of the algebra \(\mathcal{B}[\mathcal{X}] / \text{Ptrb}(\Phi_x(\mathcal{X})) \). It is then clear that \([A, B] = AB - BA \in \text{Ptrb}(\Phi_x(\mathcal{X}))\) if and only if \(\mathcal{T}_p(AB - BA) = \mathcal{T}_p(A)\mathcal{T}_p(B) - \mathcal{T}_p(B)\mathcal{T}_p(A) = 0 \); furthermore, if the function \(f \in \text{Holo}^{-1}(\sigma(A) \cup \sigma(B)) \), in particular if \(f \) is a polynomial, then \([A, B] \in \text{Ptrb}(\Phi_x(\mathcal{X}))\) implies \(f(A)f(B) - f(B)f(A) \in \text{Ptrb}(\Phi_x(\mathcal{X})) \), and hence \(\mathcal{T}_p(f(A)f(B) - f(B)f(A)) = 0 \).

Theorem 3.1. Let \(A, B \in \mathcal{B}[\mathcal{X}] \) be such that \(B \in \text{Holo}^{-1}(\mathcal{R}[\mathcal{X}]) \).

(a) If \(\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_x(\mathcal{X}) \) for some complex number \(\lambda \) and \([A, B] \in \text{Ptrb}(\Phi_x(\mathcal{X})) \), then \(A - \lambda B \in \Phi_x(\mathcal{X}) \) if \(\lambda \neq 0 \), and \(A - B_0 \in \Phi_x(\mathcal{X}) \) whenever \(\lambda = 0 \).

(b) Suppose that \([A, B] = 0 \).

(i) If \(\lambda \neq 0 \), then \(\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i)^{\alpha_i} \in \Phi_x(\mathcal{X}) \) if and only if \(A - \lambda B_0 - \lambda \mu_i \in \Phi_x(\mathcal{X}) \).

(ii) (Case \(\lambda = 0 \)) \(A \in \Phi_x(\mathcal{X}) \) if and only if \(A - B_0 \in \Phi_x(\mathcal{X}) \).

(c) If \(\lambda \neq 0 \), \([A, B] = 0 \) and \(\pi_B(A, \lambda) \in \Phi_x(\mathcal{X}) \), then \(A - \lambda B \in \Phi_x(\mathcal{X}) \).

Proof.

(a) Define the operators \(D, E \) and \(F \) by

\[
D = E - F, \quad E = \pi_B(A, \lambda) \text{ if } \lambda \neq 0 \quad \text{and} \quad E = A^m \text{ if } \lambda = 0, \\
F = \lambda^m \pi_B(B) \text{ if } \lambda \neq 0 \quad \text{and} \quad F = B_0^m \text{ if } \lambda = 0.
\]

Then, \(F \in \mathcal{R}[\mathcal{X}] \), and the hypothesis that \([A, B] \in \text{Ptrb}(\Phi_x(\mathcal{X})) \) implies

\[
\mathcal{T}_p[E, F] = \mathcal{T}_p(E)\mathcal{T}_p(F) - \mathcal{T}_p(F)\mathcal{T}_p(E) = 0.
\]

The operator \(\mathcal{T}_p(F) \) being quasinilpotent, we have

\[
\delta^{n}_{\mathcal{T}_p(D), \mathcal{T}_p(E)}(I) = \delta^{n-1}_{\mathcal{T}_p(D), \mathcal{T}_p(E)}((-1)\mathcal{T}_p(F))
\]

\[
= \cdots = (-1)^n \mathcal{T}_p(F) = \cdots = (-1)^n \delta^n_{\mathcal{T}_p(E), \mathcal{T}_p(D)}(I),
\]

and hence \(\mathcal{T}_p(D) \) and \(\mathcal{T}_p(E) \) are quasinilpotent equivalent. Since \(E \in \Phi_x(\mathcal{X}) \),

\[
\mathcal{T}_p(E) \in \text{Inv}_x(\mathcal{X}) \iff \mathcal{T}_p(D) \in \text{Inv}_x(\mathcal{X}).
\]
Again, since
\[
T_p(D) = (T_p(A) - T_p(B))g(T_p(A), T_p(B), \lambda)
= g(T_p(A), T_p(B), \lambda)(T_p(A) - \lambda T_p(B)) \text{ if } \lambda \neq 0,
\]
and
\[
T_p(D) = T_p(A)^m - T_p(B^0)^m = (T_p(A) - T_p(B^0))g_1(T_p(A), T_p(B), \lambda)
= g_1(T_p(A), T_p(B), \lambda)(T_p(A) - T_p(B^0)) \text{ if } \lambda = 0,
\]
it follows that
\[
T_p(A) - \lambda T_p(B) \in \text{Inv}_\chi(\mathcal{X}) \text{ if } \lambda \neq 0 \text{ and }
T_p(A) - T_p(B^0) \in \text{Inv}_\chi(\mathcal{X}) \text{ if } \lambda = 0.
\]

Since
\[
A - \lambda B \text{ (resp., } A - B^0) \in \Phi_+(\mathcal{X}), \text{ if and only if }
T_p(A) - \lambda T_p(B) \text{ (resp., } T_p(A) - T_p(B^0)) \text{ is bounded below and }
A - \lambda B \text{ (resp., } A - B^0) \in \Phi_-(\mathcal{X}), \text{ if and only if }
T_p(A) - \lambda T_p(B) \text{ (resp., } T_p(A) - T_p(B^0)) \text{ is surjective,}
\]
the proof follows.

(b) The proof at places is similar to the one above, so we shall at points be brief. Let
\[
\mathcal{T} : \mathcal{B}[\mathcal{X}] \to \mathcal{B}[\mathcal{X}]/\mathcal{K}[\mathcal{X}] \text{ denote the Calkin homomorphism. Suppose that } [A, B] = 0.
\]
Letting \(B = \oplus_{i=1}^m B_i \) with respect to the decomposition \(\mathcal{X} = \oplus_{i=1}^m \mathcal{X}_i \) of \(\mathcal{X} \), it is seen that \(A \) has a matrix representation \(A = (A_{ij})_{i,j=1}^m \) such that
\[
A_{ij}B_j = B_i A_{ij} \text{ for all } 1 \leq i, j \leq m
\]
\[\iff A_{ij}(B_j - \mu_i) = (B_i - \mu_i)A_{ij} \text{ for all } 1 \leq i, j \leq m.\]

Here, the complex numbers \(\mu_i, 1 \leq i \leq m, \) are distinct, the operators \(B_i - \mu_i \) being Riesz for all \(1 \leq i \leq m \) and (since \(\mu_i \notin \sigma(B_j) \) for all \(1 \leq i \neq j \leq m \)), the operator \(\mathcal{T}(B_j - \mu_i) \) is invertible for all \(1 \leq i \neq j \leq m. \) Consequently,
\[
\mathcal{T}(A_{ij}) \mathcal{T}(B_j - \mu_i)^n = \mathcal{T}(B_i - \mu_i)^n \mathcal{T}(A_{ij})
\]
\[\iff \mathcal{T}(A_{ij}) = \mathcal{T}(B_j - \mu_i)^n \mathcal{T}(B_i - \mu_i)^n \mathcal{T}(A_{ij}).\]

We have two possibilities: Either \(\mathcal{T}(A_{ij}) \neq 0 \) or \(\mathcal{T}(A_{ij}) = 0. \) If \(\mathcal{T}(A_{ij}) \neq 0 \), then (since \(\mathcal{T}(B_j - \mu_i) \) is quasinilpotent):
\[
||\mathcal{T}(A_{ij})|| \leq ||\mathcal{T}(A_{ij})|| ||\mathcal{T}(B_j - \mu_i)^{-1}||^n ||\mathcal{T}(B_i - \mu_i)^n||
\]
\[\implies 1 \leq ||\mathcal{T}(B_j - \mu_i)^{-1}|| \lim_{n \to \infty} ||\mathcal{T}(B_i - \mu_i)^n||^{\frac{1}{n}} = 0.\]

This being a contradiction, we must have
\[
\mathcal{T}(A) = \oplus_{i=1}^m \mathcal{T}(A_{ii}), \mathcal{T}(A_{ij}) = 0 \text{ and } [A_{ii}, B_i] = 0 \text{ for all } 1 \leq i \neq j \leq m.
\]
Define the operators \(M_j, N_j \in B[\mathcal{X}_j], 1 \leq j \leq m \), by

\[
M_j = (A_{jj} - \lambda B_j) - \lambda (\mu_i - \mu_j), \quad N_j = A_{jj} - \lambda \mu_i \quad \text{for all} \quad 1 \leq i, j \leq m \quad \text{if} \quad \lambda \neq 0,
\]

and

\[
M_j = A_{jj} - B_j + \mu_j, \quad N_j = A_{jj} \quad \text{for all} \quad 1 \leq j \leq m \quad \text{if} \quad \lambda = 0.
\]

Then, the equivalences

\[
\pi_B(B) \in \mathcal{R}[\mathcal{X}] \iff \prod_{i=1}^{m} (B - \mu_i) = \prod_{i=1}^{m} (\bigoplus_{j=1}^{m} (B_j - \mu_i)) \in \mathcal{R}[\mathcal{X}]
\]

\[
\iff \prod_{i=1}^{m} (B_j - \mu_i) \in \mathcal{R}[\mathcal{X}_j] \quad \text{for all} \quad 1 \leq j \leq m
\]

\[
\iff B_j - \mu_i \in \mathcal{R}[\mathcal{X}_j] \quad \text{for all} \quad 1 \leq j \leq m
\]

and

\[
\pi_B(A, \lambda) \in \Phi_\times(\mathcal{X}) \iff \prod_{i=1}^{m} T(A - \lambda \mu_i) = \prod_{i=1}^{m} (\bigoplus_{j=1}^{m} T(A_{jj} - \lambda \mu_i)) \in \text{Inv}_\times(\mathcal{X})
\]

\[
\iff \prod_{i=1}^{m} T(A_{jj} - \lambda \mu_i) = T \{ \prod_{i=1}^{m} (A_{jj} - \lambda \mu_i) \} \in \text{Inv}_\times(\mathcal{X}_j)
\]

\[
\text{for all} \quad 1 \leq i, j \leq m
\]

\[
\iff \prod_{i=1}^{m} (A_{jj} - \lambda \mu_i) \in \Phi_\times(\mathcal{X}_j) \quad \text{for all} \quad 1 \leq i, j \leq m
\]

\[
\iff A_{jj} - \lambda \mu_i \in \Phi_\times(\mathcal{X}_j) \quad \text{for all} \quad 1 \leq i, j \leq m
\]

imply that

\[
\delta^n_{T(M_j), T(N_j)}(I_j) = (-\lambda)^{n-1} T^{n-1}(B_j - \mu_j) = \cdots = (-\lambda)^n T(B_j - \mu_j)^n = \cdots = \delta^n_{T(N_j), T(M_j)}(I_j).
\]

This implies that the operators \(T(M_j) \) and \(T(N_j) \) are quasinilpotent equivalent, and hence

\[
M_j \in \Phi_\times(\mathcal{X}_j) \iff N_j \in \Phi_\times(\mathcal{X}_j), \quad 1 \leq j \leq m.
\]
Now, if we define \(B_0 \in \mathcal{B}[\mathcal{X}] \) (as above) by \(B_0 = \oplus_{j=1}^{m}(B_j - \mu_j) \), then

\[
\mathcal{T}(A - \lambda B_0 - \lambda \mu_i) = \oplus_{j=1}^{m}\{\mathcal{T}((A_{ij} - \lambda B_j) - \lambda(\mu_i - \mu_j))\} \in \text{Inv}_x(\mathcal{X})
\]

for all \(1 \leq i \leq m \)

\[\iff \oplus_{j=1}^{m}\mathcal{T}(A_{ij} - \lambda \mu_i) \in \text{Inv}_x(\mathcal{X}) \text{ for all } 1 \leq i \leq m\]

\[\iff \prod_{i=1}^{m}\{\oplus_{j=1}^{m}\mathcal{T}(A_{ij} - \lambda \mu_i)\} \in \text{Inv}_x(\mathcal{X})\]

\[= \prod_{i=1}^{m}\mathcal{T}(A - \lambda \mu_i) \in \text{Inv}_x(\mathcal{X})\]

\[\iff \pi_B(A, \lambda) \in \Phi_x(\mathcal{X})\]

if \(\lambda \neq 0 \), and

\[
\oplus_{j=1}^{m}\mathcal{T}(M_j) = \oplus_{j=1}^{m}\mathcal{T}(A_{ij} - B_j + \lambda_j) = \mathcal{T}(A - B_0) \in \text{Inv}_x(\mathcal{X})
\]

\[\iff \oplus_{j=1}^{m}\mathcal{T}(N_j) = \oplus_{j=1}^{m}\mathcal{T}(A_{ij}) = \mathcal{T}(\pi_B(A, 0)) \in \text{Inv}_x(\mathcal{X})\]

\[\iff \pi_B(A, 0) \in \Phi_x(\mathcal{X})\]

if \(\lambda = 0 \).

(c) Let \(\lambda \neq 0 \). Choosing \(i = j \) in

\[\pi_B(A, \lambda) \in \Phi_x(\mathcal{X}) \iff A - \lambda(\oplus_{j=1}^{m}(B_j - \lambda_j + \mu_i)) \in \Phi_x(\mathcal{X})\]

for all \(1 \leq i \leq m \), it then follows that

\[\pi_B(A, \lambda) \in \Phi_x(\mathcal{X}) \implies A - \lambda B \in \Phi_x(\mathcal{X}). \qedhere\]

Remark 3.1.

(i) Some hypothesis of the type \([A, B] \in \text{Perrb} \Phi_x(\mathcal{X})\), or \([A, B] = 0\), is essential to the validity of Theorem 3.1. To see this, consider operators \(A, B \) such that \(\pi_B(A, \lambda) \in \Phi_x(\mathcal{X}) \) and \(\pi_B(B) \) is compact. Then, since \(\mathcal{T}_p(\pi_B(B)) = 0 = \mathcal{T}(\pi_B(B)) \), \(\pi_B(A, \lambda) - \lambda^m \pi_B(B) \in \Phi_x(\mathcal{X}) \iff \pi_B(A, \lambda) \in \Phi_x(\mathcal{X}) \). This does not however imply \(A - \lambda B \) (or, \(A - B_0 \) if \(\lambda = 0 \), or \(A - \lambda B_0 - \mu_i \) if \(\lambda \neq 0 \)) \(\in \Phi_x(\mathcal{X}) \), as the following elementary example shows. Letting \(I \) denote the identity of \(\mathcal{B}[\mathcal{X}] \), define the polynomially compact operator \(B \) (with minimal polynomial \(\pi_B(z) = (z - 1)^2 \)) by \(B = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix} \), and let \(A = \begin{pmatrix} 2I & 0 \\ 0 & I \end{pmatrix} \). Then, with \(\lambda = 1 \), \(\pi_B(A, \lambda) = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \) is invertible (hence, Fredholm). However, the operator \(A - \lambda B \) (which satisfies \((A - \lambda B)^2 = 0 \)) is not even semi-Fredholm. Again, if we define \(A \) by \(A = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \), then \((A - B_0)^2 = 0 \) and \(A - B_0 \) is not semi-Fredholm. Observe that neither of the hypotheses \([A, B] = 0\) or \([A, B] \in \text{Perrb} \Phi_x(\mathcal{X})\) is satisfied.

(ii) Let \(A \) and \(B \) be the operators of Theorem 3.1, parts (b) and (c). Then, \(A - \mu_i \in \Phi_x(\mathcal{X}) \) if and only if \(A_{ij} - \lambda \mu_i \in \Phi_x(\mathcal{X}) \) for all \(1 \leq j \leq m \) and \(\mathcal{T}(A_{ij}) = 0 \) for all \(1 \leq i \neq j \leq m \). The conclusion \(\mathcal{T}(A_{ij}) = 0 \) for all \(1 \leq i \neq j \leq m \) implies that the operator \(A = [A_{ij}]_{1 \leq i \leq j \leq m} \) may be written as the sum \(A = A_1 + A_0 \), where
A_1 = \oplus_{j=1}^{m} A_{\beta j} and the compact (hence, Riesz) operator \(A_0 \) is defined by

\[A_0 = [A_{\beta j}]_{1 \leq j \leq m} \text{ with } A_{ii} = 0 \text{ for all } 1 \leq i \leq m. \]

Recalling that the sum of two commuting Riesz operators is a Riesz operator, it follows that the operators \(\frac{1}{\lambda} A_0 - B_0 \) (case \(\lambda \neq 0 \)) and \(A_0 - B_0 \) (case \(\lambda = 0 \)) are Riesz operators. It is now seen that the operators

\[A - \lambda \mu_i - \lambda B_0 = (A_1 - \lambda \mu_i) + \lambda(\frac{1}{\lambda} A_0 - B_0) \quad \text{and} \quad A_1 - \lambda \mu_i \ (\lambda \neq 0), \]

\[A - B_0 = A_1 + (A_0 - B_0) \quad \text{and} \quad A_1 \ (\lambda = 0) \]

are quasinilpotent equivalent. Hence

\[A_1 - \lambda \mu_i \in \Phi_{\times}(\mathcal{X}) \iff A - \lambda \mu_i - \lambda B_0 \in \Phi_{\times}(\mathcal{X}), \ \lambda \neq 0 \]

and

\[A \in \Phi_{\times}(\mathcal{X}) \iff A - B_0 \in \Phi_{\times}(\mathcal{X}). \]

This provides an alternative to some of the argument used to prove parts (b) and (c) of Theorem 3.1.

Let \(\lambda(t) \) denote a continuous function from a connected subset \(I \) of the reals into \(\mathbb{C} \) such that \(\lambda(t_1) = 0 \) and \(\lambda(t_2) = 1 \) for some \(t_1, t_2 \in I, t_1 < t_2 \). Then, the argument of the proof of Theorem 3.1 holds with \(\lambda \) replaced by \(\lambda(t) \) and we have:

Corollary 3.1. Let \(A, B \in \mathcal{B}[\mathcal{X}] \) be such that \(B \in Holo^{-1}(\mathcal{R}[\mathcal{X}]) \).

(a) If \(\pi_{\mathcal{B}}(A, \lambda) = \prod_{i=1}^{m} (A - \lambda(t) \mu_i) \in \Phi_{\times}(\mathcal{X}) \) and \([A, B] \in \text{Ptrb}(\Phi_{\times}(\mathcal{X})) \), then \(A - \lambda(t) B \in \Phi_{\times}(\mathcal{X}) \) for all \(t \in [t_1, t_2] \).

(b) If \(A, B \) commute, then

(i) \(\pi_{\mathcal{B}}(A, \lambda(t)) = \prod_{i=1}^{m} (A - \lambda(t) \mu_i) \in \Phi_{\times}(\mathcal{X}) \) if and only if \(A - \lambda(t) (B_0 + \mu_i) \in \Phi_{\times}(\mathcal{X}), 1 \leq i \leq m, \text{ for all } t \in [t_1, t_2] \);

(ii) \(\pi_{\mathcal{B}}(A, \lambda(t)) \in \Phi_{\times}(\mathcal{X}) \) if and only if \(A - B_0 \in \Phi_{\times}(\mathcal{X}) \);

(iii) \(\pi_{\mathcal{B}}(A, \lambda(t)) \in \Phi_{\times}(\mathcal{X}) \) implies \(A - \lambda(t) B \in \Phi_{\times}(\mathcal{X}) \) for all \(t \in [t_1, t_2] \).

Recalling the fact that “every locally constant function on a connected set is constant”, it follows from the local constancy of the index function “\(\text{ind} \)” that \(\text{ind}(A) = \text{ind}(A - B) = \text{ind}(A - \lambda(t) B) \) for all \(t \in [t_1, t_2] \). In particular, if \(A \in \Phi_{r}(\mathcal{X}) \) (resp., \(A \in \Phi_{s}(\mathcal{X}) \)), then \((A - \lambda(t) B)(\mathcal{X}) \) (resp., \((A - \lambda(t) B)^{-1}(0) \)) is complemented by a finite-dimensional subspace if and only if \(A(\mathcal{X}) \) (resp., \(A^{-1}(0) \)) is complemented by a finite-dimensional subspace.

4. Operators with SVEP. \(A \in \mathcal{B}[\mathcal{X}] \) has the single-valued extension property at \(\lambda_0 \in \mathbb{C} \), SVEP at \(\lambda_0 \) for short, if for every open disc \(\mathcal{D}_{\lambda_0} \) centred at \(\lambda_0 \) the only holomorphic function \(f : \mathcal{D}_{\lambda_0} \to \mathcal{X} \) which satisfies

\[(T - \lambda)f(\lambda) = 0 \quad \text{for all } \lambda \in \mathcal{D}_{\lambda_0} \]

is the function \(f \equiv 0 \). \(T \) has SVEP if it has SVEP at every \(\lambda \in \mathbb{C} \). Operators with countable spectrum have SVEP: If \(A \in \mathcal{R}[\mathcal{X}] \), then both \(A \) and (the conjugate operator) \(A^* \) have SVEP. It is known that \(f(A), A \in \mathcal{B}[\mathcal{X}] \) and \(f \in H_c(\sigma(A)) \), has SVEP at a point.
\(\lambda \) if and only if \(A \) has SVEP at every \(\mu \) such that \(f(\mu) = \lambda \) (see [1, Theorem 2.39] and [14]). If an \(A \in \mathcal{B}[X] \) has SVEP at a point \(\lambda \), then SVEP for \(B \in \mathcal{B}[X] \) at \(\lambda \) does not transfer to \(A + B \), even if \(A \) and \(B \) commute. However:

Proposition 4.1 ([2, Theorem 0.3]). If \(A \) and \(B \) commute, and if \(B \in \mathcal{R}[X] \), then SVEP at \(\lambda \) for \(A \) implies SVEP for \(A - B \) at \(\lambda \).

Recall that the ascent (resp., descent) of \(A \in \mathcal{B}[X] \), \(\text{asc}(A) \) (resp., \(\text{dsc}(A) \)), is the least non-negative integer \(n \) such that \(A^{-n}(0) = A^{-(n+1)}(0) \) (resp., \(A^{n}(X) = A^{n+1}(X) \)); if no such integer exists, then \(\text{asc}(A) = \infty \) (resp., \(\text{dsc}(A) = \infty \)). Finite ascent (resp., descent) at a point \(\lambda \) for \(A \) implies \(\text{ind}(A - \lambda) \leq 0 \) and \(A \) has SVEP at \(\lambda \) (resp., \(\text{ind}(A - \lambda) \geq 0 \) and \(A^* \) has SVEP at \(\lambda \)); conversely, if \(A - \lambda \in \Phi_X(X) \) (resp., \(A^* - \lambda \in \Phi_X(X) \)) has SVEP at 0, then \(\text{asc}(A - \lambda) < \infty \) and 0 \(\in \text{iso}_\sigma(A) \) (resp., \(\text{dsc}(A - \lambda) < \infty \) and 0 \(\in \text{iso}_\sigma(A) \)) [1, Theorems 3.16, 3.17, 3.23, 3.27]. The operator \(A \) is upper Browder (resp., lower Browder, left Browder, right Browder, \(\text{simply Browder} \)) if it is upper Fredholm with \(\text{asc}(A) = \infty \) (resp., lower Browder with \(\text{dsc}(A) = \infty \), left Browder with \(\text{asc}(A) = \infty \), right Browder with \(\text{dsc}(A) = \infty \), Fredholm with \(\text{asc}(A) = \text{dsc}(A) = \infty \)). Let \(A \in \times - \text{Browder} \) denote that \(A \) is one of upper Browder, lower Browder, left Browder, right Brower or \(\text{simply Browder} \). It is well known, see [9, Theorem 7.92.] or [6, Proposition 2.2], that if \(A, B \in \mathcal{B}[X] \) are commuting operators, then \(AB \in \times - \text{Browder} \) if and only if \(A, B \in \times - \text{Browder} \). If an operator \(A \in \{ \Phi_+(X) \cup \Phi_-(X) \} \) (resp., \(A \in \{ \Phi_-(X) \cup \Phi_+(X) \} \)) has SVEP at 0, then \(A \) is upper or left (resp., lower or right) Browder [1, Theorem 3.52]. As before, the operator \(B_0 \in \mathcal{B}[X] \) is defined by \(B_0 = \bigoplus_{i=1}^m (B_i - \mu_i) \).

The following theorem generalizes [6, Theorem 4.1].

Theorem 4.1. Let \(A, B \in \mathcal{B}[X] \) be such that \([A, B] = 0 \), \(\pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[X] \) and \(\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda, \mu_i) \in \Phi_X(X) \) for some complex number \(\lambda \). Then

(a) \(A \in \times - \text{Browder} \) if and only if \(A - B_0 \in \times - \text{Browder} \);

(b) (i) \(\pi_B(A, \lambda) \in \times - \text{Browder} \) implies \(A - \lambda B \in \times - \text{Browder} \), and (ii) \(\pi_B(A, \lambda) \in \times - \text{Browder} \) if and only if \(A - \lambda B_0 - \lambda, \mu_i \in \times - \text{Browder} \) for all \(1 \leq i \leq m \);

(c) if \(A \in \{ \Phi_+(X) \cup \Phi_-(X) \} \) has SVEP at 0 (resp., \(A \in \{ \Phi_-(X) \cup \Phi_+(X) \} \) and \(A^* \) has SVEP at 0), then \(A - \lambda B \) is upper or, respectively, left (resp., lower or, respectively, right) Browder.

Proof. We consider the case \(\times - \text{Browder} = \text{upper Browder or left Browder only} \); the proof for the other cases is similar.

(a) The operator \(B_0 = \bigoplus_{i=1}^m (B_i - \mu_i) \) being the direct sum of Riesz operators is a Riesz operator. Since \(A \) commutes with \(B_0 \), \(A - B_0 \) has SVEP at 0 if and only if \(A \) has SVEP at 0. Again, by Theorem 2.1(b.ii), \(A - B_0 \notin \Phi_X(X) \) if and only if \(A \notin \Phi_X(X) \). Hence, since an operator \(T \) is \(\times - \text{Browder} \) if and only if \(T \in \Phi_X(X) \) and \(T \) has SVEP at 0 [1, Theorem 3.52], \(A - B_0 \notin \times - \text{Browder} \) if and only if \(A \notin \times - \text{Browder} \).

(b.i) The hypothesis \(\pi_B(A, \lambda) \in \times - \text{Browder} \) implies \(A - \lambda, \mu_i \in \times - \text{Browder} \) if and only if \(A - \lambda, \mu_i \in \Phi_X(X) \) and \(A - \lambda, \mu_i \) has SVEP at 0. Since \(\pi_B(B) = \prod_{i=1}^m (B - \mu_i) \) is Riesz, there an integer \(i, 1 \leq i \leq m \), such that \(\lambda(B - \mu_i) \) is Riesz (and commutes with \(A - \lambda, \mu_i \)). Hence, \(A - \lambda B = (A - \lambda, \mu_i) - (B - \lambda, \mu_i) \) has SVEP at 0. Since \(A - \lambda B \in \Phi_X(X) \) by Theorem 2.1(c), \(A - \lambda B \in \times - \text{Browder} \).
(b.ii) The case $\lambda = 0$ being evident, we consider $\lambda \neq 0$. It is clear from Theorem 2.1(b.i) that

$$
\pi_B(A, \lambda) \in \Phi_\times(\mathcal{X}) \iff A - \lambda B - \lambda \mu_i \in \Phi_\times(\mathcal{X}).
$$

Since,

$$
\pi_B(A, \lambda) \in \times-Browder \iff A - \lambda \mu_i \in \times-Browder \quad \text{for all } 1 \leq i \leq m
$$

$$
\iff A - \lambda \mu_i \in \Phi_\times(\mathcal{X}), A - \lambda \mu_i \quad \text{has SVEP at } 0
$$

for all $1 \leq i \leq m$.

The operator B_0 being a Riesz operator which commutes with $A - \lambda \mu_i$, it follows that $A - \lambda \mu_i - \lambda B_0$ has SVEP at 0 if and only if $A - \lambda \mu_i$ has SVEP at 0. Hence,

$$
\pi_B(A, \lambda) \in \times-Browder \iff A - \lambda B_0 - \lambda \mu_i \in \times-Browder.
$$

(c) Recall from above that if an operator $A \in \Phi_\times(\mathcal{X})$ has SVEP at 0, then $0 \in \text{iso}\sigma(A)$. Since $\sigma(A - \lambda \mu_i) \subset \sigma(A) - \{\lambda \mu_i\}$, it follows from our hypotheses that (at worst) $\lambda \mu_i \in \text{iso}\sigma(A)$ for all $1 \leq i \leq m$. Hence, $A - \lambda \mu_i$ has SVEP at 0. As seen above, $A - \lambda B \in \Phi_\times(\mathcal{X})$. Hence, since the operator $B - \mu_i$ is Riesz and commutes with $A - \lambda \mu_i$, $A - \lambda B_i = (A - \lambda \mu_i) - \lambda(B_i - \mu_i)$ has SVEP at 0. Thus, [1, Theorem 3.52] implies that $A - \lambda B \in \times-Browder$. □

Remark 4.1. An alternative argument proving Theorem 4.1(b.i) goes as follows. If $\times =$ upper or left, then the hypotheses imply that $\pi_B(A, \lambda)$ has SVEP at 0 and the Riesz operator $\pi_B(B)$ commutes with $\pi_B(A, \lambda)$. Hence, $\pi_B(A, \lambda) - \lambda^m \pi_B(B)$ has SVEP at 0. Already, we know from (the proof of) Theorem 3.1 that $\pi_B(A, \lambda) - \lambda^m \pi_B(B) \in \Phi_\times(\mathcal{X})$, where $\Phi_\times(\mathcal{X}) = \Phi_+(\mathcal{X}) \cup \Phi_\ell(\mathcal{X})$. Hence, $\pi_B(A, \lambda) - \lambda^m \pi_B(B) = (A - \lambda B)g(A, B, \lambda) = g(A, B, \lambda)(A - \lambda B)$ is upper or (resp.) left Browder. This implies $A - \lambda B$ is upper or (resp.) left Browder.

Essential SVEP. Let $T_q : B[\mathcal{X}] \to B[\mathcal{X}_q], \mathcal{X}_q = \ell^\infty(\mathcal{X})/m(\mathcal{X})$, denote the homomorphism effecting the “essential enlargement $A \to T_q(A) = A_q^*$” of [4] (and [15, Theorems 17.6 and 17.9]). Then, $A \in B[\mathcal{X}]$ is upper semi-Fredholm (lower semi-Fredholm), $A \in \Phi_+(\mathcal{X})$ (resp., $A \in \Phi_-(\mathcal{X})$), if and only if A_q is bounded below (resp., A_q is surjective); $A_q = 0$ for an operator A if and only if A is compact, and if $A \in \mathcal{R}[\mathcal{X}]$, then A_q is a quasinilpotent. Recall from Theorem 3.1(b.ii) and (c) that if $A, B \in B[\mathcal{X}]$ are such that $[A, B] = 0$, $\pi_B(B) = \prod_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}]$ and $\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_\pm(\mathcal{X})$, then $A - \lambda B \in \Phi_\pm(\mathcal{X})$ if $\lambda \neq 0$ and $A - B_0 \in \Phi_\pm(\mathcal{X})$ if $\lambda = 0$. If we now assume that $\pi_B(A, \lambda) \not\in \Phi_-(\mathcal{X})$ (resp., the conjugate operator $\pi_B(A, \lambda)^* \not\in \Phi_-^*(\mathcal{X})$), $\lambda \neq 0$, has SVEP at 0, then $A - \lambda B \in \Phi(\mathcal{X})$ is inner regular. Again, if we assume $\lambda = 0$ and $A \in \Phi_+(\mathcal{X})$ (resp., $A^* \in \Phi_-(\mathcal{X})$) has SVEP at 0, then $A - B_0 \in \Phi(\mathcal{X})$ is inner regular. SVEP for an operator neither implies nor is implied by SVEP for its image under the homomorphisms T_q [3, Remark 2.9]: We say in the following that A has *essential SVEP* at a point λ if $A_q = T_q(A)$ has SVEP at λ. The following corollary says that a result similar to the one above on the inner regularity of $A - \lambda B$ and $A - B_0$ holds with the hypotheses on SVEP replaced by hypotheses on essential SVEP.
Corollary 4.1. Let \(A, B \in \mathcal{B}[\mathcal{X}] \) be such that \([A, B] = 0\), \(\pi_B(B) = \bigoplus_{i=1}^m (B - \mu_i) \in \mathcal{R}[\mathcal{X}] \). \(\pi_B(A, \lambda) \) has essential SVEP at 0 whenever \(\pi_B(A, \lambda) \in \Phi_+(\mathcal{X}) \) and \(\pi_B(A, \lambda)^* \) has essential SVEP at 0 whenever \(\pi_B(A, \lambda) \in \Phi_+(\mathcal{X}) \), then \(A - \lambda B \in \Phi(\mathcal{X}) \) if \(\lambda \neq 0 \) and \(A - B_0 \in \Phi(\mathcal{X}) \) if \(\lambda = 0 \).

Proof. We consider the case in which \(\pi_B(A, \lambda) \in \Phi_+(\mathcal{X}) \) and \(\pi_B(A, \lambda)^* \) has essential SVEP at 0: The proof for the other case is similar. Arguing as in the proof of Theorem 3.1, the hypotheses \([A, B] = 0\), \(\pi_B(B) \in \mathcal{R}[\mathcal{X}] \) and \(\pi_B(A, \lambda) \in \Phi_+(\mathcal{X}) \) imply that if \(\lambda \neq 0 \), then

\[
A - \lambda \mu_i \quad \text{and} \quad A - \lambda B \in \Phi_+(\mathcal{X}) \quad \text{for all} \quad 1 \leq i \leq m
\]

and if \(\lambda = 0 \), then

\[
A \quad \text{and} \quad A - B_0 \in \Phi_+(\mathcal{X}) \quad \iff \quad T_q(A) \quad \text{and} \quad T_q(A - B_0) \quad \text{are bounded below.}
\]

Since \(T_q(A - \lambda \mu_i) \) is bounded below for all \(1 \leq i \leq m \) implies \(\pi_B(A, \lambda) \) is bounded below, it follows from the hypothesis \(T_q(\pi_B(A, \lambda)^*) \) has SVEP that

\[
T_q(\pi_B(A, \lambda)) \quad \text{is invertible} \quad \iff \quad T_q(A - \lambda \mu_i) \quad \text{is invertible for all} \quad 1 \leq i \leq m
\]

[1, Corollary 2.24]. Letting \(A \) and \(B \) have the representations \(A = [A_{ij}]_{1 \leq i, j \leq m} \in B(\bigoplus_{j=1}^m \mathcal{X}_j) \) and \(B = \bigoplus_{j=1}^m B_j \in B(\bigoplus_{j=1}^m \mathcal{X}_j) \) (as in the proof of Theorem 3.1), this implies that \(T_q(A_{ij} - \lambda \mu_j) \) is invertible, and \(T_q(B_i - \mu_j) \) is quasinilpotent, for all \(1 \leq j \leq m \). Since the operators \(T_q(A_{ij} - \lambda \mu_j) \) and \(T_q(B_j - \mu_j) \) commute, \(\sigma(T_q(A_{ij} - \lambda \mu_j)) = \sigma(T_q(A_{ij} - \lambda \mu_j)) - \{0\} \) and \(\sigma(A_{ij} - B_j + \mu_j) \subset \sigma(T_q(\pi_B(A_{ij} - \lambda \mu_j))) - \{0\} \) for all \(1 \leq j \leq m \). Hence, the operators \(T_q(A_{ij} - \lambda \mu_j) \) and \(T_q(A_{ij} - B_j + \mu_j) \) are invertible for all \(1 \leq j \leq m \). But then

\[
T_q(A - \lambda B) = T_q(\bigoplus_{j=1}^m (A_{ij} - B_j)) \quad \text{invertible} \quad \iff \quad A - \lambda B \in \Phi(\mathcal{X})
\]

and

\[
T_q(A - B_0) = T_q(\bigoplus_{j=1}^m (A_{ij} - B_j + \mu_j)) \quad \text{invertible} \quad \iff \quad A - B_0 \in \Phi(\mathcal{X}).
\]

This completes the proof. \(\square \)

5. A perturbed inner regular operator. If \(A \in \Phi_+(\mathcal{X}) \), \(\Phi_+ = \Phi_k \) or \(\Phi_r \), then \(A \) has an inner generalized inverse, which we shall denote by \(A^\dagger \) in the following. Clearly, the operator \(AA^\dagger \) is (then) a projection from \(\mathcal{X} \) onto \(A(\mathcal{X}) \), and \(I - A^\dagger A \) is a projection from \(\mathcal{X} \) onto \(A^{-1}(0) \). Let \(N \) denote a complement of \(A(\mathcal{X}) \) and let \(M \) denote a complement of \(A^{-1}(0) \). Then, \(A : M \oplus A^{-1}(0) \to A(\mathcal{X}) \oplus N \) has a matrix \(A = A_1 \oplus 0 \), where \(A_1 \in B[M, A(\mathcal{X})] \) is invertible. If \(A^\dagger \) is any generalized inverse of \(A \) such that \(A^\dagger A(\mathcal{X}) = M \) and \((AA^\dagger)^{-1}(0) = N \), then \(A_{M,N,E}^\dagger = A^\dagger : A(\mathcal{X}) \oplus N \to M \oplus A^{-1}(0) \) has the form \(A_{M,N,E}^\dagger = A_1^{-1} \oplus E \) for some arbitrary \(E \in B[N, A^{-1}(0)] \) [7, Page 37]. Now, let \(A, B \in \mathcal{B}[\mathcal{X}] \) be such that \(B \in Holo^{-1}(\mathcal{R}[\mathcal{X}]) \) (with minimal polynomial \(\pi_B(z) \), defined as in Theorem 3.1), \(AB - BA \in \text{Prtr}(\Phi_k(\mathcal{X})) \) and \(\pi_B(A, \lambda) = \prod_{i=1}^m (A - \lambda \mu_i) \in \Phi_k(\mathcal{X}) \) for some scalar \(\lambda \). Then, the operators \(A - \lambda B \) if \(\lambda \neq 0 \) and \(A - B_0 \) if \(\lambda = 0 \) (with the operator \(B_0 \) as earlier defined) are in \(\Phi_k(\mathcal{X}) \). Letting \(S \) denote either of the operators
A − λB and A − B₀, it then follows that S has an inner generalized inverse S†. In general, A(𝓧) and S(𝓧), also A⁻¹(0) and S⁻¹(0), are quite distinct. However:

Theorem 5.1. If AA† = SS† and A†A = S†S, then A and S have the same range and the same null space, and S† has a representation

\[S^\dagger = (I - \lambda A_{N,M,E}^\dagger B)^{-1}A_{N,M,F}^\dagger \text{ if } \lambda \neq 0, \text{ and} \]

\[S^\dagger = (I - A_{N,M,E}^\dagger B_0)^{-1}A_{N,M,F}^\dagger \text{ if } \lambda = 0. \]

Here, N is a complement of A(𝓧), M is a complement of A⁻¹(0) and E, F ∈ B[N, A⁻¹(0)] are arbitrary.

Proof. If AA† = SS† and A†A = S†S, then

\[S(𝓧) = SS^\dagger(𝓧) = AA^\dagger(𝓧) = A(𝓧), \text{ and} \]

\[S^{-1}(0) = (S^\dagger S)^{-1}(0) = (A^\dagger A)^{-1}(0) = A^{-1}(0). \]

Now, choose the subspaces N, M as above. For A₁ = A|ₘ, S₁ = S|ₘ and every E ∈ B[N, A⁻¹(0)], if λ ≠ 0, then the operator

\[I - \lambda A_{N,M,E}^\dagger B = I + A_{N,M,E}^\dagger (S - A) \]

\[= I + \left(A_{1}^{-1} 0 \\ 0 E \right) \left(S_{1} - A_{1} 0 \\ 0 0 \right) = \left(A_{1}^{-1} S_{1} 0 1 \right) \]

from M ⊕ A⁻¹(0) into A(𝓧) ⊕ N is invertible with the inverse satisfying

\[(I + A_{N,M,E}^\dagger (S - A))^{-1}A_{N,M,F}^\dagger = \left(S_{1}^{-1} A_{1} 0 1 \right) \left(A_{1}^{-1} 0 F \right) = \left(S_{1}^{-1} 0 F \right) \]

for every operator F ∈ B[N, A⁻¹(0)]. Again, if λ = 0, then

\[I - \lambda A_{N,M,E}^\dagger B_0 = I + A_{N,M,E}^\dagger (S - A) = \left(A_{1}^{-1} S_{1} 0 1 \right) \]

from M ⊕ A⁻¹(0) into A(𝓧) ⊕ N is invertible with the inverse (as before) satisfying

\[(I + A_{N,M,E}^\dagger (S - A))^{-1}A_{N,M,F}^\dagger = \left(S_{1}^{-1} A_{1} 0 1 \right) \left(A_{1}^{-1} 0 F \right) = \left(S_{1}^{-1} 0 F \right) \]

for every operator F ∈ B[N, A⁻¹(0)]. Evidently, SS†S = S, where S† = (I + A_{N,M,E}^\dagger (S - A))^{-1}A_{N,M,F}^\dagger.

Acknowledgements. We thank an anonymous referee who made sensible remarks to improve the paper.

References

7. D. S. Djordjević and V. Rakočević, *Lectures on Generalized Inverse*, Faculty of Science and Mathematics (University of Niš, Niš, 2008).