
ON REGULAR SURFACES OF GENUS THREE 
PATRICK DU VAL 

ENRIQUES, in his posthumous magnum opus (1), devotes a chapter to the 
canonical or (where the genus is small) bi- or tricanonical models of regular 
surfaces, for various values of the genus pg~ pa = p and of the linear genus p^l\ 
If, however, the cases he deals with are tabulated as follows (* marking the 
surfaces described by Enriques) : 

\p^= 2 3 4 5 6 7 8 9 10 

p = (N * * 

* 
* 

* * * * * 
* * 

it is immediately clear that the scheme has remarkable gaps. The triangular 
space in the lower left-hand part corresponds, by the inequalities 

pM Z 2p - 3, p™ > 3p - 6 

(the former holding if the canonical system is irreducible, the latter if it is also 
simple) to a real absence of surfaces with the genera in question, except that 
the case p = 5, £ ( l ) = 7 has been omitted ; this is easily seen to be a double 
normal rational ruled cubic, branching along a C16 (curve of order 16) which 
meets each generator in six and the directrix in four points; there is an analo­
gous surface for every value of p ^ 4 satisfying the first inequality above with 
equality, consisting of a double normal rational ruled surface of order p — 2, 
branching along a C4p~4 which meets each generator in 6 points, intersection 
of the surface with a sextic hypersurface residual to 2p — 8 generators. The 
rectangular gap in the upper right-hand part of the scheme, however, repre­
sents surfaces which presumably exist but have not been investigated; and 
this gap penetrates so far that the body of surfaces described is cut into two 
isolated parts; no surface with £(1) = 4 is mentioned in the book, and only one 
with p = 3. I t is as a first effort to fill in some of these lacunae that I offer this 
investigation of surfaces of genus p — 3, which (as might be expected) becomes 
less complete with increase of £ ( l ). 

The canonical regular surface of genus p = 3 and £ ( l ) = n + 1 is of course 
an w-ple plane, branching along a C2n+4 of some sort. The case n = 2 is well 
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known, the branch curve being the most general C8; the case n = 3 I studied 
myself some years ago (2), and showed that the branch curve has 24 cusps at 
the intersections of a quartic and a sextic, its equation being linearly dependent 
on the square of the sextic and the cube of the quartic, and is the most general 
curve of this kind. I also proved the case n = 3 of the following theorem, which 
I shall now prove generally, and of its converse, which I can only prove in its 
entirety (and which is probably only true) for n^ 5. (We use [n] to denote a 
projective space of n dimensions.) 

THEOREM I. In [n + 3] if Vn
4 is the cone projecting a Veronese surface F2

4 

from an [n — 3], £2, and Z76
n a five dimensional manifold whose general [n] section 

is the del Pezzo surface of order w, then the intersection of Vn
4 with C/5

n is in general 
a surface FAn, the bicanonical model of a surface with p = 3, p(l) — n + 1. 

For FAn has on it a net \C\ of curves C2n, traced on it by the quadric cones 
r n _i 2 of Vn

A which project the conies of F2
4 from the vertex 0. Each of these 

lies in the [n] containing the cone rn_i2 , and is the intersection of r n - i 2 with a 
del Pezzo surface 52

n , the section of Z75
w by [«]. Now a quadric section of S2

n is 
a canonical curve of genus n + 1, since when the surface is mapped on a plane 
in the ordinary way, it appears as a sextic whose adjoint cubics are precisely 
the system mapping the hyperplane sections of the surface. Thus |C' | , the 
adjoint system of |C|, consists of the hyperplane sections of the surface F4n, 
which are clearly the system |2C|, i.e. 

\c\ = \c>- c\ 
is the canonical system on the surface. Thus FAn is bicanonical; it has p = 3 
since \C\ is a net, and £ ( l ) = n + 1 since this is the genus of C2n. 

The next problem of course is, what is the nature of the canonical n-ple 
plane, the projective model of |C|? In this connexion we prove 

THEOREM II. The canonical model of the surface F4n is an n-ple plane, 
branching along a curve of order 4n with 24 (n — 2) cusps and 8(n — 2)(n — 3) 
nodes. 

For F4n is projected from the vertex Qn_3 of Vn
4 into an w-ple Veronese sur­

face VY, which when mapped on the plane in the ordinary way gives the 
required n-ple plane; and this w-ple F2

4 is just the section by V2
A of the w-ple 

[5], projection of Ub
n from fln-3î the nature of the branching of this can in turn 

be found by considering that of its general n-ple plane, the general projection 
of a del Pezzo surface of order n from [» — 3], whose branch curve is a On of 
genus w + 1, the projection of a general quadric section of the surface, and of 
class 12, since the del Pezzo surface is of class 12. From these data we see that 
this C2n has 6 (n — 2) cusps and 2 (n — 2){n — 3) nodes; and the w-ple [5] 
accordingly branches along a hypersurface of order 2n with three dimensional 
cuspidal and nodal loci of orders 6(w — 2), 2(w — 2)(n — 3) respectively; and 
from the intersections of these with a general F2

4 and the mapping of the latter 
on the plane, Theorem II follows. 
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It is not likely, of course, that the branch curve is completely characterized 
by the mere number of its singularities. For n = 3 I have already given the 
stronger result, and for n = 4 it will appear in the sequel (Theorem V). I t 
may be noted that Theorem II accords with the general formula 

Pn= n + I (/3 - 1) (j8 - 2 ) - S - K - 2 

for an w-ple plane with 2/3-ic branch curve having 48 nodes and 3K cusps. 
Meanwhile, let us consider to what extent we can establish the converse of 

Theorem I. For a general value of n probably the best we can look for is the 
following: 

THEOREM III . Every regular surface with p = 3, p(l) = n + 1, has as its 
bicanonical model a surface of order 4n lying on Fn

4, the canonical system being 
traced on it by the quadric cones r n - i 2 . 

For the characteristic series of the canonical system \C\ is a semicanonical 
gn

l. On the canonical model of a general C2n, each set of gn
l is joined by an 

[n — 2], and any two of these sets are together a hyperplane section of C2n, 
i.e. any two of the oo1 [n — 2]'s are joined by a hyperplane in the ambient [n] 
of C2n; and as clearly not all of these [n — 2]'s lie in any one hyperplane, they 
all pass through one [n — 3] and generate a cone with this vertex, which is 
quadric since any hyperplane through one of them contains just one other. 
(We have made use of the dual of the familiar theorem that any set of lines, 
of which every two meet, either all pass through one point or all lie in one 
plane.) 

Now on the bicanonical model of the surface there are » 2 sets of n points, 
any two of which belong to the semicanonical involution on a C2n, so that the 
[n — 2]'s joining them intersect in an [n — 3]. The theorem just quoted about 
sets of lines every two of which meet, can easily be generalized to read: "Every 
set of [fc]'s, every two of which meet in a [k — 1] and are joined by a [k + 1], 
either all lie in one [k + 1] or all pass through one [k — 1]." Thus the oo* 
[n — 2]'s in the ambient F*n (since they manifestly do not all lie in one [n]) all 
pass through one [n — 3] Œ, the common vertex of the quadric cones containing 
the individual curves C2n; the <»2 [n — 2]'s thus generate the cone Fn

4 with 
vertex 0, and Theorem III is proved. 

In the cases n = 2, 3 we can of course go further than this, and assert that 
the surface given by Theorem I is the most general with the given genera (for 
n — 2 this follows at once from the fact that the most general canonical surface 
is the double plane with octavic branch curve; for n = 3 it was proved in my 
former paper). We shall now show that the same thing is true for n = 4, 5. 
For n = 4 we have in fact 

THEOREM IV. The bicanonical model of the most general regular surface with 
P = 3, pil) = 5 is the intersection of Vé with £/6

4, i*e. the complete intersection of 
Vf with two general quadric hyper surfaces in [7]. 
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By Theorem III we already know that F16 lies on F4
4, and its canonical 

system \C\ is traced by the quadric cones r3
2. Now each C8 of |C|, being a 

canonical curve of genus 5, is the complete intersection of a net of quadrics in 
its ambient [4], one of which is of course IV. The rest trace on each generating 
plane of IV a pencil of conies (whose base points are the four points in which 
the plane meets F16), on r3

2 itself a pencil of Segre (quartic del Pezzo) surfaces 
S2

4 (whose base curve is C8), and on the vertex line 0 of F4
4 an involution. 

Thus (since any two generating planes of F4
4 belong to a IY) the pencils of 

conies in all these planes with base points at the intersections with F16 trace 
the same involution on Î2; and isolating in each pencil the conic tracing a par­
ticular pair of the involution, we see that the locus of these is a three-dimen­
sional variety on F4

4, which traces on each generating plane a conic, and on 
each r3

2 an 52
4; this variety does not contain Î2, but meets it in a pair of points, 

and must accordingly be a quadric section, since every (n — 1) dimensional 
variety on Vn

4 is either a complete intersection or residual to a Tn_i2, and in 
the latter case must contain Œn_3; and it contains F16. Thus the °o * pairs of the 
involution on 0 give a pencil of quadric sections of PY, all containing F16, which 
is thus the complete intersection of F4

4 with a pencil of quadric hypersurfaces 
in its ambient [7], i.e. with their base £/5

4- Theorem IV is thus proved. 
Since F4

4 is itself the base of an <»5 linear system of quadrics, the pencil 
whose intersection is J75

4 is not unique, but is an arbitrary pencil skew to the 
oo5 system within an «^ linear system containing the latter. F16 thus lies on 

Theorem IV enables us to specify more precisely the branch curve of the 
canonical quadruple plane as follows: 

THEOREM V. The branch curve of the canonical surface with p = 3, £(l) = 5, 
is the envelope of a family of quartic curves of index 3 (i.e. depending cubically on 
a parameter, so that three curves of the family pass through a general point of the 
plane) of which two members reduce to double conies, the eight branch points on 
each of these being the 16 nodes of the branch curve. Conversely the envelope of the 
most general family of this kind is the branch curve of a quadruple plane, which 
is a canonical surface with p = 3, £(l) = 5. 

For the discriminant of the pencil of conies traced by the pencil of quadrics 
(?6

2 on any plane through Q, can be written in the form 

aX8+ 30X2+ Zy\ + Ô 

where X is the parameter in the pencil, and a, 0, y, Ô are quadratic functions of 
the coordinates of the plane, i.e. of those of the point in which it meets the [5] 
onto which we project. Thus the branch hypersurface of the quadruple [5] is 
the envelope of the family of quadrics 

(t) aX3+3/SX2+37X + 5 = 0 

and its cuspidal locus is the complete intersection of the three quartics 
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ay = 02 , aô = jfry, fid = y2. 

For the two values of X, for which Q6
2 touches 0, the Q4

2 given by (f) reduces 
to a double [4], branching along a Q32, and these two Qz2's together constitute 
the nodal locus of the branch hypersurface, since the plane joining 0 to a point 
of either of them meets the corresponding Ce2 in a double line, and hence F16 

in four points which coincide by pairs. That this branch hyperplane is the 
envelope of the most general family of quadrics answering to this description 
follows from the fact that its general hyperplane section, branch curve of the 
projected Segre surface, is the envelope of the most general family of conies, 
of index 3, of which two members reduce to double lines. Such a family can in 
fact be represented by an equation of the form 

ax2X3+ 30X2+ 37X + dy2 = 0 

which contains 14 homogeneously entering coefficients; and bearing in mind 
the 004 projective transformations which leave the x and y axes invariant, and 
the possibility of multiplying the parameter X by a constant, we see that the 
number of such envelopes projectively distinct is 00 s ; but the number of pro-
jectively distinct figures in [4] consisting of a Segre surface and a line to project 
it from is also <»8, and both systems are irreducible. Since the branch locus of 
the quadruple ViA is the section of that of the quadruple [5], Theorem V 
follows. 

Turning now to the case n — 5 we have 

THEOREM VI. The bicanonical model of the most general regular surface with 
P = 3, £(1) = 6 is the intersection of Vb* with [76

6. 

Up to a point the proof of this is very parallel to that of Theorem IV. The 
most general canonical curve of genus 6 lies on precisely one del Pezzo surface 
of order 5, 52

5, of which it is a quadric section. Each C10 of the canonical system 
\C\ on F20 is thus the complete intersection of the cone IV with a determinate 
52

5, which of course is itself the complete intersection of a linear system of <»4 

quadrics Q42; these trace on each generating [3] of IV the o°4 quadric surfaces 
through the five intersections of the [3] with 7^°, and on the vertex plane Q a 
linear system of °°4 conies. Thus just as in Theorem IV, in all the <»2 gener­
ating [3]'s of W, the quadric surfaces through the intersections of [3] with F20 

trace the same system of conies in 0; and the locus of the quadric surface in 
each of these systems which traces a particular conic in 0 is a quadric section 
of F5

4. It is not, of course, the section by a determinate quadric, since Vb
A is 

itself the intersection of «>& quadrics; but in the ambient [5], AB say, of C10, the 
quadric QA2 containing the 52

5 on which C10 lies and tracing the chosen conic 
on Q is determinate, and the locus of these 002 Q4

2's is clearly a quadric section 
of the cubic hypersurface KJ generated by the <»2 A5's, the cone projecting 
from Î2 the cubic symmetroid generated by the conic planes of F24; it is the 
section of i£7

3 moreover by a determinate quadric, since of course no quadrics 
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contain K7
3. We have thus in the ambient [8] of the whole figure a linear system 

of oo4 quadric hypersurfaces Ç72, whose complete intersection with K7
3 is the 

locus 2 4 of the surfaces S2
5 in the 002 A5's, and with Vh

A is the surface F20. 
The hypersurface K73 is also generated of course by the <*>2 tangent [5]'s Jkf6 

of IV, each of which touches it all over a generating [3], and two of which pass 
through a general generating [3] of Kf. Each M6 is met by °o* A6's in the pencil 
of [4]'s through its [3] of contact, and accordingly meets 24 in the surface 
generated by the elliptic quintic curves traced by these [4]'s on the S2

5's in the 
corresponding AB's, which is clearly itself an S2

5, since the curves all meet the 
[3] of contact in the same five points, the intersections of this [3] with F20 

Since K73 has [6] sections consisting of a repeated A6 and an M5 ,24 is of order 15. 
We shall now show that the complete intersection of the co4 quadrics Qf is 

five dimensional. If it were of more dimensions, its intersection with K73 would 
be more than four dimensional, which it is not. If it were less, it must consist of 
24

15, together possibly with some residual variety R which may be two, three, 
or four dimensional ; and any [5] which does not lie on any of the quadrics Q72 

must in this case meet them in a linear system of quadrics (V whose complete 
intersection is precisely the section by [5] of 24

15+ R, i.e., a curve. Now con­
sider the [5] X5, joining a generating [3] of K73 to the [3]'s of contact of the two 
Mz s which intersect in this [3]. (This join is in fact a [5], since the three [3]'s all 
pass through the plane 0 and do not belong to a pencil.) X5 meets K7

Z in three 
[4]'s, joining the three [3]'s by pairs, and of these, two lie in MJs and one in a 
A6, so that each of them meets 24

15 in an elliptic quintic curve; and these three 
quintic curves, of which each pair has in common the five points traced by the 
[3] in which their ambient [4]'s intersect, are the complete intersection of 24

15 

with X&. Now the number of projectively distinct figures in [5] consisting of 
three normal elliptic quintic curves each pair of which have a [3] section in 
common is 00 "> which is also the number of projectively distinct figures con­
sisting of an S2

5 and three hyperplanes, and both systems are clearly irre­
ducible; thus the three curves just obtained are the sections by their ambient 
[4]'s of an S2

5 lying in Xs, the °°4 quadrics through which are precisely the 
sections by X*> of the <»4 quadrics Q72, since a quadric in any space is completely 
determined when three hyperplane sections are given. Thus the complete 
intersection of the quadrics Q72 meets X& not in a curve but in a surface, and 
is accordingly five dimensional. Since moreover it is met by the °°2 [5]'s A5, 
the 002 [5]'s jkf6 and the <*>4 [5]'s X& in del Pezzo surfaces 52

6, it must be £/5
5, 

and F20 is its complete intersection with V^\ Theorem VI is thus proved. 
It is to be noted that there are four descriptively different types of t/55; first 

what we shall regard as the general case, the Grassmannian of a linear complex 
of lines in [4] ; and the cones projecting from a point, line, and plane respec­
tively a [7], [6], and [5] section of this. The last three, however, are all special 
or limiting forms of the first, although they do not occur among the hyperplane 
sections of the general £/6

5, Grassmannian of all the lines of [4]; since the 
equations of the five linearly independent quadrics Q72 can be taken to be 

https://doi.org/10.4153/CJM-1951-018-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-018-0


154 PATRICK DU VAL 

where i, j , k, I are any four of 1, 2, 3, 4, 5, and #»/= —Xa are any ten linear 
functions of the coordinates, the four cases occurring according as these ten 
functions satisfy one, two, three, or four independent linear identities. 

I have not succeeded in this case (n = 5) in finding any more precise speci­
fication of the branch curve of the canonical quintuple plane (such as was 
provided for n = 4 by Theorem V, and for n = 3 is to be found in my former 
paper) than is given by Theorem II. 

It does not seem very probable that for n = £(l) — 1 ^ 6 the surface F4n of 
Theorem I is the most general of its genera, since for n ^ 6 the quadric section 
of the del Pezzo surface is not the most general canonical curve of its genus, 
and it is therefore not likely that the section of this surface by a quadric cone 
with [n — 3] vertex is the most general such curve with a semicanonical gn

l
y a 

point which was essential in the proofs of Theorems IV, VI, and the analogous 
result for n = 3. In any case, for n ^ 10 the surface given by Theorem I does 
not exist, since there is no del Pezzo surface; and if in Theorem I we interpret 
Uhn to include as a special case the cone projecting a normal elliptic cone from 
[3], F4n acquires four elliptic conical nodes, intersections of this [3] with Fn

4, 
which reduce its arithmetic genus to — 1, and is in fact equivalent to an elliptic 
ruled surface, being generated by an elliptic pencil of rational quartics. The 
case n = 6 (p(l) = 7) is perhaps crucial, in the sense that if the analogue of 
Theorems IV, VI could be established in this case, by some other method than 
that used hitherto, it might be a plausible speculation whether it held for all 
values of n; there is of course no reason a priori why the canonical curves on 
a surface of given genera should be the most general compatible with the 
existence of the semicanonical series required—though I believe this is so in 
all the cases that have been studied. 
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