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ON THE RESOLUTION DIAGRAMS OF THE 
BRIESKORN SINGULARITIES (2,q,r) OF TYPE II 

AKIO YAMADA AND YUKIO MATSUMOTO 

1. Statement of results. Let /?, q, r be pairwise coprime integers with 2 
^ p < q < r. The equation zl\ + z\ -f z'3 = 0 defines a complex hyper-
surface V(p, q, r) c C° which has an isolated singular point at the origin. 
We call the singularity the Brieskorn singularity (/?, q, r). An algorithm of 
resolving this singularity is known [1]. According to the algorithm, the 
resolution diagram which describes the configuration of the pre-image of 
the singular point in the resolved surface is a star-shaped tree Tp^r with 
three branches: 

— a i — a 2 ~ as 

Ahx ~ -bt 

(1.1) TM, = -b£-~ • • (ah br ck ^ 2). 

-cx -c2 ~cu 

The positive integers (weights) ah bp c^ b are given as follows: 
Let je, y, z, b be integers satisfying 

xqr = — l(mod /?), ypr = — l(mod q), zpq = — l(mod r), 
(1.2) 0 < x < /?. 0 < v < q. 0 < z < r, 

bpqr = xqr + ypr + zpq + 1. 

Then 

/?/.X: == [<2], tfi, • • • , Cl.s]* 

qly = [6j, K . . . , />,], 

r/z - [c,, c2 t'ul 

where [n\, n2, . . . , wv] denotes the continued fraction 
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1050 A. YAMADA AND Y. MATSUMOTO 

n\ (",• ^ 2 ) . 

n2 1 

Remark. The number b is equal to either 1 or 2. 

Definition. A weighted graph (such as 1^ ^r) is of type II if all the weights 
are even integers. 

In what follows we confine ourselves to the case p = 2, and our aim in 
this paper is to characterize those weighted graphs of type II which appear 
as the (minimal) resolution diagrams of the Brieskorn singularities of type 
(2, q, r). 

In our case p = 2, the resolution diagram of type II has the following 
form: 

(1.3) - Z 
bt 

(bj, ck ^ 2). 

-c\ -ci 

The above weighted (planar) graphs are in 1 to 1 correspondence to the 
arrays of positive integers 

\bh b2, . . . , bt\ 

c\, c2, cul 
Thus our task will be to characterize these arrays. 

Before stating our results, we introduce a semi-group S of arrays of 
integers: 

1 L n x , n 2 , . . . , n v J 0 } \mh nj e Z, ju, v 

Product in S is defined by juxtaposition: 

\mh . . . , mA \m\, . . . , rnA = \mh . . . , m^ mx\ . . . , m l̂ 
L «i , . . . , «y J L «i , . . . , n\\ L « ! , . . . , «„, « i , . . . , n'v }' 

[0l 
The identity element in S is 1^1, where 0 is the empty sequence. 

We define three special types of elements in S called 'joints', 'molecules' 
and 'head and tail', respectively. 
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A) Joints. There are four elements Z, Z, T, T e S called70mte. 

[2, 2, 6] 
U 2, 2 j ' - «(Z), r 

2, 2, 4, 2, 2 
«cn 

where *:£ —> S is the involution defined by 

L(X) = 
L r a b . . . , Wp. 

for X = mh...9mfi 

nh...,nv 

We call t(X) the inverse (i.e., upside-down) of I G 5. 
B) Molecules. First we define auxiliary elements (called particles) ë, e, 

/?„, /?„ e 5 as follows: 

e = GI- <e),Pn 
[(8/1 

L 2 
1)*2] 

2/i + 2 J' £« = l(Pn\ 

where « ^ 1 and the notation ra*2 stands for a sequence 2, 2, . . . , 2 
consisting of m Ts (m e Z, m = 1). 

A molecule M is a product in S of these particles of the following 
form: 

M { e_Pn(\)Pn 
ePn(\)Pn 

(2) • • 'Pn(p.)£ o r l t s inverse (it: even i= 0), 
(i)£/i(2) • • -^(/i)^ o r i t s inverse (/x: odd ^ 1). 

The explicit construction rule of a molecule is as follows: 

(i) A molecule begins with either ë or e. 
(ii) If it begins with ë (resp. e), the first /?w(i> has an upper bar (resp. a 

lower bar), 
(iii) p„ with upper bar and pn with lower bar appear alternately, 
(iv) If 11 i^ 1, a molecule ends with ë o r e according as the last/jW(M) has 

an upper bar or a lower bar. The molecule with /x = 0 is ëe_ or eë. 

Examples. (1) ëe = eë = - . This is the simplest molecule. 

, ~ f 2 l [ ( 8 « - l ) * 2 l f 2 ] [(8*+l)*2l 

(2) W=[ f l][ 2n + 2 J[0J = [ 2» + 2 J" 
_ f 2 | f ( 8 w - l ) * 2 i r 2m + 2 ] [ 0 l [8/i*2, 2/w + 2l 

(3) ePnPme-lfiH 2w + 2 J [ ( 8 m - l ) * 2 j L 2 j ~ 12/2 + 2, 8m*2j-

C) Head and tail. The head H e S is defined by H = m , the to/ L 

b v L U'J » has the same form as the simplest molecule. 
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1052 A. YAMADA AND Y. MATSUMOTO 

Now we state our main result. Let D(X) denote the weighted graph 
(1.3), where 

X , . . . , cu\ 
S. 

THEOREM 1.1. D(X) is a weighted graph of type II which appears as the 
resolution diagram of a Brieskorn singularity (2, q, r) (q < r) if and only if X 
is written as the following product in S: 

(1.4) X = HMXJXM2J2 • • • M„ _iJ„ _ XMVL (v g 1), 

where H is the head, L is the tail, each Mt is a molecule and each J, is a 
joint. 

Remark. The above decomposition of X is unique. 

Examples. (1) The simplest example is 

X-H(ëe)L^[2
2

2
222\ 

The corresponding diagram D(X) is the Dynkin diagram £x : 

- 2 

" 2 " 2 - 2 - 2 

This is the resolution diagram of the Brieskorn singularity (2, 3, 5). 

(2) *(S£i^=H[9î2][2
f l

2] = [ 2,4 
12*2 

The diagram D(H(ep\e)L) appears as the resolution diagram of the 
singularity (2, 7, 13). This diagram also represents the indecomposable 
inner product space T]6 of type II in dimension 16 [2]. 

(3) H(ep,,e)L mr 2« + 2 in 
L2jL(8/7 + 1)*2JL2, 

0 2,2n + 2 
(8« + 4)*2J 

D(H(epne)L) is the resolution diagram of the singularity (2, An + 3, 8« + 
5). 
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... „ . _ . , \2]\2l + 2, (8m -1)*2, 2n + 21 f 0 1 (4) H(ePjPmpne)L = [ J [ g /^ 2w + ^ ^ j [2 J. 

D(H(epipmpne)L) is the resolution diagram of the singularity (2, q, r), 
where 

<? = 64 /raft + 32 /m + 16AWZ + 4 / + 8m + 4n + 3, 
r = 128 /ww + 48 /m + 32mn + 8 / + 12m + 8« + 5. 

(5) An example with two joints is 

The corresponding singularity is of the type (2, 8998141, 13759411). 

THEOREM 1.2. Suppose that D(HM\J\ • • • JV-\MVL) and D(H 
i (M\J\ • - - Jv-\ MV)L) are resolution diagrams of the singularities (2, q, r) 
and (2, q\ r'), respectively. Then (q, r) and (q\ r') are related by 

q' = — 4q + 3r 
r' = — 5<7 + 4r. 

COROLLARY 1.2.1. //"f/ie resolution diagram of the singularity (2, g, r)(q 
< r) is of type II, //ze« .so /'s f/ze resolution diagram of the singularity (2, —4q 
+ 3r, -5(7 + 4r). 

By Theorem 6.3 in [3], if the resolution diagram of the singularity (2, q, 
r) is of type II, then r < 2q. 

This, together with Corollary 1.2.1, yields 

-5q + 4r < 2(-4q + 3r), 

that is 3# < 2r. Thus we have 

COROLLARY 1.2.2. If the resolution diagram of the singularity (2, q, r)(q 
< r) is of type II, J/ze/7 (3/2)g < r < 2q. 

Remark. The lower bound 3/2 and the upper bound 2 given for r/g by 
Corollary 1.2.2 are best possible because there exist sequences {Xn} and 
{X'n} in S such that D(Xn) and Z>(A )̂ are weighted graphs of type II 
appearing as the resolution diagrams of Brieskorn singularities (2, qn, rn) 
(qn < rn) and (2, q'n r'n) (q'n < r'„) and the corresponding sequences {rn/qn} 
and {r'n/q'n} of rational numbers approach 3/2 and 2, respectively, as n 
tends to infinity: 

Xn:= HëpfjëL which corresponds to (2, 8« + 3, 12/7-f-5), 
X't{.= Hep^fleL which corresponds to (2, 4^ + 3, 8^ + 5). 

(Cf. Example (3).) 
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2. Fundamental lemma. Define four polynomials of variables ij, V, £ 
and £': 

FÏOJ, t,', £, T) := 1 + ijf - 4(7, - T,')K - D 

^II(Î?, j?', f, n- = i + 7?r - 4(T) - 7,')(f -• D 

*Hlfo, V, S, D : = 1 + l'$ ~ 4(TJ - ij')tf " -n 
*W0?, i?', ?, £'):= 1 + * T - 4(TJ - T,')(£ - D . 

Let 

lZQ,Zh . . . , Z M + 1 J 

For each pair (&, /) of integers with 0 = A: = / and 0 = / ^ w, we define 
four integers (Y\K l)h (Y\k, On, (Y\k, />m and (Y\k, /)TV: 

(2.1) (Y\K / ) , : = /\>Ofc, J>* + i, z/, z / + 1) , * = I, II, III, IV. 

Let 

x=r*1-^2 M G s 

be written as (1.4). A subarray 

X> = [* '—--M of * 
U i , . . . , c / J 

with 1 ^ /: ^ r and 1 ^ / ^ w is said to e«d with M if there exists an 
integer X such that 

\ ^ X ^ v and A7 = / / M , ^ . . . MX-\J\-\MX. 

Similarly, a subarray X' of X is said to end with J if there exists an integer 
X such that 

0 ^ À ^ y - 1 and X' = /oM],/, . . . MXJX 

where J0 stands for H. Further, we classify manners of ending of subarrays 
at the 'particle level' as follows: Suppose that a molecule M ( e S) is 
decomposed as a product of JU particles q\, q2, . . . , q^ whose arrangement 
is subject to the construction rule stated in Section 1. Then, the product in 
S of its first / particles qh . . . , qi(1 ^ i < JU) is called the i-th section of the 
decomposition of M. For example, let 

M = ^Pn(\)Pn(2)Pn(3)Pn(4)£' 
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Then, ~ëpn{\)P_n{2) *s the 3rd section of M. For convenience, we divide 
particles into two groups: 

(1) e~ and/?„(« i^ 1), called particles of type/?, 
(2) e and/>„(/7 = 1), called particles of type]?. 

We say that a subarray X' of X ends with p if X' is expressed as 

(2.2) X = HMXJX . . . MX-XJx^xqxq2 . . . qt ( l i À ^ , / ^ ) 

where g ^ • • • #/ is the /-th section of M\(q\q2 . . . g, ^ M\) and g, is of 
type/?. Similarly, Jf is said to end with pit X' is written as (2.2) and qf is of 
type^. 

LEMMA. Let 

X = bu...<bt 

ch . . . , cu 
€= S 

Z?e written as (1.4). 
Define an array 

LZQ, . . 

/3y //ze following form ulas : 

> V + 1 | ^ s 

(2 3) [yt+x = 0 , > v = ^ ^ - i = b&k ~ yk+\ 0 = k = 0, 
l * i / + l = 0, ZM = 1, Z /_! = C/Z/ - Z / + 1 (1 ë / g M). 

TTzew, the following four propositions hold: 

I. z/a subarray I ^ * " ' ' M of X ends with M, then (Y\k9 l\ = 0; 

IL z/û subarray r 1 ' " ' ' M of X ends with p, then (Y\k, l)n = 0; 

III. //*# subarray }' ' ' ' ' A 0/ A" ewrfs wz*z7z /?, z7ze« (y|A:, /)ni = 0; 

IV. if a subarray I b^ ' ' ' ' M of X ends with J, then (Y\k, / ) I V = 0. 

This lemma is proved according to a "network induction" scheme 
illustrated by Fig. 1. Observe that, starting at the arrow marked with L 
(tail) in Fig. 1, one advances along arrows and finally goes out along the 
arrow marked with H (head) to obtain an array of the form (1.4), in 
'tail-to-head' direction. One may pass through the same arrow any number 
of times. 
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Thus, it suffices to show the following eight assertions: 
l?(Y|f, u - 2)i = 0; 
2? if (Y | k, /)i = 0 and 

hk bu. 
•C\, . . - , C/_ ! J " 

(or equivalently, c/ = 2), then (Y\k, I — l)n = 0; 

3? if (Y|fc, /), = 0 and 

*i *bk\ = \b\, . . • , 6*-i l -
C!, . . . ,C/J L C i , . . . , Q J 

(or equivalently, Z>£ = 2), then (y)/c — 1, / ) m = 0; 

4? if (Y\k9 /)n = 0 and 

\bh . . . ,bk] = \bh . . . ,Z>A-I | -

Lei, . . . , Q J L ch . . . ,q J 

(or equivalently, bk = 2), then (F|& — 1, / ) I V = 0; 

5? if (Y\k, /)n = 0 and 

6i 
L c j 

,...,**] = [ f t , , . . . , £*-
, . . . , Q J Lei, . . . , c/_8w 

/>« 

(or equivalently, bk = 2« + 2 and c/_8/i + 2 = Q-8* + 3 
some w ^ 1, then (Y\k - 1, / - 8« + l ) m = 0; 

6?if (y|£, / ) m = 0 and 

L c b . . . , qJ L c b . . . , Pn 

cj = 2) for 
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(or equivalently, bk-%n + 2 

1, then (Y\k - 8w + 1, / 

7?if(Y|fc,/)ni 

\bh ...,bk 

Lcu . . . , c / J 

(or equivalently, c/ 

l)n ^ 0; 

0 and 

*i, • • • ,h 
Ch... , C / - ! 

2), then ( r|Ar, / 

2 and c/ = 2« + 2) for some n i? 

l)iv = 0; 

8? If (Y|*, Oiv 0 and 

L e i , . . , c,J y *i, . . . ,bk
f 

ci, . . . , c/ J 

where 7 is a joint, then (y]/r', lr)\ = 0. 

Each assertion is shown by straightforward calculations. 

Proof of the "if "part of Theorem 1.1. Let 

LC], . . . , cMJ 

be written as (1.4). Define 

y = >U • • • *>v+i 
. z 0 , . . . , z w + 1 . 

G 5 

(2.3). Since the subarray 

(Hi, OlV = 1 + );2 ̂ 2 

( = / / ) of X ends with 7, we have 

0 

by the lemma. Substituting y2 

obtain 

4(ji ~ y2)(z\ - z2) = 

2yi — Vo and z2 2z, we 

1 + j ^ o + 2y\zo + 2y0zi = 4y0z0. 

Since /?A i^ 2 for all k and Q = 2 for all /, it is clear that 

JA+I < y\ (0 ë fc ë 0 and z / 4 1 < z/ (0 ^ / ^ «). 

In particular, 0 < ^i < 7o and 0 < z\ < z0. Clearly 

Jo/^i = [*i, • • • , *rL V * i = [c\, . . . , c j , 

by the definition of 7. Therefore, 2, j 0 and z0 are pairwise coprime integers 
such that D(X) is the weighted graph of type II which appears as the 
resolution diagram of the Brieskorn singularity (2, y0, z0). (Cf. Algorithm 
in Section 1.) Using Theorem 1.2, one can prove y0 < z0. 
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The "only if" part of Theorem 1.1 is proved by the network induction 
again, but in reverse direction. The argument is elementary, except that it 
involves careful estimation of the relevant quantities appearing in 
expansions into continued fractions. The proof of Theorem 1.2 proceeds 
similarly according to the network induction. (See also [5].) 
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