ON COMMUTATIVE REDUCED FILIAL RINGS

R. R. ANDRUSZKIEWICZ and K. PRYSZCZEPKO

(Received 21 July 2009)

Abstract

A ring in which every accessible subring is an ideal is called filial. We continue the study of commutative reduced filial rings started in [R. R. Andruszkiewicz and K. Pryszczepko, ‘A classification of commutative reduced filial rings’, Comm. Algebra to appear]. In particular we describe the Noetherian commutative reduced rings and construct nontrivial examples of commutative reduced filial rings without ideals which are domains.

2000 Mathematics subject classification: primary 16D25; secondary 16D70.
Keywords and phrases: ideal, filial ring, reduced ring, p-adic numbers.

1. Introduction and preliminaries

Throughout this paper we assume that all rings are associative not necessarily with unity. We denote by \(\mathbb{Z} \) the ring of integers, and by \(\mathbb{P} \) the set of all prime integers. If \(p \in \mathbb{P} \) then we write \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \) for the ring of \(p \)-adic integers and the quotient field of \(p \)-adic integers, respectively. For arbitrary \(\Pi \subseteq \mathbb{P} \) we denote \(\mathbb{Q}_\Pi = \prod_{p \in \Pi} \mathbb{Q}_p \), \(\mathbb{Z}_\Pi = \prod_{p \in \Pi} \mathbb{Z}_p \).

An associative ring \(R \) is called filial if \(A \triangleleft B \triangleleft R \) implies \(A \triangleleft R \) for all subrings \(A, B \) of \(R \). The problem of describing filial rings was raised by Szász in [12]. The problem has been studied by various authors, namely, Ehrlich [5], Filipowicz and Puczyłowski [6, 7] Sands [10] and Veldsman [13].

A ring \(R \) is strongly regular if \(a \in Ra^2 \) for every \(a \in R \). It is well known that all strongly regular rings are von Neumann regular and for commutative rings the two properties coincide. The class of all strongly regular rings \(\mathbb{S} \) forms a radical in the sense of Kurosh and Amitsur [8]. A ring is reduced if it has no nontrivial nilpotent elements.

For a torsion-free ring \(R \) let \(\Pi (R) = \{ p \in \mathbb{P} \mid pR \neq R \} \). A ring \(R \) is called a CRF-ring if \(R \) is commutative, reduced and filial. Theorem 4.4 in [2] gives the following description of the \(\mathbb{S} \)-semisimple CRF-rings with an identity.
\textsc{Theorem 1.1.} Let \(\Pi \) be an arbitrary nonempty subset of \(\mathbb{P} \). Then a ring \(R \) is an \(\mathbb{S} \)-semisimple CRF-ring with an identity, such that \(\Pi(R) = \Pi \) if and only if \(R \) is isomorphic to a subring of \(\mathbb{Q}_\Pi \) of the form \(K \cap \mathbb{Z}_\Pi \) where \(K \) is the unique strongly regular subring of \(\mathbb{Q}_\Pi \) with the same identity, such that for every \(a \in K \), \(a = (a_p)_{p \in \Pi} \), we have \(a_p \in \mathbb{Z}_p \) for almost all \(p \in \Pi \).

The above theorem is important because every CRF-ring is an extension of a commutative strongly regular ring by an \(\mathbb{S} \)-semisimple CRF-ring (see [2, Proposition 4.1]).

In the present paper we study some nontrivial consequences of Theorem 1.1. In particular, using some techniques from Boolean algebra theory we characterize Noetherian CRF-rings. We also prove a structure theorem for finitely generated CRF-rings. Finally, we describe CRF-rings without ideals which are domains, and we give some nontrivial examples of such rings.

We shall need the following result proved in [2].

\textsc{Theorem 1.2.} If \(R \) is an \(\mathbb{S} \)-semisimple torsion-free CRF-ring without an identity, then \(R \) is isomorphic to some essential ideal of a ring \(S \), where \(S \) is a torsion-free \(\mathbb{S} \)-semisimple CRF-ring (see [2, Proposition 4.1]).

Let \(K \) be a subring of \(\mathbb{Q}_\Pi \) with the same identity. Take any \(a \in K \). Let us denote by \(\text{supp}(a) \) the set \(\{ p \in \Pi \mid a_p \neq 0 \} \). Then \(\mathcal{B}_K = \{ \text{supp}(a) \mid a \in K \} \) is a Boolean algebra.

For every \(Y \subseteq \Pi \), we define \(\chi_Y = (a_p)_{p \in \Pi} \in \mathbb{Z}_\Pi \) to be

\[
a_p = \begin{cases}
0 & \text{if } p \notin Y \\
1 & \text{if } p \in Y.
\end{cases}
\] (1.1)

\textsc{Lemma 1.3.} Let \(\Pi \) be an arbitrary nonempty subset of \(\mathbb{P} \). Let \(K \) be a subring of \(\mathbb{Q}_\Pi \) with the same identity. Then \(K \) is a strongly regular ring if and only if for every \(a \in K \) there exists \(b \in K \) such that \(ab = \chi_{\text{supp}(a)} \). In particular, if \(K \) is a strongly regular ring, then \(\chi_Y \in K \) for every \(Y \in \mathcal{B}_K \).

\textsc{Lemma 1.4.} Let \(\Pi \) be an arbitrary nonempty subset of \(\mathbb{P} \). Let \(K \) be a strongly regular subring of \(\mathbb{Q}_\Pi \) with the same identity such that for every \(a \in K \), \(a = (a_p)_{p \in \Pi} \), we have \(a_p \in \mathbb{Z}_p \) for almost all \(p \in \Pi \). Put \(S = K \cap \mathbb{Z}_\Pi \). Then:

\begin{enumerate}
 \item every ideal \(J \) of \(K \) is of the form \(J = \{(1/n)i \mid i \in J \cap S, n \in \mathbb{N}\} \);
 \item if \(S \) is Noetherian, then \(K \) is also Noetherian;
 \item \(S \) contains a nonzero ideal which is a domain, if and only \(K \) contains a nonzero ideal which is a domain.
\end{enumerate}

\textsc{Proof.} (1) According to the proof of Theorem 4.4 of [2], \(K = \{(1/n)a \mid a \in S, n \in \mathbb{N}\} \). Let us first observe that \(J \subset K \) implies that \(J \cap S \subset S \). We claim that \(J = \{(1/n)i \mid i \in J \cap S, n \in \mathbb{N}\} \). Indeed, \((1/n)i = ((1/n) \cdot 1)i \in J \) for \(i \in J \cap S \). If \(j \in J \), there exists \(n \in \mathbb{N} \) such that \(n \cdot j \in S \). Then obviously \(j = (1/n)(nj) \).

Parts (2) and (3) are direct consequences of (1). \(\square \)
2. Finiteness conditions for \(S \)-semisimple CRF-rings

For a nonempty subset \(X \) of a ring \(R \), \(\langle X \rangle \) will denote the additive subgroup by \(X \), and \([X] \) will denote the subring generated generated by \(X \). Let \((a, b)\) denote the greatest common divisor of given integers \(a \) and \(b \).

Theorem 2.1. Given a ring \(R \) with an identity element, the following conditions are equivalent.

1. \(R \) is a Noetherian \(S \)-semisimple CRF-ring.
2. \(R \cong \bigoplus_{i=1}^{n} D_i \), where \(D_i \) is a filial integral domain of characteristic 0, which is not a field for every \(i \in \{1, 2, \ldots, n\} \) and \(\Pi(D_i) \cap \Pi(D_j) = \emptyset \) for \(i \neq j \).

Proof. Suppose a ring \(R \) with an identity satisfies (1). We first note that by Theorem 1.1 there exist a nonempty subset \(\Pi \subseteq \mathbb{P} \) and a unique strongly regular subring \(K \) of \(\mathbb{Q}_{\Pi} \) with the same identity, such that for every \(a \in K \), \(a = (a_p)_{p \in \Pi} \), we have \(a_p \in \mathbb{Z}_p \) for almost all \(p \in \Pi \) and \(R \cong K \otimes_{\mathbb{Z}_{\Pi}} \mathbb{Z}_{\Pi} \). Lemma 1.4 yields that \(K \) is Noetherian. Applying Lemma 1.3, we get that \(B_K \) is an Artinian Boolean algebra (\(B_K \) satisfies the descending chain condition).

Next, we can take pairwise disjoint atoms \(\Pi_1, \ldots, \Pi_k \in B_K \) such that \(\Pi = \Pi_1 \cup \Pi_2 \cup \cdots \cup \Pi_k \). This is possible thanks to some standard results in Boolean algebra theory (see [9]). A trivial verification and Lemma 1.3 show that \(\chi_{\Pi_1}, \chi_{\Pi_2}, \ldots, \chi_{\Pi_k} \in K \) are pairwise orthogonal idempotents and \(1 = \chi_{\Pi_1} + \chi_{\Pi_2} + \cdots + \chi_{\Pi_k} \). Since \(\Pi_i \) is an atom, \(\chi_{\Pi_i} K \) is an integral domain. But \(\chi_{\Pi_i} K \) is an ideal in a strongly regular ring \(K \), hence \(\chi_{\Pi_i} K \in S \). From this we conclude that \(\chi_{\Pi_i} K \) is a field. It follows that \(K = \bigoplus_{i=1}^{k} \chi_{\Pi_i} K \) and consequently \(R \cong \bigoplus_{i=1}^{k} (\chi_{\Pi_i} K) \otimes_{\mathbb{Z}_{\Pi_i}} \mathbb{Z}_{\Pi_i} \). Moreover, [1, Theorem 8.8] gives that \(D_i = (\chi_{\Pi_i} K) \otimes_{\mathbb{Z}_{\Pi_i}} \mathbb{Z}_{\Pi_i} \) is a filial integral domain of characteristic 0 and \(\Pi(D_i) = \Pi_i \) for \(i \in \{1, 2, \ldots, k\} \).

Finally, suppose that (2) holds. Note that [4, Corollary 3] implies that \(R \) is an \(S \)-semisimple CRF-ring. From [1, Theorem 3.3] it follows that \(D_i \) is a Noetherian ring as a principal ideal domain. Obviously \(R \) is a Noetherian ring. \(\square \)

We have been working under the assumption that a ring has an identity element. This condition was essential for the above proof. We will now show how to dispense with this assumption.

Theorem 2.2. The following conditions on a ring \(R \) are equivalent.

1. \(R \) is a Noetherian \(S \)-semisimple CRF-ring.
2. \(R \cong \bigoplus_{i=1}^{n} m_i D_i \), where \(D_i \) is a filial integral domain of characteristic 0, which is not a field, \(m_i \in \mathbb{N} \) for every \(i \in \{1, 2, \ldots, n\} \) and \(\Pi(D_i) \cap \Pi(D_j) = \emptyset \) for \(i \neq j \).

Proof. Let \(R \) be a Noetherian \(S \)-semisimple CRF-ring. Let us first observe that Theorem 1.2 shows that there exists a torsion-free CRF-ring \(S \) with an identity such that \(R \) is an essential ideal in \(S \). Since \(R \) is a Noetherian ring, \(\text{End}_R(R) \) is a
Noetherian R-module. But S is an R-submodule of $\text{End}_R(R)$, so S is a Noetherian R-module. Consequently S is a Noetherian ring. According to Theorem 2.1 we have $S \cong \bigoplus_{i=1}^n D_i$, where D_i is a filial integral domain of characteristic 0, which is not a field for every $i \in \{1, 2, \ldots, n\}$ and $\Pi(D_i) \cap \Pi(D_j) = \emptyset$ for $i \neq j$. Since R is an essential ideal of S it is easy to see that $R \cong \bigoplus_{i=1}^n J_i$, where J_i is an nonzero ideal of D_i. Applying [1, Theorem 3.3], we get $J_i \cong m_i D_i$, $m_i \in \mathbb{N}$ for every $i \in \{1, 2, \ldots, n\}$. Finally, $R \cong \bigoplus_{i=1}^n m_i D_i$. This shows that (1) implies (2).

Suppose that (2) holds. From [1, Theorem 3.3] we get that D_i is a Noetherian ring. By filiality of D_i it follows that $m_i D_i$ is a Noetherian ring for every $i \in \{1, 2, \ldots, n\}$. Consequently, R is a Noetherian ring. Moreover, from [4, Corollary 3] it may be concluded that R is an S-semisimple CRF-ring. □

Our next goal is to determine the structure of Noetherian CRF-rings. Suppose now that R is a Noetherian CRF-ring such that $S(R) \neq 0$. It is easy to verify that $S(R)$ is a Noetherian ring with an identity. So $S(R)$ is a direct summand of R. Let $R = S(R) \oplus T$. Since T satisfies conditions of Theorem 2.2 so we need only consider $S(R)$. But the standard computation shows that every strongly regular, Noetherian CRF-ring is a finite direct sum of fields (see, for instance, [11]).

Applying the above observation and Theorem 2.2, one can immediately obtain the following structure theorem.

Theorem 2.3. The following conditions on a ring R are equivalent.

1. R is a Noetherian CRF-ring.
2. $R \cong (\bigoplus_{j=1}^k F_j) \oplus (\bigoplus_{i=1}^n m_i D_i)$, where D_i is a filial integral domain of characteristic 0, which is not a field, $m_i \in \mathbb{N}$ for every $i \in \{1, 2, \ldots, n\}$, $\Pi(D_i) \cap \Pi(D_t) = \emptyset$ for $i \neq t$ and F_j is a field for every $j \in \{1, 2, \ldots, k\}$.

As a final result in this section, we prove an analogue of Theorem 2.3 for finitely generated S-semisimple CRF-rings.

Theorem 2.4. The following conditions on a ring R are equivalent.

1. R is a finitely generated CRF-ring.
2. $R \cong (\bigoplus_{j=1}^k F_j) \oplus (\bigoplus_{i=1}^n m_i D_i)$ where D_i is a finitely generated subring of \mathbb{Q} with identity, $m_i \in \mathbb{N}$ for every $i \in \{1, 2, \ldots, n\}$, $\Pi(D_i) \cap \Pi(D_t) = \emptyset$ for $i \neq t$ and F_j is a field for every $j \in \{1, 2, \ldots, k\}$.

Proof. Suppose that R satisfies condition (1). It is clear that R is Noetherian, so by Theorem 2.3 we obtain that $R \cong (\bigoplus_{j=1}^k F_j) \oplus (\bigoplus_{i=1}^n m_i D_i)$, where D_i is a filial integral domain of characteristic 0, which is not a field, $m_i \in \mathbb{N}$ for every $i \in \{1, 2, \ldots, n\}$, $\Pi(D_i) \cap \Pi(D_t) = \emptyset$ for $i \neq t$ and F_j is a field for every $j \in \{1, 2, \ldots, k\}$. Moreover, every $m_i D_i$ is a homomorphic image of the ring R. So $m_i D_i$ is finitely generated, but by filiality of D_i we have $D_i = m_i D_i + \mathbb{Z} \cdot 1$, so consequently D_i is finitely generated. Applying [1, Theorem 5.1], we see at once...
that D_i is a finitely generated subring of \mathbb{Q}. Every F_j is also a homomorphic image of R. Hence every F_j is finitely generated. But every finitely generated field is finite.

Suppose that (2) holds. Since D_i is a finitely generated subring of \mathbb{Q} with identity, there exists $M \in \mathbb{N}$ such that $D_i = [1/M]$. Hence there exists $k \in \mathbb{N}$ such that $(k, M) = 1$ and $m_i D_i = k[1/M]$ (where $k = m_i/(m_i, M)$). We will show that $m_i D_i = [k/M]$. Clearly $[k/M] \subseteq k[1/M]$. Let $a \in [1/M]$. Then there exist $l \in \mathbb{Z}$ and $t \in \mathbb{N}$ such that $a = l/M^t$. But $(k, M) = 1$, so there are integers u, v such that $k^{t-1} u + M^{t-1} v = 1$. Thus $ka = (k/M)^t l u + (k/M) l v \in [k/M]$. Consequently, $m_i D_i$ is finitely generated for every $i = 1, \ldots, n$. It is obvious that every F_j is finitely generated. Hence R is a finitely generated. Moreover, \(\bigoplus_{j=1}^n F_j \) is a CRF-ring by [4, Corollary 3] and \(\bigoplus_{j=1}^k F_j \) is clearly a subidempotent ring. Proposition 3 of [3] implies that R is filial. \[\square\]

3. CRF-rings without ideals which are domains

Theorem 3.1. Let Π be an arbitrary nonempty subset of \mathbb{P}. Then R is an S-semisimple CRF-ring with an identity without ideals which are domains, such that $\Pi(R) = \Pi$ if and only if R is isomorphic to a subring of \mathbb{Q}_Π of the form $K \cap \mathbb{Z}_\Pi$ where K is the unique strongly regular subring of \mathbb{Q}_Π with the same identity, such that for every $a \in K$, $a = (a_p)_{p \in \Pi}$, we have $a_p \in \mathbb{Z}_p$ for almost all $p \in \Pi$ and the Boolean algebra B_K is atom-free.

Proof. Let R be an S-semisimple CRF-ring with an identity without ideals which are domains, such that $\Pi(R) = \Pi$. From Theorem 1.1 we have that R is isomorphic to a subring of \mathbb{Q}_Π of the form $K \cap \mathbb{Z}_\Pi$ where K is the unique strongly regular subring of \mathbb{Q}_Π with the same identity, such that for every $a \in K$, $a = (a_p)_{p \in \Pi}$, we have $a_p \in \mathbb{Z}_p$ for almost all $p \in \Pi$. Lemma 1.4 implies that a ring K does not contain an ideal which is a domain. Take any nonempty $Y \subseteq B_K$. By Lemma 1.3, $a = \chi_Y \in K$.

Let $I = Ka$ is not a domain so there exist $c, d \in I$ such that $cd = 0$. Obviously $\emptyset \neq \text{supp}(c) \subseteq Y$ and $\emptyset \neq \text{supp}(d) \subseteq Y$. Moreover, $\text{supp}(c) \cap \text{supp}(d) = \emptyset$ because $cd = 0$. Hence $\text{supp}(c) \subseteq Y$ or $\text{supp}(d) \subseteq Y$ and B_K is atom-free.

Conversely, according to Lemma 1.4 it is sufficient to prove that a ring K does not contain an ideal which is a domain. Let $\emptyset \neq I \triangleleft K$. Take any nonzero $a \in I$. B_K is atom-free so exists $Y \subseteq B_K$ such that $\emptyset \not\subseteq Y \subseteq \text{supp}(a)$. Lemma 1.3 implies that $\chi_Y \cdot \chi_{\text{supp}(a)} \not\subseteq K$ and $a \chi_Y \cdot a \chi_{\text{supp}(a) \setminus Y}$ are nonzero elements of I. Finally, I is not a domain and the proof is complete. \[\square\]

From Theorems 1.2 and 3.1 we can easy obtain following structure theorem.

Theorem 3.2. R is an S-semisimple CRF-ring without ideals which are domains if and only if R is isomorphic to some essential ideal of a ring of the form $K \cap \mathbb{Z}_\Pi$, where K is the unique strongly regular subring of \mathbb{Q}_Π with the same identity, such that for every $a \in K$, $a = (a_p)_{p \in \Pi}$, we have $a_p \in \mathbb{Z}_p$ for almost all $p \in \Pi$ and the Boolean algebra B_K is atom-free.
4. Example

Example 4.1. Let p be any prime number. Let $A_{i,k} = \{p^i t + k \mid t \in \mathbb{N}\}$ for $i \in \mathbb{N}_0$ and $k \in \{0, 1, \ldots, p^i - 1\}$. Let

$$
\mathcal{D} = \left\{ \bigcup_{j=1}^{n} X_j \mid n \in \mathbb{N}, \forall j \in \mathbb{N}_0 \exists t \in [0,1,\ldots,p^i-1] \ X_j = A_{i,k} \right\}.
$$

It is easy to see that for $i_1 \leq i_2$, $A_{i_1,k_1} \cap A_{i_2,k_2} = \begin{cases} A_{i_2,k_2} & \text{if } k_1 \equiv k_2 \mod p^{i_1} \\ \emptyset & \text{if } k_1 \not\equiv k_2 \mod p^{i_1} \end{cases}$.

So every element of \mathcal{D} can be written as a disjoint sum of sets $A_{i,k}$. This means that if $X, Y \in \mathcal{D}$ then $X \cap Y \in \mathcal{D}$. Next, it is also clear that $A'_{i,k} = \mathbb{N} \setminus A_{i,k} = \bigcup_{j=0}^{p^i-1} A_{j,k}$. So \mathcal{D} is a field of sets. Of course, for every $A_{i,k}$ and for every $j > i$, $A_{i,k} \supseteq A_{i,j}$.

Example 4.2. Let $\Pi = \{p_1, p_2, \ldots\}$ be any infinite subset of prime numbers. Let \mathcal{D} be any atom-free Boolean algebra of subsets of Π. Such an algebra does exist, by Example 4.1. In \mathbb{Q}_Π we define

$$
K = [a \chi_Y : Y \in \mathcal{D}, 0 \neq a \in \mathbb{Q}].
$$

It is easy to see that

$$
K = \langle a \chi_Y : Y \in \mathcal{D}, 0 \neq a \in \mathbb{Q} \rangle.
$$

Hence every nonzero $d \in K$ can be written in the form

$$
d = a_1 \chi_{Y_1} + a_2 \chi_{Y_2} + \cdots + a_k \chi_{Y_k}
$$

where $0 \neq a_i \in \mathbb{Q}$, $\emptyset \neq Y_i \in \mathcal{D}$ for every $i \in \{1, 2, \ldots, k\}$, $Y_i \cap Y_j = \emptyset$ for $i \neq j$ and $\text{supp}(d) = Y_1 \cup Y_2 \cup \cdots \cup Y_k$. We claim that K is strongly regular. Let d be as in (4.3). Put $d' = a_1^{-1} \chi_{Y_1} + a_2^{-1} \chi_{Y_2} + \cdots + a_k^{-1} \chi_{Y_k}$. Obviously $d' \in K$; moreover, $d \cdot d' = \chi_{\text{supp}(d)} \in K$. So by Lemma 1.3, K is strongly regular subring of \mathbb{Q}_Π. Clearly $K \cap \mathbb{Z}_\Pi \neq \{0\}$. It is easy to see that \mathcal{B}_K is atom-free, so Theorem 3.1 implies that $K \cap \mathbb{Z}_\Pi$ is a nonzero \mathbb{S}-semisimple CRF-ring, without an ideal which is a domain. Moreover, $\Pi(K \cap \mathbb{Z}_\Pi) = \Pi$.

Acknowledgement

The authors would like to thank the referee for many valuable suggestions.
References

R. R. ANDRUSZKIEWICZ, Institute of Mathematics, University of Białystok, 15-267 Białystok, Akademicka 2, Poland

e-mail: randrusz@math.uwb.edu.pl

K. PRYSZCZEPKO, Institute of Mathematics, University of Białystok, 15-267 Białystok, Akademicka 2, Poland

e-mail: karolp@math.uwb.edu.pl