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Abstract

A ring in which every accessible subring is an ideal is called filial. We continue the study of commutative
reduced filial rings started in [R. R. Andruszkiewicz and K. Pryszczepko, ‘A classification of commutative
reduced filial rings’, Comm. Algebra to appear]. In particular we describe the Noetherian commutative
reduced rings and construct nontrivial examples of commutative reduced filial rings without ideals which
are domains.

2000 Mathematics subject classification: primary 16D25; secondary 16D70.

Keywords and phrases: ideal, filial ring, reduced ring, p-adic numbers.

1. Introduction and preliminaries

Throughout this paper we assume that all rings are associative not necessarily with
unity. We denote by Z the ring of integers, and by P the set of all prime integers.
If p ∈ P then we write Zp and Qp for the ring of p-adic integers and the quotient
field of p-adic integers, respectively. For arbitrary5⊆ P we denote Q5 =

∏
p∈5 Qp,

Z5 =
∏

p∈5 Zp.
An associative ring R is called filial if A � B � R implies A � R for all subrings

A, B of R. The problem of describing filial rings was raised by Szász in [12]. The
problem has been studied by various authors, namely, Ehrlich [5], Filipowicz and
Puczyłowski [6, 7] Sands [10] and Veldsman [13].

A ring R is strongly regular if a ∈ Ra2 for every a ∈ R. It is well known that all
strongly regular rings are von Neumann regular and for commutative rings the two
properties coincide. The class of all strongly regular rings S forms a radical in the
sense of Kurosh and Amitsur [8]. A ring is reduced if it has no nontrivial nilpotent
elements.

For a torsion-free ring R let 5(R)= {p ∈ P | pR 6= R}. A ring R is called a CRF-
ring if R is commutative, reduced and filial. Theorem 4.4 in [2] gives the following
description of the S-semisimple CRF-rings with an identity.
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THEOREM 1.1. Let 5 be an arbitrary nonempty subset of P. Then a ring R is an
S-semisimple CRF-ring with an identity, such that 5(R)=5 if and only if R is
isomorphic to a subring of Q5 of the form K ∩ Z5 where K is the unique strongly
regular subring of Q5 with the same identity, such that for every a ∈ K , a = (ap)p∈5,
we have ap ∈ Zp for almost all p ∈5.

The above theorem is important because every CRF-ring is an extension
of a commutative strongly regular ring by an S-semisimple CRF-ring (see [2,
Proposition 4.1]).

In the present paper we study some nontrivial consequences of Theorem 1.1.
In particular, using some techniques from Boolean algebra theory we characterize
Noetherian CRF-rings. We also prove a structure theorem for finitely generated
CRF-rings. Finally, we describe CRF-rings without ideals which are domains, and
we give some nontrivial examples of such rings.

We shall need the following result proved in [2].

THEOREM 1.2. If R is an S-semisimple torsion-free CRF-ring without an identity,
then R is isomorphic to some essential ideal of a ring S, where S is a torsion-free
CRF-subring of the ring EndR(R) with an identity and 5(R)=5(S).

Let K be a subring of Q5 with the same identity. Take any a ∈ K . Let us denote by
supp(a) the set {p ∈5 | ap 6= 0}. Then BK = {supp(a) | a ∈ K } is a Boolean algebra.

For every Y ⊆5, we define χY = (ap)p∈5 ∈ Z5 to be

ap =

{
0 if p /∈ Y
1 if p ∈ Y .

(1.1)

LEMMA 1.3. Let 5 be an arbitrary nonempty subset of P. Let K be a subring of Q5

with the same identity. Then K is a strongly regular ring if and only if for every a ∈ K
there exists b ∈ K such that ab = χsupp(a). In particular, if K is a strongly regular
ring, then χY ∈ K for every Y ∈ BK .

LEMMA 1.4. Let5 be an arbitrary nonempty subset of P. Let K be a strongly regular
subring of Q5 with the same identity such that for every a ∈ K , a = (ap)p∈5, we have
ap ∈ Zp for almost all p ∈5. Put S = K ∩ Z5. Then:

(1) every ideal J of K is of the form J = {(1/n)i | i ∈ J ∩ S, n ∈ N};
(2) if S is Noetherian, then K is also Noetherian;
(3) S contains a nonzero ideal which is a domain, if and only K contains a nonzero

ideal which is a domain.

PROOF. (1) According to the proof of Theorem 4.4 of [2], K = {(1/n)a | a ∈ S,
n ∈ N}. Let us first observe that J � K implies that J ∩ S � S. We claim that
J = {(1/n)i | i ∈ J ∩ S, n ∈ N}. Indeed, (1/n)i = ((1/n) · 1)i ∈ J for i ∈ J ∩ S. If
j ∈ J , there exists n ∈ N such that n · j ∈ S. Then obviously j = (1/n)(nj).

Parts (2) and (3) are direct consequences of (1). 2
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2. Finiteness conditions for S-semisimple CRF-rings

For a nonempty subset X of a ring R, 〈X〉 will denote the additive subgroup by X ,
and [X ] will denote the subring generated generated byX . Let (a, b) denote the
greatest common divisor of given integers a and b.

THEOREM 2.1. Given a ring R with an identity element, the following conditions are
equivalent.

(1) R is a Noetherian S-semisimple CRF-ring.
(2) R ∼=

⊕n
i=1 Di , where Di is a filial integral domain of characteristic 0, which is

not a field for every i ∈ {1, 2, . . . , n} and 5(Di ) ∩5(D j )= ∅ for i 6= j .

PROOF. Suppose a ring R with an identity satisfies (1). We first note that by
Theorem 1.1 there exist a nonempty subset 5⊆ P and a unique strongly regular
subring K of Q5 with the same identity, such that for every a ∈ K , a = (ap)p∈5,
we have ap ∈ Zp for almost all p ∈5 and R ∼= K ∩ Z5. Lemma 1.4 yields that K is
Noetherian. Applying Lemma 1.3, we get that BK is an Artinian Boolean algebra (BK
satisfies the descending chain condition).

Next, we can take pairwise disjoint atoms 51, . . . , 5k ∈ BK such that 5=51 ∪

52 ∪ · · · ∪5k . This is possible thanks to some standard results in Boolean algebra
theory (see [9]). A trivial verification and Lemma 1.3 show that χ51, χ52, . . . , χ5k ∈

K are pairwise orthogonal idempotents and 1= χ51 + χ52 + · · · + χ5k . Since 5i
is an atom, χ5i K is an integral domain. But χ5i K is an ideal in a strongly
regular ring K , hence χ5i K ∈ S. From this we conclude that χ5i K is a
field. It follows that K =

⊕k
i=1 χ5i K and consequently R ∼=

⊕k
i=1[(χ5i K ) ∩ Z5i ].

Moreover, [1, Theorem 8.8] gives that Di = (χ5i K ) ∩ Z5i is a filial integral domain
of characteristic 0 and 5(Di )=5i for i ∈ {1, 2, . . . , k}.

Finally, suppose that (2) holds. Note that [4, Corollary 3] implies that R is an S-
semisimple CRF-ring. From [1, Theorem 3.3] it follows that Di is a Noetherian ring
as a principal ideal domain. Obviously R is a Noetherian ring. 2

We have been working under the assumption that a ring has an identity element.
This condition was essential for the above proof. We will now show how to dispense
with this assumption.

THEOREM 2.2. The following conditions on a ring R are equivalent.

(1) R is a Noetherian S-semisimple CRF-ring.
(2) R ∼=

⊕n
i=1 mi Di , where Di is a filial integral domain of characteristic 0, which

is not a field, mi ∈ N for every i ∈ {1, 2, . . . , n} and 5(Di ) ∩5(D j )= ∅ for
i 6= j .

PROOF. Let R be a Noetherian S-semisimple CRF-ring. Let us first observe that
Theorem 1.2 shows that there exists a torsion-free CRF-ring S with an identity such
that R is an essential ideal in S. Since R is a Noetherian ring, EndR(R) is a
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Noetherian R-module. But S is an R-submodule of EndR(R), so S is a Noetherian
R-module. Consequently S is a Noetherian ring. According to Theorem 2.1 we have
S ∼=

⊕n
i=1 Di , where Di is a filial integral domain of characteristic 0, which is not

a field for every i ∈ {1, 2, . . . , n} and 5(Di ) ∩5(D j )= ∅ for i 6= j . Since R is
an essential ideal of S it is easy to see that R ∼=

⊕n
i=1 Ji , where Ji is an nonzero

ideal of Di . Applying [1, Theorem 3.3], we get Ji ∼= mi Di , mi ∈ N for every
i ∈ {1, 2, . . . , n}. Finally, R ∼=

⊕n
i=1 mi Di . This shows that (1) implies (2).

Suppose that (2) holds. From [1, Theorem 3.3] we get that Di is a Noetherian ring.
By filiality of Di it follows that mi Di is a Noetherian ring for every i ∈ {1, 2, . . . , n}.
Consequently, R is a Noetherian ring. Moreover, from [4, Corollary 3] it may be
concluded that R is an S-semisimple CRF-ring. 2

Our next goal is to determine the structure of Noetherian CRF-rings. Suppose
now that R is a Noetherian CRF-ring such that S(R) 6= 0. It is easy to verify that
S(R) is a Noetherian ring with an identity. So S(R) is a direct summand of R. Let
R = S(R)⊕ T . Since T satisfies conditions of Theorem 2.2 so we need only consider
S(R). But the standard computation shows that every strongly regular, Noetherian
CRF-ring is a finite direct sum of fields (see, for instance, [11]).

Applying the above observation and Theorem 2.2, one can immediately obtain the
following structure theorem.

THEOREM 2.3. The following conditions on a ring R are equivalent.

(1) R is a Noetherian CRF-ring.
(2) R ∼= (

⊕k
j=1 F j )⊕ (

⊕n
i=1 mi Di ), where Di is a filial integral domain of

characteristic 0, which is not a field, mi ∈ N for every i ∈ {1, 2, . . . , n},
5(Di ) ∩5(Dt )= ∅ for i 6= t and F j is a field for every j ∈ {1, 2, . . . , k}.

As a final result in this section, we prove an analogue of Theorem 2.3 for finitely
generated S-semisimple CRF-rings.

THEOREM 2.4. The following conditions on a ring R are equivalent.

(1) R is a finitely generated CRF-ring.
(2) R ∼= (

⊕k
j=1 F j )⊕ (

⊕n
i=1 mi Di ) where Di is a finitely generated subring of Q

with identity, mi ∈ N for every i ∈ {1, 2, . . . , n}, 5(Di ) ∩5(Dt )= ∅ for i 6= t
and F j is a finite field for every j ∈ {1, 2, . . . , k}.

PROOF. Suppose that R satisfies condition (1). It is clear that R is Noetherian,
so by Theorem 2.3 we obtain that R ∼= (

⊕k
j=1 F j )⊕ (

⊕n
i=1 mi Di ), where Di is

a filial integral domain of characteristic 0, which is not a field, mi ∈ N for every
i ∈ {1, 2, . . . , n}, 5(Di ) ∩5(Dt )= ∅ for i 6= t and F j is a field for every j ∈
{1, 2, . . . , k}. Moreover, every mi Di is a homomorphic image of the ring R. So
mi Di is finitely generated, but by filiality of Di we have Di = mi Di + Z · 1, so
consequently Di is finitely generated. Applying [1, Theorem 5.1], we see at once
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that Di is a finitely generated subring of Q. Every F j is also a homomorphic image
of R. Hence every F j is finitely generated. But every finitely generated field is finite.

Suppose that (2) holds. Since Di is a finitely generated subring of Q with
identity, there exists M ∈ N such that Di = [1/M]. Hence there exists k ∈ N such
that (k, M)= 1 and mi Di = k[1/M] (where k = mi/(mi , M)). We will show that
mi Di = [k/M]. Clearly [k/M] ⊆ k[1/M]. Let a ∈ [1/M]. Then there exist l ∈ Z
and t ∈ N such that a = l/M t . But (k, M)= 1, so there are integers u, v such that
kt−1u + M t−1v = 1. Thus ka = (k/M)t lu + (k/M)lv ∈ [k/M]. Consequently, mi Di
is finitely generated for every i = 1, . . . , n. It is obvious that every F j is finitely
generated. Hence R is a finitely generated. Moreover,

⊕n
i=1 mi Di is a CRF-ring

by [4, Corollary 3] and
⊕k

j=1 F j is clearly a subidempotent ring. Proposition 3 of [3]
implies that R is filial. 2

3. CRF-rings without ideals which are domains

THEOREM 3.1. Let 5 be an arbitrary nonempty subset of P. Then R is an S-
semisimple CRF-ring with an identity without ideals which are domains, such that
5(R)=5 if and only if R is isomorphic to a subring of Q5 of the form K ∩ Z5
where K is the unique strongly regular subring of Q5 with the same identity, such that
for every a ∈ K , a = (ap)p∈5, we have ap ∈ Zp for almost all p ∈5 and the Boolean
algebra BK is atom-free.

PROOF. Let R be an S-semisimple CRF-ring with an identity without ideals which are
domains, such that 5(R)=5. From Theorem 1.1 we have that R is isomorphic to a
subring of Q5 of the form K ∩ Z5 where K is the unique strongly regular subring
of Q5 with the same identity, such that for every a ∈ K , a = (ap)p∈5, we have
ap ∈ Zp for almost all p ∈5. Lemma 1.4 implies that a ring K does not contain an
ideal which is a domain. Take any nonempty Y ∈ BK . By Lemma 1.3, a = χY ∈ K .
But I = K a is not a domain so there exist c, d ∈ I such that cd = 0. Obviously
∅ 6= supp(c)⊆ Y and ∅ 6= supp(d)⊆ Y . Moreover, supp(c) ∩ supp(d)= ∅ because
cd = 0. Hence supp(c)( Y or supp(d)( Y and BK is atom-free.

Conversely, according to Lemma 1.4 it is sufficient to prove that a ring K does not
contain an ideal which is a domain. Let {0} 6= I � K . Take any nonzero a ∈ I . BK
is atom-free so exists Y ∈ BK such that ∅ 6= Y ( supp(a). Lemma 1.3 implies that
χY , χsupp(a)\Y ∈ K and aχY , aχsupp(a)\Y are nonzero elements of I . Finally, I is not a
domain and the proof is complete. 2

From Theorems 1.2 and 3.1 we can easy obtain following structure theorem.

THEOREM 3.2. R is an S-semisimple CRF-ring without ideals which are domains if
and only if R is isomorphic to some essential ideal of a ring of the form K ∩ Z5,
where K is the unique strongly regular subring of Q5 with the same identity, such that
for every a ∈ K , a = (ap)p∈5, we have ap ∈ Zp for almost all p ∈5 and the Boolean
algebra BK is atom-free.
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4. Example

EXAMPLE 4.1. Let p be any prime number. Let Ai,k = {pi t + k | t ∈ N} for i ∈ N0
and k ∈ {0, 1, . . . , pi

− 1}. Let

D=

{ n⋃
j=1

X j

∣∣∣∣ n ∈ N ∀ j ∃i∈N0 ∃k∈{0,1,...,pi−1} X j = Ai,k

}
.

It is easy to see that for i1 ≤ i2,

Ai1,k1 ∩ Ai2,k2 =

{
Ai2,k2 if k1 ≡ k2 mod pi1

∅ if k1 6≡ k2 mod pi1 .

So every element of D can be written as a disjoint sum of sets Ai,k . This means
that if X, Y ∈D then X ∩ Y ∈D. Next, it is also clear that A′i,k = N \ Ai,k =⋃

j∈{0,1,...,pi−1}, j 6=k Ai, j ∈D. So D is a field of sets. Of course, for every Ai,k and for
every j > i , Ai,k ) Ai, j .

EXAMPLE 4.2. Let5= {p1, p2, . . .} be any infinite subset of prime numbers. Let D
be any atom-free Boolean algebra of subsets of 5. Such an algebra does exist, by
Example 4.1. In Q5 we define

K = [aχY : Y ∈D, 0 6= a ∈Q]. (4.1)

It is easy to see that

K = 〈aχY : Y ∈D, 0 6= a ∈Q〉. (4.2)

Hence every nonzero d ∈ K can be written in the form

d = a1χY1 + a2χY2 + · · · + akχYk (4.3)

where 0 6= ai ∈Q, ∅ 6= Yi ∈D for every i ∈ {1, 2, . . . , k}, Yi ∩ Y j = ∅ for i 6= j and
supp(d)= Y1 ∪ Y2 ∪ · · · ∪ Yk . We claim that K is strongly regular. Let d be as
in (4.3). Put d ′ = a−1

1 χY1 + a−1
2 χY2 + · · · + a−1

k χYk . Obviously d ′ ∈ K ; moreover,
d · d ′ = χsupp(d) ∈ K . So by Lemma 1.3, K is strongly regular subring of Q5. Clearly
K ∩ Z5 6= {0}. It is easy to see that BK is atom-free, so Theorem 3.1 implies that
K ∩ Z5 is a nonzero S-semisimple CRF-ring, without an ideal which is a domain.
Moreover, 5(K ∩ Z5)=5.
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