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Abstract 

Deep learning (DL) from various representations have succeeded in many fields. However, we know little 

about the machine learnability of distinct design representations when using DL to predict design 

performance. This paper proposes a graph representation for designs and compares it to the common image 

representation. We employ graph neural networks (GNNs) and convolutional neural networks (CNNs) 

respectively to learn them to predict drone performance. GCNs outperform CNNs by 2.6-8.1% in predictive 

validity. We argue that graph learning is a powerful and generalizable method for such tasks. 

Keywords: engineering design, artificial intelligence (AI), design evaluation, design representation, 
graph convolutional networks 

1. Introduction 
Designers operate on a variety of representations. Ideally, a design representation should capture the 

nature of the design to support formal and functional reasoning. The common design representation 

methods include images (Burnap et al., 2016), voxels (Khokhlov et al., 2019), point clouds (Park et al., 

2019), meshes (Zhang et al., 2020), tabular parameters (Kulfan, 2012), design grammars (Stump et al., 

2019), graphs (Cao et al., 2020), and so on. For the same design, different representations can capture 

the elements of the design and the interactions between pairs of elements in different ways. These 

representations are often interchangeable with effort. Moreover, different representations afford the use 

of different computational models for design assistance. For example, we can employ convolutional 

neural networks (CNNs) and graph neural networks (GNNs) to learn features of designs represented by 

images and by graphs, respectively. While machine learning has made strides towards supporting 

designers, there has not been a critical comparison of the machine learnability of different 

representations for design. To bridge the gap, we use two common representation approaches, image-

based and graph-based representations, to represent drone designs and compare their learnability with 

deep neural networks (DNNs) in this paper.  

Meanwhile, design is undergoing a revolutionary shift driven by the recent advances in machine 

learning (ML), which aims to automate time-consuming, complex design tasks. A variety of ML models 

have been developed to support designers at different stages, such as user need elicitation (Song, 

Meinzer, et al., 2020), design synthesis (Chen and Ahmed, 2021), and product platform design (Song 

et al., 2018). Among them, a valuable focus of ML models is on design performance evaluation. Since 

theoretical and experimental approaches are often time-consuming and resource-demanding, accurate 

and fast ML-based design performance evaluation can lead to scalable evaluations, broader 

explorations, more informed decision making, and significant design cost reduction. For example, 
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effective ML-based surrogate models for performance evaluation can benefit the development of deep 

generative design (GD) models (Regenwetter et al., 2021). Specifically, GD models based on various 

deep generative algorithms aim at synthesizing highly optimized and customized designs by learning 

from existing designs (Burnap et al., 2016; Chen and Ahmed, 2021). Design performance evaluation is 

a core component for training GD models to generate feasible, usable, and creative designs 

(Regenwetter et al., 2021). Many current models rely on external evaluation modules (e.g., physics-

based simulation modules) to evaluate the generated designs (Stump et al., 2019), which slows down 

the training process. ML-based performance evaluation models that can be embedded into GD models 

can speed up the training process and promote the practical uses of GD models. Accordingly, this paper 

aims to study the potential of DNN models for design performance evaluation, which is specifically 

enabled by the machine learnability of graph and image representations.  

In this paper, we develop the DNN models based on a set of drone designs from a prior study (Song et 

al., 2022) to predict multiple drone performance metrics, including flying range, velocity, and cost. The 

contributions of this paper include: (1) We propose a homogeneous graph representation enabling the 

use of GNNs for various design tasks, which applies to broad design problems involving graph-like 

structures and components with various size options; (2) We develop a GNN-based and a CNN-based 

regression models for accurate and fast design performance prediction of drones. The models are 

differentiable and can be integrated into other deep models (e.g., GD models) seamlessly to support 

complex design tasks (e.g., design synthesis, optimization); (3) We compare the machine learnability 

of the proposed graph representation to that of the commonly used image representation for design 

evaluation and demonstrate the advantages of the graph representation for such tasks. To this end, we 

provide an overview of design representation methods and corresponding DNN models for learning 

from them in Section 2, describe the method and data of this study in Section 3, report and discuss the 

results in Section 4, and conclude the study in Section 5. 

2. Background 
In this section, we review the design representations and the corresponding DNN models to capture 

features from different representations. 

2.1. Design Representations 

Designs can be represented in both structured and unstructured ways. As one type of common structured 

representation, image data is typically structured as rectangular matrices of square pixels, taking 

different values. Herein, we use the word image in a broader sense of any 2D figures, such as pictures 

of physical objects (Burnap et al., 2016), 2D renderings of 3D computer-aided design (CAD) models 

(Wen et al., 2016), and freehand sketches (Hannah et al., 2012). An image is often read by DNN models 

as a 3D tensor [ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠] (Regenwetter et al., 2021). The number of 

channels depends on the color scheme. Black-and-white images are represented by a single channel 

with Boolean values for pixels; grayscale images are represented by a single channel with integers from 

0 to 255 for pixels; color images are represented by 3 or 4 channels, each representing one primary 

color channel, with integers from 0 to 255 for pixels. Image representations can capture detailed 

information of a design but pose challenges for downstream tasks, such as performance evaluation 

(Regenwetter et al., 2021). Besides, other structured design representations include 3D voxelized 

geometry data and parametric design data. 3D voxelized geometries are represented as 3D grids of 

voxels, which typically take Boolean values (Khokhlov et al., 2019). Researchers also use the 

corresponding key design parameters often structured in a tabular form to represent a design (Kulfan, 

2012). 

Multiple unstructured methods have also been employed to represent designs. Among them, graph 

representation is an attractive option because of its flexibility in representing complex systems and the 

interactions between elements within such systems (Barnes and Harary, 1983). Within a graph, each 

node represents an element of the system, which is often represented by a vector that indicates all the 

features of the node. The edge between a pair of nodes indicates the relations between the corresponding 

elements, which can be static or dynamic over time. Engineering researchers have employed graphs to 

represent CAD models (Cao et al., 2020) and mechanisms in machine design (Yang et al., 2018).  
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In addition, other unstructured ways to represent designs include rule-based design grammars, point 

clouds, and meshes. The rules of a design grammar define how symbols and variables of the grammar 

indicate the spatial, configurational, and other design information (Stump et al., 2019). Design 

grammars have been applied in a broad context. A point cloud describes a 3D object as a set of points 

that define the external surface of the object, which are often generated by 3D scanning tools 

(Daneshmand et al., 2018). Similarly, 3D designs can also be represented by meshes, especially triangle 

meshes, for finite element analysis (Zhang et al., 2020). 

In this paper, we employ two representations, images and graphs, to represent drone designs. In the 

following, we review the DNN models that are commonly used for learning these two types of 

representations, respectively. 

2.2. Deep Neural Network Models 

CNNs are commonly applied to image learning and generation tasks and have achieved great success. 

Convolutional layers are the core building blocks of a CNN, which uses a set of feature detectors (a.k.a., 

kernels or filters, 2D array of weights) to capture whether the features are present in the input data and 

generates a feature map as an output. This convolution process provides an effective and scalable way 

to capture features from images. A series of well-known nets signify the evolution of CNNs. LeNet-5 

was one of the earliest CNNs that inspired the following work (LeCun et al., 1998). AlexNet improved 

computational efficiency by utilizing multiple GPUs and the Rectified Linear Units (ReLU) instead of 

Tanh as activation functions (Krizhevsky et al., 2012). Then, global average pooling was proposed in 

GoogLeNet to mitigate overfitting (Szegedy et al., 2015). Inception CNNs brought along multitasking 

that stacks filters with multiple sizes in a single layer to improve both performance and efficiency 

(Szegedy et al., 2016). VGGNet proposed to use low-dimensional filters (e.g., 3 × 3), marking the 

beginning of very deep CNNs (Simonyan and Zisserman, 2014). ResNet introduced residual learning 

and shortcut connections, improving accuracy and alleviating the vanishing-gradient problem (He et 

al., 2016). DenseNet proposed connecting each layer to every other layer to encourage feature 

propagation and reuse for reducing parameters and handling vanishing gradients (Huang et al., 2017). 

Now CNN is becoming the default method for image-related tasks (Voulodimos et al., 2018). 

GNNs are a class of DNNs for extracting information from data represented by graphs and making 

predictions. As GNNs take graphs as input, the basic idea of GNNs is to refine the original node 

representations through propagating information between connected nodes. Accordingly, the learned node 

representations convey both the features of individual nodes and the topological relations between the 

nodes (Zhou et al., 2021). Within each layer, the representation of a node is updated by combining its 

own features with features of its neighboring nodes (Battaglia et al., 2018). The convolutional propagation 

operators are the core building blocks of a GNN, which generalizes convolutions from structured grid data 

(e.g., images) to unstructured graph data (Zhou et al., 2021). According to the approaches of generalizing 

convolutions, one can classify convolution operators as spectral operators and spatial operators. The 

spectral operators work with spectral representations of graphs through graph Fourier transform (Shuman 

et al., 2013). Graph convolutional network (GCN) simplified the convolution operation of the spectral 

representations to alleviate overfitting, which has become a widely used algorithm for learning graphs 

(Kipf and Welling, 2016). Spatial operators define convolutions according to the topology of graphs to 

overcome the differently sized neighborhoods for maintaining the permutation invariance (Zhou et al., 

2021). Along with this approach, researchers have proposed to sample a fixed number of neighbors 

(Hamilton et al., 2017), to select a given number of top features through max pooling (Gao et al., 2018), 

or to normalize node degrees (i.e., number of edges of the node) through a transition matrix for updating 

node representations (Atwood and Towsley, 2015). One can use the obtained node representations 

directly for node-level tasks or pool them to generate graph representations for graph level tasks. Studying 

complex systems using GNNs is attracting growing research interest (Zhou et al., 2021).  

According to the literature, little understanding has been developed about how effectively CNNs and 

GCNs can learn from images and graphs that represent the same designs, especially for performance 

prediction in the engineering design domain.  
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3. Drone Representations and Computational Models 
This paper studies the machine learnability of image and graph representations using a set of drone 

designs to predict drone performance. The dataset consists of 1,699 drone designs generated by human 

designers in response to a drone design challenge via a drone design research platform (Song, Soria 

Zurita, et al., 2020). Each drone was evaluated through multi-physics simulation1, which returned three 

performance metrics, namely, flying range, velocity, and cost. The DNN models take the drone 

configuration and the payload carried by the drone as input. We train them on the drones to predict the 

simulated performance metrics, which is posed as a regression task. This paper uses images and graphs 

to represent the drone designs and employs CNNs and GCNs to learn the image and graph 

representations, respectively, for drone performance prediction.  

3.1. Drone Representations 

The studied drones were initially designed through the Unity game engine using a set of pre-defined 

components. The drone design space was defined by a 13 × 13 grid, as shown in Fig. 1(a). The pre-

defined component pool contains four types of components, including clockwise motor-rotor pairs with 

50 size options, counter-clockwise motor-rotor pairs with 50 size options, batteries with 65 size options, 

and airfoils with 100 size options. For constructing a drone, users can add a component to any grid node 

and connect it to other components. They can change the size of the component as well. A valid drone 

design is one that generates a balanced thrust enabling the drone to stay stable in the air and move 

forward. In the dataset, each drone consists of 9 components on average, and the most complex drone 

is composed of 31 components. Such a pre-defined drone design space enables us to represent different 

drone designs using images and graphs. An example drone is shown in the design space in Fig. 1(a) and 

the 3D model of the drone is shown in Fig. 1(b). 

 
Figure 1. Drone design space with an example drone and the pre-defined component pool 

3.1.1. Image representation 

Via image representation, we use matrices of pixels to represent the drone configuration and payload. 

Specifically, a drone configuration conveys information regarding the positions and sizes of different 

components composing the drone. Accordingly, three 13 × 13  matrices are used to specify the 

corresponding component type, size, and the associated payload at each grid node within the design space, 

respectively. In the component type matrix 𝑇, 𝑇𝑖𝑗 takes the value of 0 if there is no component at the node 

(𝑖, 𝑗), the value 0.252 for a clockwise (CW) motor-rotor pair, the value 0.5 for a counter-clockwise (CCW) 

motor-rotor pair, the value of 0.75 for a battery, and the value of 1 for an airfoil. In the size matrix 𝑆, 𝑆𝑖𝑗 

indicates the size of the component, which is normalized to the range (0,1]3. In the payload matrix 𝑃, 𝑃𝑖𝑗 

denotes the normalized average payload held by the component that is calculated by dividing the total 

 
1 https://github.com/hyform/drone-testbed-local-evaluation 
2 Originally, 1, 2, 3, and 4 respectively indicate clockwise motor-rotor pair, counter-clockwise motor-

rotor pair, battery, and airfoil. These indicators are normalized into the range (0, 1]. 
3  The maximal size option of each component corresponds to 1, while the smallest size option 

corresponds to 1/number of size options. 

(a) Drone design space (b) The drone model
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payload by the number of components and normalizing it to the range (0, 1]4. 𝑆𝑖𝑗 and 𝑃𝑖𝑗 take the value 

of 0 if no component is attached to the node (𝑖, 𝑗). The drone representation using three matrices resonates 

with the image representation with red (R), green (G), and blue (B) channels. Fig. 2 demonstrates the 

component type, size, and payload matrices of the example drone shown in Fig. 1. 

 
Figure 2. The component type, size, and payload matrices. The values in the highlighted area 

are shown in the enlarged view and all other cells take the value of 0. 

3.1.2. Graph representation 

In the graph representation, we embed the drone configuration and payload information in the graph's 

node features and topology. Each node within the graph represents a component of a drone. The features 

of the component are encoded into a vector with a dimension of 9, as illustrated in Fig. 3(a). Specifically, 

the first four elements of the vector are the one-hot encodings of the component type, each 

corresponding to one component type. The fifth to eighth elements indicate the normalized component 

size, each corresponding to one component type. The last element denotes the normalized average 

payload of each component. Fig. 3(b) presents the graph representation of the example drones shown 

in Fig. 1. In the drone graph, each node is connected to all other nodes, and the edge weights are 

calculated through three steps. First, we calculate the distance 𝐷𝑚𝑛 between a pair of nodes 𝑚 and 𝑛 

using Equation 1, where the distance between two adjacent nodes in the grid is 1. Then, we normalize 

the distance against the maximal node distance 𝐷𝑚𝑎𝑥 in the dataset following Equation 2. Third, we 

assume the edge weights follow a Gaussian distribution with a Gaussian width 𝜎 = 0.2𝜋. Accordingly, 

the final edge weight is calculated through Equation 3: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝐷𝑚𝑛 = √(𝑚𝑖 − 𝑛𝑖)
2 + (𝑚𝑗 − 𝑛𝑗)2; (1) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝐷𝑚𝑛
𝑛𝑜𝑟𝑚 = 𝐷𝑚𝑛/𝐷𝑚𝑎𝑥; (2) 

𝑊𝑒𝑖𝑔ℎ𝑡 = exp (−𝐷𝑚𝑛
𝑛𝑜𝑟𝑚2/𝜎2). (3) 

The obtained weights are within the range (0,1). The edges between nodes that are closer to each other 

present higher weights, as indicated by the edge width in Fig. 3(b). This is only one way to define the 

edge weight. The adjacency matrix 𝐴 denotes the connectivity of a graph, where 𝐴𝑚𝑛 denotes the edge 

weight between nodes 𝑚 and 𝑛. Through the approaches described above, we can represent each drone 

using an image or a graph. 

 
Figure 3. Drone graph representation. 

 
4 The average payload was calculated for all drones and normalized together to the range (0, 1] by 

dividing each average payload value with the largest average payload value of all drones. 

Component type matrix Component size matrix Component payload matrix

1 0.5

0.25 0.75 0.25

0.5 1

0.44 0.56

0.56 0.55 0.56

0.56 0.44

0.16 0.16

0.16 0.16 0.16

0.16 0.16
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3.2. Deep Neural Network Models 

3.2.1. Convolutional neural network 

We construct a CNN to learn the image representations of the drones. As shown in Fig. 4(a), the network 

consists of eleven layers, including an input layer, nine hidden layers, and an output layer. The input 

layer takes inputs with a shape of 13 × 13 × 3. Among the hidden layers there are two convolutional 

layers, which respectively employ 32 and 64 kernels with a kernel size of 3 × 3 and use the ReLU 

activation function. Each of the convolutional layer is followed by a batch normalization layer, a max 

pooling layer with a pooling size of 2 × 2, and a dropout layer which takes varying dropout rate for 

different performance metric prediction5. A flatten layer is added after the convolutional modules. In 

the end, a dense output layer with the ReLU activation function returns a scalar value as the predicted 

performance score for each input. 

 
Figure 4. Drone graph representation. 

3.2.2. Graph convolutional network 

Similarly, a GCN is developed to learn the graph representations of the drones. As shown in Fig. 4(b), 

the network consists of five layers, including an input layer, three hidden layers, and an output layer. 

The input layer takes a graph's node feature matrix with a shape of 𝑛 × 9 and the adjacency matrix with 

a shape of 𝑛 × 𝑛 as input, where 𝑛 is the number of nodes of the graph and 9 is the dimension of the 

node feature vector. There are two graph convolutional layers with the ReLU activation function among 

the hidden layers, which respectively output feature vectors with dimensions of 64 and 32. Following 

the convolutional modules is an average pooling layer for generating the graph-level representation 

based on the representations of all nodes in the graph. Then, a dense output layer with the ReLU 

activation function returns a scalar value for each graph as the predicted performance score. 

When training the models, we experimented with different hyperparameter values for both models. The 

selected values in Fig. 4 returned the best prediction outcomes compared with other options. 

4. Results and Discussion 
To train and validate the constructed CNN and GCN models, we divide the set of 1,699 drones into a 

training set, a validation set, and a test set following a split ratio of 0.7:0.15:0.15. The CNN and GCN 

models use the same data split for training and testing to predict flying range, payload, and cost. We train 

the models using the Adam optimizer and adopting the mean squared error (MSE) as the loss function. 

The CNN models employ a learning rate of 0.00056 for flying range and velocity and 0.005 for cost, while 

the GCN models use a learning rate of 0.01 for flying range and velocity and 0.1 for cost. The maximal 

number of training epochs is 3000 for both CNN and GCN models, but the training is ended earlier if the 

validation loss does not reduce within 50 consecutive epochs. We assess the performance of the DNN 

models in terms of their explanatory power for drone performance variabilities, i.e., 𝑟2 values (Fig. 5 and 

 
5 The dropout rate is 0.1 for flying range, 0 for velocity, and 0.03 for cost. 
6 A lower value did not improve the results. 
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Fig. 6(b)), and the MSEs (Fig. 6(a)) between the predicted and simulated performance metrics. Pairwise 

two-tailed Student's t-tests are conducted to examine the statistical significance of the MSE differences 

between the CNN models and the GCN models across all drones (Fig. 6(a)). In the following, we report 

the performance of both models for predicting each drone performance metric. 

4.1. Flying Range 

During training, the CNN and GCN models improve dramatically in the first bunch of epochs for 

predicting flying range. The CNN model stops improving much earlier (about 70 epochs) than the GCN 

model, while the GCN model only improves slowly after the first 500 epochs until the end of the 3000 

epochs. Then, we run the trained models to predict the flying ranges of the drones in the test set. Figs. 

5(a) and 5(b) visualize the prediction results of the two models, respectively. We can see that there are 

more nodes locating closer to the 𝑦 = 𝑥 line. Accordingly, the GCN model (𝑟2 = 0.794) exhibits a 

slightly higher 𝑟2 value than the CNN model (𝑟2 = 0.768), indicating that the GCN model has higher 

predictive validity for flying range. Accordingly, the CNN model returns an MSE value of 65.7, which 

is slightly higher than that the GCN model (MSE = 59.1). The MSE difference between the two models 

is not statistically significant, as shown in Fig. 6(a). 

4.2. Velocity 

When training the models to predict velocity, we observe that the CNN model stops improving early 

(around 60 epochs). In contrast, the GCN model improves obviously during the first 200 epochs and 

improves slowly after that until near 1400 epochs. Then, we predict the velocities of the drones in the 

test set with the trained models. Figs. 5(c) and 5(d) show the prediction results of the two models, 

respectively. The nodes in the GCN plot follow the 𝑦 = 𝑥 line better than those in the CNN plot as the 

simulated velocity increases. This is in line with the higher 𝑟2 value exhibited by the GCN model (𝑟2 =
0.596) than that by the CNN model (𝑟2 = 0.559). In addition, the MSEs achieved by the CNN and 

GCN models are 33.9 and 30.12, respectively. The MSE difference between the two models is 

marginally significant (𝑝 =  0.085), as shown in Fig. 6(a). 

 
Figure 5. The prediction results of the CNN and GCN models. 

4.3. Cost 

During training for cost prediction, the CNN model improves obviously in the first 50 epochs and 

continues improving until near 200 epochs. In comparison, the GCN model improves prominently in 

the first 500 and slowly after that until near 1200 epochs. Then, we examine the performance of the 

trained models with the test set. Figs. 5(e) and 5(f) show the prediction results of the two models, 

respectively. On average, the nodes in the GCN plot are closer to the 𝑦 = 𝑥 line than those in the CNN 
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plot, especially as the cost approaches high values. This resonates with the higher 𝑟2 value exhibited 

by the GCN model (𝑟2 = 0.676) compared to the CNN model (𝑟2 = 0.595). On average, the GCN 

model returns a lower MSE (1285040.5) than the CNN model (MSE = 1639504.8). According to the 

pairwise two-sided t-test, the MSE difference between the models is significant (𝑝 =  0.015) as shown 

in Fig. 6(a). 

 
Figure 6. R-squared and mean squared error of the prediction results. 

Fig. 6(b) compares the 𝑟2 values between the CNN models and GCN models. In terms of model predictive 

validity (i.e., 𝑟2 value), the GCN models that learn drone graph representations outperform the CNN 

models that learn drone image representations by 2.6-8.1% for drone performance prediction. There are 

two potential reasons. Firstly, the CNN models are subject to overfitting to a larger extent than the GCN 

models. During training the models for predicting each performance metric, the validation loss of the 

CNN model stops reducing much earlier than that of the GCN model, which indicates the overfitting of 

the CNN models is more severe than that of the GCN models. We can explain this by comparing the 

complexity of the CNN models and the GCN models. Fig. 4 shows that the architecture of the GCN 

models (3 hidden layers) is much simpler than that of the CNN models (9 hidden layers), which results in 

a big difference in the number of trainable parameters for the two sets of models - 2,945 for the GCN 

models and 19,814 for the CNN models. More trainable parameters require a larger volume of data to 

train. When we train the CNN and GCN models on the same dataset, the GCN models can avoid 

overfitting better. 

Secondly, the GCN models can potentially learn features from the farther neighborhood. One CNN 

convolutional layer often capture features from elements in the near neighborhood. In contrast, one 

GCN convolutional layer can learn features from all elements in the neighborhood from near to far. 

When CNNs are not deep and the kernel size is small, their learning can be limited to only the near 

neighborhood. This can make the CNN models less effective in capturing relations between distant 

drone components. We observe that the performance of the GCN models seems to have more advantage 

over the CNN models when the flying range, velocity, and cost approach larger values, where the drones 

probably consist of more components and each component tends to have farther neighbors. The 

observation indicates that the GCN models are more capable of learning features embedded in the 

farther neighborhood or interactions between elements farther from each other. This resonates with 

technical literature on drone design, which has shown that rotors in a relatively long distance also affect 

each other (Aleksandrov and Penkov, 2012). 

This study contributes to the design community in three distinct ways. First, it provides a homogeneous 

graph representation for engineering designs, which enables the use of GCNs to learn the designs for 

various tasks. It is straightforward to generalize the proposed graph representations to a broad variety 

of design problems involving graph-like structures and components with various size options, such as 

configuration design (e.g., linkage, truss) and robot design. Second, we develop a GNN-based and 

CNN-based regression models to embed drone designs represented by images and graphs for 

performance prediction. The results from this study show the great potential of the DNN models for 

accurate and fast design performance evaluation. Moreover, because the DNN models for design 

performance evaluation are differentiable, they can be integrated seamlessly into other deep models 

(e.g., GD models) for various complex design tasks, such as design synthesis and optimization. This 

integration can speed up the training process of such models and promote their practical applications. 

Third, we compare the machine learnability of the proposed graph representation to that of the image 

representation, which is commonly used in many machine-learning tasks, and demonstrate that the 

(a) Mean squared error (b) R-squared

Diff = 2.6% 

Diff = 3.7% Diff = 8.1% 
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graph representation is more effective for such tasks. This finding is in line with other studies published 

recently that show the superiority of graph representations in different contexts (Pfaff et al., 2020; Shi 

and Rajkumar, 2020). We anticipate the application of graph representations to more design scenarios 

to verify their effectiveness more broadly. 

However, it is also subject to a few limitations: (1) The dataset used to train and test the CNN and GCN 

models is small. A larger dataset can mitigate the overfitting problem to an extent. (2) It is hard to 

understand which of the two graph representation attributes (i.e., avoiding overfitting and capturing 

distant relations) contributes more to the strengths of the GCN models. Future work will train the 

models with varying data sizes to study the influence of overfitting and understand its contribution to 

the total improvement. (3) This study only examines one method of defining the edge weight in the 

graph representation. Future work should experiment with different methods and study how different 

edge weight definitions affect the effectiveness of the GCN models. 

5. Conclusion 
Designers operate on a variety of representations, including images and graphs. This paper proposes an 

image representation and a graph representation for drone designs to compare their machine 

learnability. Accordingly, we construct a CNN architecture and a GCN architecture to respectively learn 

the two representations for predicting multiple performance metrics of drone designs. The findings 

show that the graph representation exhibits higher machine learnability than the image representation. 

The GCN models outperform the CNN models, which are most commonly used in various deep learning 

tasks, by 2.6-8.1% in terms of predictive validity. The difference in performance can be explained by 

the effectiveness of graph representation in capturing distant relations between design components and 

the simple architecture of the GCN models that helps avoid overfitting. 
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