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Abstract. The structure of groups which have at most two isomorphism classes of
derived subgroups (D2-groups) is investigated. A complete description of D2-groups
is obtained in the case where the derived subgroup is finite: the solution leads an
interesting number theoretic problem. In addition, detailed information is obtained
about soluble D2-groups, especially those with finite rank, where algebraic number
fields play an important role. Also, detailed structural information about insoluble
D2-groups is found, and the locally free D2-groups are characterized.
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1. Introduction and results. By a derived subgroup in a group G is meant the
derived (or commutator) subgroup of a subgroup of G. It is a natural question: how
important the set of derived subgroups is within the lattice of all subgroups? Recently
there has been interest in imposing restrictions on the number of derived subgroups
in a group and investigating the resulting effect on the structure of the group. Let Cn

denote the class of groups in which there are at most n derived subgroups, and let C

denote the union of all the classes Cn, n = 1, 2, . . . . The structure of Cn-groups for
small n has been investigated in [5], while it is shown in [3] and [5] that a locally graded
C-group has finite derived subgroup – also see [2] for related work.

In this paper we are concerned with groups for which the set of isomorphism types
of derived subgroup is very small. If n is a positive integer, let

Dn
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denote the class of groups whose derived subgroups fall into at most n isomorphism
classes. Clearly D1 = C1 is the class of abelian groups, but one would expect the class Dn

to be much larger than Cn if n > 1.
Our attention here is focused on the class D2. Notice that a group G belongs to D2

if and only if H ′ � G′ whenever H is a non-abelian subgroup of G. While this may
seem a highly restricted class of groups, it contains groups of many diverse types: apart
from abelian groups, D2 contains free groups of countable rank, groups whose derived
subgroups are cyclic of prime or infinite order, Tarski groups, (i.e. finitely generated
infinite groups with every proper subgroup abelian) and a whole range of soluble
groups. It turns out to be possible to describe in a precise way some large classes of
D2-groups. For example, D2-groups with finite derived subgroup can be characterized
modulo the centre by pairs (p, m) where p is a prime, m > 1 is an integer not divisible by
p and the order of p mod m equals the order of p mod q for each prime divisor q of m:
this is Theorem 2. We call such integer pairs allowable pairs. These pairs turn out to
be mysterious objects and their study leads to an apparently difficult number theoretic
problem: given a prime p, does there exist a prime q such that (p, q2) is allowable?

A great deal of information about infinite soluble D2-groups is obtained: for
example, such groups are metabelian, and their derived subgroup is free or elementary
abelian or torsion-free of finite rank (Theorem 3). In addition, infinite soluble
D2-groups of finite rank with trivial centre can be described in a similar manner to those
with finite derived subgroup (Theorem 4). It turns out that they can be constructed to
within finite index from an algebraic number field and a finitely generated subgroup
of its multiplicative group which satisfy a condition analogous to the allowability
condition for pairs of integers. These results appear in Section 4.

Among other types of D2-group studied are groups whose derived subgroup is
not perfect, groups satisfying the Tits alternative and groups whose derived subgroups
satisfy the minimal condition on subgroups. Results about these groups are to be found
in Sections 5 and 6. For example, it is proved that a locally free group G is a D2-group
if and only if G′ is free with countable rank (Corollary 7).

In conclusion we point out that the study of D2-groups involves groups of many
different types, and that progress requires the application of a variety of techniques,
both group theoretic and number theoretic. It seems probable that some of our methods
may be extended to higher classes Dn, and work is already underway on the class D3.

NOTATION. G′, G′′, G(α): terms of the derived series of a group G.
γn(G): the nth term of the lower central series of G.
Z(G): the centre of G.
Zi(G): the ith term of the upper central series of G.
[H,n K ]: the commutator subgroup [H, K, . . . , K ] with n subgroups K.
r0(G): the torsion-free rank of an abelian group.
r(G): the Prüfer rank of a group.

2. Elementary results. We begin by assembling some elementary facts about the
class D2.

LEMMA 1.
(i) The class D2 is subgroup closed.

(ii) Let G ∈ D2 and assume that G′ satisfies min, the minimal condition on subgroups.
If N � G, then G/N ∈ D2.
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(iii) If G ∈ D2, then G′ is countable.

Proof. The first statement is obvious. To prove the second, let H/N be any non-
abelian subgroup of G/N. Then H is non-abelian and G′ � H ′. Since G′ satisfies min, it
has the cohopfian property and so G′ = H ′. Hence, (G/N)′ = (H/N)′ and G/N ∈ D2.
To prove (iii) we may assume that G′ �= 1. Then G has a finitely generated non-abelian
subgroup H and G′ � H ′. Hence, G′ is countable. �

On the other hand, in the context of Lemma 1(iii) it is worth noting that if G ∈ D2,
the quotient group G/Z(G) may be uncountable. Indeed it is easy to construct an
extra-special p-group G for which G/Z(G) is uncountable: of course G′ has order p, so
G ∈ D2.

The class D2 is not closed with respect to forming quotients, as the next result
shows.

LEMMA 2. A free group F belongs to D2 if and only if it has countable rank.

Proof. If F has uncountable rank and H is a free subgroup of rank 2, then F ′

and H ′ have different ranks. Hence, F ′ �� H ′ and F �∈ D2. On the other hand, if F has
countable rank and H is a non-abelian subgroup, then H ′ is free with countable rank
and H ′ � F ′, so F belongs to D2. �

The next result plays a fundamental role in the study of infinite D2-groups.

PROPOSITION 1. Let G be a perfect group in D2. Then G has no proper subgroups of
finite index.

Proof. Assume that G/N is a non-trivial finite quotient of G. Suppose that A/N ′

is an abelian normal subgroup of G/N ′; it will be shown that [A, G] ≤ N ′. Let x ∈ G
and assume that [A, x] �= 1. Now 〈x, A〉′ = A′[A, x] ≤ A and 〈x, A〉′′ ≤ A′ ≤ N ′ since
A/N ′ is abelian. Also, 〈x, A〉 is non-abelian, so we have 〈x, A〉′ � G′ = G and 〈x, A〉′
is perfect. Hence, 〈x, A〉′ = 〈x, A〉′′ ≤ N ′ and [A, x] ≤ N ′, which establishes our claim.
In particular N/N ′ ≤ Z(G/N ′) and (G/N ′)/Z(G/N ′) is finite.

The last step in the proof is to show that (G/N ′)/Z(G/N ′) has odd order: it will
then follow via the Odd Order Theorem that G/N ′ is soluble. Since G is perfect, the
conclusion will be that N = G, a contradiction.

Suppose that x, y ∈ G satisfy x2N ′, y2N ′ ∈ Z(G/N ′). Then [x2, y] ∈ N ′ and hence
[x, y]x ≡ [x, y]−1mod N ′: similarly [x, y]y ≡ [x, y]−1mod N ′. Consequently, 〈[x, y]〉 N ′ �
〈x, y〉 N ′. It follows that (〈x, y〉 N ′)′ ≤ 〈[x, y]〉 N ′. Also, (〈[x, y]〉 N ′)′ ≤ N ′ and either
〈x, y〉 N ′ is abelian or else (〈x, y〉 N ′)′ � G′, which is perfect. Hence,

(〈x, y〉 N ′)′ = (〈x, y〉 N ′)′′ ≤ (〈[x, y]〉 N ′)′ ≤ N ′.

Thus, in any event 〈x, y〉 N ′/N ′ is abelian. Therefore, (xy)2N ′ ∈ Z(G/N ′). Now define
W/N ′ to be the set {xN ′ | x2N ′ ∈ Z(G/N ′)}. The argument just presented shows that
W/N ′ is an abelian subgroup of G/N ′, while clearly W � G. By the first part of the
proof W/N ′ ≤ Z(G/N ′), which shows that (G/N ′)/Z(G/N ′) contains no elements of
order 2, as required. �

COROLLARY 1. Let G be a D2-group and assume that G′ has a proper subgroup of
finite index. Then the derived series of G reaches the identity subgroup transfinitely, i.e.
G is a hypoabelian group.
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Proof. There is an ordinal α ≥ 1 such that G(α) = G(α+1). Suppose that G(α) �= 1.
Then G(α+1) �= 1 and G(α) is not abelian so that G′ � (G(α))′ = G(α+1) = G(α).
Therefore, G′ is perfect; moreover, by Lemma 1 it belongs to D2, which contradicts
Proposition 1. �
In this context it is a reasonable to ask whether a residually finite D2-group is always
residually soluble.

Since our aim is to study non-abelian D2-groups, it is natural to look first at
nilpotent D2-groups: these admit a very simple description, (cf. [5], Corollary 2).

THEOREM 1. Let G be a non-abelian group. Then G is nilpotent and belongs to D2 if
and only if G′ is cyclic of prime or infinite order and G′ ≤ Z(G).

Proof. Assume that G ∈ D2 is nilpotent and put Zi = Zi(G). Suppose that Z2/Z1

is not torsion-free so that it contains an element xZ1 of some prime order p. There
exists a y ∈ G such that [x, y] �= 1. Then [x, y]p = [xp, y] = 1, so [x, y] has order p. Put
H = 〈x, y〉; then H ′ = 〈[x, y]〉 has order p, and so does G′. Since G is nilpotent, G′ must
be contained in the centre of G.

Now assume that Z2/Z1 is torsion-free. The group G has a finitely generated non-
abelian subgroup K and G′ � K ′. Thus, we may assume that G is finitely generated,
say by g1, g2, . . . , gn. Let x ∈ Z2\Z1. Now there is an i such that [x, gi] has infinite
order: for otherwise there would exist m > 0 such that [xm, gi] = [x, gi]m = 1 for all i
and xm ∈ Z1. With this i set L = 〈x, gi〉. Then L′ = 〈[x, gi]〉 � G′ and G′ is infinite
cyclic: once again G′ ≤ Z(G). The converse is clearly true. �

Note that a nilpotent D2-group has class at most 2 so that locally nilpotent
D2-groups are nilpotent.

3. Groups with finite derived subgroup. In this section we classify D2-groups with
finite derived subgroup. The essential components of such groups are certain finite
metabelian groups constructed from pairs of integers. We begin by describing these
groups.

Let p be a prime and m > 1 an integer not divisible by p. Let F be a field of
order pn, where n is the order of p modulo m, which will be written as

n = |p|m.

The multiplicative group F∗ contains a unique (cyclic) subgroup X = 〈x〉 of order
m. Also, (F : �p) = n = |p|m = (�p(x) : �p) and hence F = �p(x). Regard A = F+, the
additive group of F , as an X-module via the field multiplication: then it is easy to show
that A is a simple X-module and CA(y) = 0 if 1 �= y ∈ X .

Next form the semi-direct product

G(p, m) = X � A.

Then (G(p, m))′ = A and |G(p, m)| = mpn.

LEMMA 3. The group G(p, m) belongs to D2 if and only if |p|m = |p|d for every divisor
d > 1 of m.

It will be convenient to call the pair (p, m) allowable if the condition in Lemma 3
holds.
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Proof of Lemma 3. Let G = G(p, m) = X � A, as constructed above. Assume that
(p, m) is an allowable pair and H is a non-abelian subgroup of G. Then H has the
form 〈xrao, H ∩ A〉, where H ∩ A �= 1, 1 ≤ r < m and a0 ∈ A. Note that H ∩ A is a
non-trivial 〈xr〉-submodule of A and by Maschke’s Theorem it is a direct sum of simple
〈xr〉-modules. By allowability, each of the latter has dimension |p|d = |p|m = n, where
d = |xr| = m/gcd(m, r). Hence, H ∩ A = A and A ≤ H. Therefore, H = 〈xr, A〉 and
H ′ = [A, xr] = A = G′ since xr �= 1. Thus, G ∈ D2.

Conversely, assume that G ∈ D2 and let d > 1 divide m: put r = m
d . Suppose

that B is a non-zero 〈xr〉-submodule of A and set H = 〈xr, B〉. Then H is non-abelian
and hence A � H ′ = [B, xr] ≤ B, which shows that A = B and A is a simple 〈xr〉-
module. It follows that F = �p(xr) and n = (F : �p) = |p||xr| = |p|d so that (p, m) is
allowable. �

We can now state the main result on D2-groups with finite derived subgroup. (A
weaker form of this appears in [5, Theorem 8).

THEOREM 2. Let G be a non-nilpotent group with G′ finite. Then G ∈ D2 if and only
if the following conditions hold:

(i) G = X � A where A = G′ is an elementary abelian p-group, Z(G) = CX (A) and
X/Z(G) is cyclic of order m;

(ii) (p, m) is an allowable pair and G/Z(G) � G(p, m).

Proof. Assume that G ∈ D2. First suppose that G is not soluble. Then G′ is not
abelian and, since it is finite, G′ contains a minimal non-abelian subgroup H. By a
classical theorem of Miller and Moreno ([7]), the subgroup H is soluble. However,
G′ � H ′, which yields the contradiction that G is soluble. Write A = G′. If A is non-
abelian, G′ � A′ = G′′ and G′ = 1, which shows that A is abelian and G is metabelian.
Note that A �≤ Z(G) since G is not nilpotent.

Let x ∈ G\CG(A) and set H = 〈x, A〉. Then A = G′ � H ′ = [A, x], so A = [A, x],
which implies that CA(x) = 1 because A is finite. Thus, x acts fixed point freely
on A. Next, let 1 < B ≤ A and assume that B = Bx. If K = 〈x, B〉, we have A � K ′ =
[B, x] ≤ B, which shows that A = B and A is a simple 〈x〉-module for all x ∈ G\CG(A).
Consequently, A is an elementary abelian p-group for some prime p.

Since A is a non-trivial, finite, simple G-module and G/A is abelian, G splits
over A (see [9, Theorem 1]): Let us say G = X � A. If ya ∈ Z(G) with y ∈ X, a ∈ A,
then [A, y] = 1. Also, [a, X ] = 1, which shows that a = 1 and Z(G) = CX (A) = Z, say.
Since A is a faithful simple X/Z-module, X/Z is cyclic with order m prime to p.

Put G = G/Z, A = AZ/Z and X = X/Z. Then A is a faithful simple X-module
and X is cyclic of order m, so we can identify A with the additive group of a field of
order pn, where n = |p|m, and X = 〈x〉 with a subgroup of order m of the multiplicative
group. Thus, G = X � A � G(p, m). Since Ḡ ∈ D2 by Lemma 1, the pair (p, m) is
allowable by Lemma 3.

Conversely, assume that G has the structure indicated in the theorem. Then G/Z �
G(p, m) ∈ D2 by Lemma 3. Let H be a non-abelian subgroup of G. Then HZ/Z is non-
abelian, since otherwise H ′ ≤ A ∩ Z = 1. Hence, (HZ/Z)′ � (G/Z)′, i.e. H ′Z = G′Z
since G′ is finite. Therefore, G′ = G′ ∩ (H ′Z) = H ′ and G ∈ D2. �

COROLLARY 2. If G is a non-nilpotent, locally finite group in D2, then G′ is finite and
the structure of G is given by Theorem 2.
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For the group G has a finite non-abelian subgroup H and G′ � H ′. Note, however,
that the corollary does not hold if only G′ is locally finite: indeed the wreath product
�2 wr � is easily seen to belong to D2.

3.1. Digression on allowable pairs of integers. Since allowable pairs play a central
role in the theory of D2-groups with finite derived subgroup, we interrupt the narrative
with a brief discussion of their properties.

LEMMA 4. Let p be a prime and m > 1 an integer not divisible by p. Then (p, m) is
allowable if and only if |p|m = |p|q for every prime q dividing m.

Proof. Let d > 1 be a divisor of m and let q be a prime dividing d. Then |p|q | |p|d |
|p|m and sufficiency follows at once. The converse is obvious. �

COROLLARY 3. If m = qe1
1 · · · qek

k is the primary decomposition of m, then (p, m) is
allowable if and only if each (p, qei

i ) is allowable and |p|q1 = · · · = |p|qk .

Thus, the problem of finding allowable pairs (p, m) is reduced to the case where
m = qe, with q �= p a prime. In this case allowability is expressed by a simple congruence.

LEMMA 5. Let p, q be distinct primes and let e be a positive integer. Then (p, qe) is
allowable if and only if pq−1 ≡ 1 (mod qe).

Proof. If q = 2, we have |p|q = 1 and hence (p, 2e) is allowable if and only if
|p|2e = 1, i.e. p ≡ 1 (mod 2e). Now let q > 2. Then �∗

qe = A × B, where A � �q−1,
B � �qe−1 . Write [a] for [a]qe ∈ �∗

qe . If |p|q = |p|qe = |[p]|, then |[p]| divides q − 1 and
pq−1 ≡ 1 (mod qe). Conversely, suppose that pq−1 ≡ 1 (mod qe), so [p]q−1 = [1] and
[p] ∈ A. The assignment [x] �→ [x]q yields a surjective homomorphism from �∗

qe to
�∗

q � �q−1 with kernel B. Therefore, |[p]| = |[p]q| and |p|qe = |p|q, showing that (p, qe)
is allowable. �

For distinct primes p and q put n = |p|q and define

e(p, q)

to be the largest integer such that pn ≡ 1 (mod qe(p,q)). Note that 1 ≤ e(p, q) < pn, so
e(p, q) is finite. Plainly a pair (p, qe) is allowable if and only if e ≤ e(p, q) exists. At this
point we formulate a question: Given any prime p, does there exist a prime q such that
e(p, q) ≥ 2, or equivalently such that pq−1 ≡ 1 (mod q2)? Such a prime q is called a
base-p Wieferich prime, after the German number theorist Arthur Wieferich. Group
theoretically we are asking if there is a prime q such that G(p, q2) ∈ D2.

This is a difficult number theoretic problem. A computer search reveals that the
answer is positive for all primes p < 100 with the possible exception of 47. The case
p = 2 is of special interest: e(2, q) ≥ 2 if and only if 2q−1 ≡ 1 (mod q2). Only two
such primes q are known, 1093 and 3511. There is a curious connection between
the Wieferich primes and the so-called first case of Fermat’s Last Theorem, for which
see [4]. (We are grateful to M. Mazur and S. Ullom for information about the Wieferich
primes).

4. Soluble groups. In this section the structure of infinite soluble D2-groups is
analysed.
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THEOREM 3. Let G be a non-nilpotent, soluble D2-group and set A = G′. Then:

(i) A is abelian, so that G is metabelian.1

(ii) A is an elementary p-group for some p, a free abelian group or a torsion-free
minimax group.

(iii) If A is torsion-free minimax and x ∈ G\CG(A), then CA(x) = 1.
(iv) If 1 < [B, 〈x〉] ≤ B ≤ A and x ∈ G, then B � A.
(v) Nilpotent subgroups of G are abelian.

Proof. (i) Suppose G has derived length d > 2. Then G(d−2) is non-abelian and
A = G′ � (G(d−2))′ = G(d−1), which yields the contradiction that A is abelian.

(ii) Assume that A contains an element of prime order p. Since G is not nilpotent,
there exists x ∈ G\CG(A) and then A � 〈x, A〉′ = [A, x], showing that A � A/C where
C = CA(x). Hence, A/C has an element of order p, say aC. Thus, [a, x]p = [ap, x] = 1
and [a, x] has order p since a �∈ C. Hence, A � 〈x, a〉′ = [a, x]〈x〉 and it follows that A
is an elementary p-group.

Now assume that A is torsion-free. There exist a ∈ A and x ∈ G such
that [a, x] �= 1, and hence A � 〈x, a〉′ = [a, x]〈x〉 ≤ a〈x〉. If {axi | i ∈ �} is linearly
independent, a〈x〉, and hence A, is free abelian. Otherwise there is the largest r > 0
such that {a, ax, . . . , axr−1} is linearly independent. Then F = 〈a, ax, . . . , axr−1〉 is free
abelian of rank r and a〈x〉/F is periodic. Hence, a〈x〉 has rank r, as must A. Finally,
H = 〈x, a〉 is a finitely generated soluble group of finite rank, so it is a minimax group
([8]). Therefore, A � H ′ is also minimax.

(iii) If A is torsion-free minimax, the isomorphism A � A/CA(x) implies that
CA(x) = 1.

(iv) Assume that 1 < [B, 〈x〉] ≤ B ≤ A, so that B = Bx. In addition, A � 〈x, B〉′ =
[B, x]. If A is either elementary p or free abelian, then so is B. Also, r(A) = r([B, x]) ≤
r(B) ≤ r(A), whence r(A) = r(B) and B � A. If, on the other hand, A is torsion-free
minimax, CA(x) = 1 by (iii) and hence [B, x] � B. Therefore, once again B � A.

(v) Suppose that N is a non-abelian, nilpotent subgroup of G. Since N ∈ D2,
we have A � N ′ � � or �p for some prime p by Theorem 1; therefore, [N ′, N] = 1.
Since 1 �= N ′ ≤ A and A � � or �p, it follows that [A, N] = 1. Consequently, [N ′, G] ≤
[N, G, N] ≤ [A, N] = 1 and N ′ ≤ Z(G). This gives the contradiction A ≤ Z(G). �

There is a simple converse to Theorem 3.

PROPOSITION 2. Let G be a metabelian group and set A = G′. Assume that the
following conditions hold:

(i) If 1 < [B, 〈x〉] ≤ B ≤ A for some x ∈ G, then B � A.
(ii) Nilpotent subgroups of G are abelian.

Then G ∈ D2.

Proof. Let H be a non-abelian subgroup of G and put B = H ′. Then H is not
nilpotent, so there exists x ∈ H such that [B, x] �= 1. Also, [B, 〈x〉] ≤ B, so B � A by
(i) and G ∈ D2. �

1In fact, a soluble Dn-group has derived length at most n for every n.
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COROLLARY 4. Let G be a free soluble group. Then G ∈ D2 if and only if G is free
abelian or free metabelian of countable rank.

Proof. Indeed, assume that G ∈ D2 is non-abelian; then G is metabelian by
Theorem 3 and clearly it must be free metabelian. By Lemma 1 G′ is countable, which
shows that G has countable rank. Conversely, if G is free metabelian of countable rank, it
is clear that nilpotent subgroups are abelian. Suppose that 1 < [B, 〈x〉] ≤ B ≤ A = G′;
then the map b �→ [b, x], b ∈ B, is injective, so B � [B, x], while it is easy to see that
[B, x] cannot be finitely generated. Hence, B � A and G ∈ D2 by Proposition 2. �
REMARK. (a) The three possibilities for A envisaged in Theorem 3 all occur, as is shown
by the wreath products �p wr �, � wr � and the infinite dihedral group.

(b) When A is finitely generated and free abelian, condition (iv) of Theorem 3 is
equivalent to A being rationally irreducible as an 〈x〉-module for all x ∈ G\CG(A).

(c) The fixed point free action in (iii) of Theorem 3 need not hold when A is
elementary or free abelian of infinite rank. To see this let X = 〈x〉 × 〈y〉 be free abelian
of rank 2 and let A0 = RX ⊕ R 〈y〉, where R = �p or �. Regard A0 as an X-module
via the natural action of X on RX and of 〈y〉 on R 〈y〉, with x acting trivially on R 〈y〉.
Define G to be the semi-direct product X � A0. Then A = G′ = IX ⊕ I〈y〉, where IX , I〈y〉
are augmentation ideals. If H is a non-abelian subgroup of G, it is straightforward to
see that H ′ � G′ so that G ∈ D2. However, CA(x) �= 0.

4.1. Groups of finite rank. Soluble D2-groups with finite rank have additional
structure over and above that described in Theorem 3. We can restrict ourselves to the
case where the derived subgroup is torsion-free minimax in view of Theorems 2 and 3.

THEOREM 4. Let G be a non-nilpotent, soluble D2-group such that A = G′ is a
torsion-free minimax group. Then the following hold.

(i) If 1 < B ≤ A and B = Bx, where x ∈ G\CG(A), then |A : B| is finite: hence A is
〈x〉-rationally irreducible.

(ii) If C = CG(A), then G/C is finitely generated and A is a noetherian G/C-module.
(iii) There is an abelian subgroup U such that U ∩ A = 1 and |G : UA| is finite.
(iv) G/Z(G) is a finitely generated metabelian minimax group in D2.

Proof. (i) By Theorem 3(iii) we have [B, x] �= 1 and hence B � A. Since r0(B) =
r0(A) and A is minimax, A/B is a Černikov group. Now a torsion-free abelian minimax
group has a series whose infinite factors are cyclic or quasi-cyclic; moreover, the (multi-)
set of infinite factors is an invariant of the group. Applying this fact to a series in A
through B, we conclude that A/B is finite.

(ii) By (i) A is rationally irreducible as a G/C-module and a theorem of Baer [1]
shows that G/C is finitely generated. Let 1 �= a ∈ A; then A/aG is finite by (i), so A is
a finitely generated G/C-module and hence it is a noetherian G/C-module.

(iii) Since G is not nilpotent, there exists x ∈ G such that [A, x] �= 1 and thus
CA(x) = 1 by Theorem 3(iii). Now apply [6, 6.1.4] to obtain a subgroup U as described.
(In fact, we could take U to be CG(x).)

(iv) Set G0 = UA, noting that G0 � G and Z0 = Z(G0) � G: in fact, Z0 = CU (A).
Also, [Z0, G] ≤ Z0 ∩ A = 1 and thus Z0 ≤ Z = Z(G). Next G/(G0 ∩ C) is a finitely

generated abelian group and G0 ∩ C = CG0 (A) = Z0 × A. Since Z0A/Z0
G� A, the

G-module Z0A/Z0 is noetherian and hence G/Z0 is finitely generated as is G/Z. Since
G/Z has finite rank, it is a minimax group.
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The last step in the proof is to show that G/Z ∈ D2 by using Proposition 2. If
N/Z is nilpotent, then N is nilpotent and hence abelian by Theorem 3. Thus, nilpotent
subgroups of G/Z are abelian. Next assume that 1 < [B/Z, 〈xZ〉] ≤ B/Z ≤ AZ/Z for
some x ∈ G. Then B = Bx and B = B ∩ (AZ) = B0Z, where B0 = B ∩ A. Since B0 �= 1
and Bx

0 = B0, we have B0 � A by (i). Therefore, B/Z = B0Z/Z � B0 � A � AZ/Z
and it follows that G/Z ∈ D2. �

4.2. Constructing soluble D2-groups of finite rank. As is apparent from the proof
of Theorem 4, the essential part of an infinite, non-nilpotent soluble D2-group G with
finite rank is a factor

G = U � A0 :

here A0 = aG for a fixed a �= 1 in A = G′, U = U/CU (A0) is abelian, A is torsion-free
minimax and U-rationally irreducible, and G is finitely generated. There is a well-
established connection between groups with this structure and algebraic number fields.
Note that F = A0 ⊗ � is a simple �U-module and the assignment r + I �→ (a ⊗ 1)r,
(r ∈ �U) yields a ring isomorphism �U/I → F , where I = Ann�U (a), a maximal
ideal of �U . Thus, F is an algebraic number field and we may identify A0 and U with
subgroups of F+ and F∗ respectively. Moreover, A0 = Rg

〈
U

〉
and F = �(U).

Conversely, suppose we start with an algebraic number field F and a non-trivial
finitely generated subgroup X of F∗ such that F = �(X). Let C be the subring of F
generated by X and regard C as an X-module in the natural way. Now form the group

G = G(F, X) = X � C.

Since G = 〈X, 1F 〉, this is a finitely generated metabelian group. Also, F = �(X), so
we have r0(C) = (F : �) and G has finite rank; hence it is a minimax group. Note that
if X is a subgroup of the group of units of F , then G will be polycyclic.

It is easy to see that any nilpotent subgroup of G is abelian and that A := G′ =
[C, X ]. By Proposition 2 the group G belongs to D2 if and only if B � A whenever
0 �= B = Bx ≤ A and 1 �= x ∈ X . Let us call the pair (F, X) allowable if this condition
is valid, the analogy with allowable pairs of integers being evident. In conclusion
G(F, X) ∈ D2 if and only if (F, X) is an allowable pair. Note that if X is a group of units
of F , then (F, X) is allowable if and only if C = Rg 〈X〉 is 〈x〉-rationally irreducible for
all x �= 1 in X .

EXAMPLES. (i) If F = � and X = 〈−1〉, then C = � and G(F, X) is the infinite dihedral
group. Obviously, (F, X) is allowable and G(F, X) ∈ D2.

(ii) Let m > 1 be an integer and let F = �, X = 〈m〉. Thus, C = { r
ms

∣∣ r, s ∈ �
}
.

Allowability is easy to check and thus G(F, X) ∈ D2: this group is isomorphic with the
Baumslag–Solitar group 〈x, a | ax = am〉.

(iii) Let F = �(
√

2) and X = 〈c〉, where c = 1 + √
2. Since c2 − 2c − 1 = 0, c

is an algebraic unit in F and G(F, X) is polycyclic. Also, C = Rg 〈c〉 is free
abelian of rank 2 and ck �∈ � for k > 0, so C is 〈xk〉-rationally irreducible and
(F, X) is allowable; hence, G(F, X) ∈ D2. In this case G(F, X) has the presentation
〈t, u, v | [u, v] = 1, ut = v, vt = uv2〉.

(iv) Let F = �(
√

3) and X = 〈c〉, where c = 1 + √
3. Then c2 − 2c − 2 = 0 and

C = Rg 〈c〉 satisfies C = 2C. Hence, C is a free �2-module of rank 2, where �2 is the
ring of dyadic rationals. Also, A = G(F, X)′ is a free module since �2 is a principal ideal

https://doi.org/10.1017/S0017089512000821 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000821


664 PATRIZIA LONGOBARDI ET AL.

domain. Let k > 0. A routine calculation reveals that ck has irreducible polynomial of
the form t2 + 2rt + 2s, (r, s ∈ �). If B �= 0 is a 〈ck〉-submodule of C, then B = 2B and B
is a free �2-module of rank 2. Thus, B � A, (F, X) is allowable and G(F, X) ∈ D2.

5. Groups with non-perfect derived subgroup. We continue our study of D2-groups
by considering groups G such that G′ is not perfect. Under the additional hypothesis
that G′/G′′ has finite abelian ranks, i.e. the p-rank is finite for p = 0 or a prime, it
emerges that these groups are soluble, so they fall within the scope of the classification
theorems of the previous two sections.

THEOREM 5. Let G be a D2-group such that G′/G′′ is non-trivial and has finite abelian
ranks. Then G is soluble and G′ is either finite elementary abelian or a torsion-free abelian
minimax group.

Note that the hypothesis of finite rank cannot be omitted from the theorem since
free groups of countable rank belong to D2. During the proof of Theorem 5 we will
use two auxiliary results about nilpotent groups which may be known. If n is a positive
integer, let e(n) denote the sum of the exponents in the primary decomposition of n.

LEMMA 6. Let G be a nilpotent group, n a positive integer and S = γn(G). If S′/S′′

is finite and e(|S′/S′′|) ≤ n, then S is metabelian.

Proof. There is a G-central series

S′/S′′ > [S′, G]S′′/S′′ > · · · > [S′,m G]S′′/S′′ = 1

for some m ≥ 0. The inequality e(|S′/S′′|) ≤ n shows that m ≤ n and hence that
[S′,n G] ≤ S′′. In addition

S′′ ≤ [S′, S, S] ≤ [S′,n G, S] ≤ [S′′, S],

which shows that S′′ = [S′′, S] and thus S′′ = 1 since S is nilpotent. �
LEMMA 7. Let G be a nilpotent group, n a positive integer and S = γn(G). If

r0(S′/S′′) ≤ n, then S′′ is periodic.

Proof. There is a G-central series

S′/S′′ > [S′, G]S′′/S′′ > · · · > [S′,m G]S′′/S′′ = 1

for some m ≥ 0, and there is a least i ≥ 0 such that the factor [S′,i G]S′′/[S′,i+1 G]S′′

is periodic. By forming successive tensor products with G/G′, we deduce that all
subsequent factors in the central series are periodic, and since r0(S′/S′′) ≤ n, it follows
that i ≤ n. Hence, [S′,n G]S′′/S′′ is periodic. By an easy argument using the nilpotency
of G, we deduce that [S′,n G, S][S′′, S]

/
[S′′, S] is periodic. As in the proof of Lemma

6, we have S′′ ≤ [S′, S, S] ≤ [S′,n G, S], which implies that S′′/[S′′, S] is periodic. It
follows that S′′ is periodic. �

Proof of Theorem 5. By Theorem 3 it is enough to prove that G is soluble, so
assume this is not true. Then G has a finitely generated insoluble subgroup H since by
Theorem 3 soluble D2-groups are metabelian. Then G′ � H ′ and G′/G′′ � H ′/H ′′.
Now H/H ′′ is a finitely generated metabelian group, so it satisfies max-n, the maximal
condition on normal subgroups, by a theorem of P. Hall (see [6, 4.2.2]). Therefore, the
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torsion-subgroup of H ′/H ′′ has finite exponent. Of course, the same is true of G′/G′′,
and since G′/G′′ has finite abelian ranks, we deduce that its torsion-subgroup is finite,
say of order t. Let n = r0(G′/G′′), which is also finite.

First of all consider the case where n = 0, i.e. G′/G′′ has finite order t.
Put e = e(t) > 0. Observe that G′ � G(i) and G′/G′′ � G(i)/G(i+1) for all i ≥ 1: thus
|G(i)/G(i+1)| = t. Writing Ci = CG(G(i)/G(i+1)), we have |G/Ci| ≤ t! = m, say. Since
G(i) ≤ Ci, the group G/Ci is soluble and its derived length is at most m, so G(m) ≤ Ci for
all i. Hence, G(m)/G(i) is nilpotent for i ≥ m, as is G′/G(i−m+1). Thus, G′/G(j) is nilpotent
for all j ≥ 1.

Now set j = e + 2 and write K = G′. Then K/K (j) = G′/G(j+1) is nilpotent.
Put S = γe(K) and K = K/K (j); thus S := γe(K) = SK (j)/K (j). If S is not abelian,
S′/S′′ � K ′/K ′′ and hence e(|S′|/|S′′|) ≤ e(|K ′/K ′′|) = e(t) = e, a conclusion that is
still valid if S is abelian. We are now in a position to apply Lemma 6 to the group K̄ , so
we may conclude that S is metabelian. From this it follows that S′′ ≤ K (j). Also, K (e−1) ≤
S, so K (e+1) ≤ S′′ ≤ K (j), whence K (e+1) = K (e+2) and K (e+1) = 1, i.e. G(e+2) = 1,
a contradiction.

Next we address the case n > 0. As before, write Ci = CG(G(i)/G(i+1)), so that G/Ci

is isomorphic with a soluble group of automorphisms of the abelian group G(i)/G(i+1).
The latter has finite torsion-free rank n. By a well-known theorem of Zassenhaus (see
[6, 3.1.10]), the derived length of a soluble linear group of degree n cannot exceed f (n)
for some function f . It follows that G/Ci has derived length at most s := f (n) + t! + 1,
where t is the order of the torsion-subgroup of G′/G′′. Hence, G(s) ≤ Ci for all i and
G(s)/G(�) is nilpotent for � ≥ s. Therefore, G′/G(�−s+1) is nilpotent, as is G′/G(j) for
j ≥ 1.

Now set j = n + 2 and write K = G′. Then K/K (j) = G′/G(j+1) is nilpotent. Put
S = γn(K) and K = K/K (j); thus S := γn(K) = SK (j)/K (j). If S is not abelian, S′/S′′ �
K ′/K ′′ and hence r0(S

′
/S

′′
) ≤ r0(G′/G′′) = n, a conclusion that is still valid if S is

abelian. We can now apply Lemma 7 to the group K̄ and conclude that S
′′

is periodic.
As above K (n+1) ≤ S′′, which implies that K (n+1)/K (j) is periodic. Consequently, G′/G′′

is periodic, a final contradiction. �

COROLLARY 5. Let G be a periodic D2-group. If G′ is not perfect, then G is soluble.

Proof. Assume this is false: clearly we may assume G is finitely generated.
Then G/G′ is finite and G′ is finitely generated, which gives a contradiction by the
Theorem 5. �

COROLLARY 6. Let G be a periodic D2-group. If G is locally graded, then it is soluble.

Proof. As usual, we can assume that G is finitely generated, so G′ is also finitely
generated. Since G is locally graded, G′ has a non-trivial finite quotient and hence
G′ �= G′′ by Proposition 1. The result now follows from Corollary 5. �

5.1. Elements of finite order in D2-groups. Elements of finite order in a D2-group
are subject to surprisingly strong restrictions, at least if the group is insoluble and its
derived subgroup is not perfect.

THEOREM 6. Let G be an insoluble D2-group such that G′ is not perfect. Then the
elements of G with finite order form a subgroup F of Z(G) and G/F is in D2.
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Proof. Let a, b be elements of finite order in G and put H = 〈a, b〉. Suppose that H
is not abelian so that H ′ � G′. Now H/H ′ is finite, so H ′ is finitely generated and H ′ is
not perfect; hence, H is soluble by Theorem 5, and so is G. Consequently, H must be
abelian and [a, b] = 1, which demonstrates that elements of G with finite order form
an abelian normal subgroup F . If [F, g] �= 1 for some g ∈ G, then G′ � 〈g, F〉′ ≤ F
and G is soluble. Therefore, F ≤ Z(G).

Finally, let K/F be a non-abelian subgroup of G/F . Then K ′ � G′, while K ′ ∩ F
and G′ ∩ F are the respective torsion-subgroups of K ′ and G′. Therefore, K ′/K ′ ∩ F �
G′/G′ ∩ F and (K/F)′ � (G/F)′ so that G/F ∈ D2. �

On the other hand, the elements of finite order in a soluble D2-group need not
form a subgroup as the infinite dihedral group shows.

6. Insoluble D2-groups. Up to this point all the D2-groups of whose structure we
have some knowledge have turned out to be soluble. We now consider some classes of
insoluble D2-groups. Let

�
denote the class of groups that satisfy the Tits alternative, i.e. G ∈ � if and only if
either G is soluble-by-finite or it contains a free subgroup of rank 2.

THEOREM 7. Let G be a �-group. Then G ∈ D2 if and only if either G is a soluble
D2-group or else G′ is free with countably infinite rank and L′ is not finitely generated
whenever L is a non-abelian subgroup of G .

Proof. Assume that G ∈ D2. Suppose that G has a soluble normal subgroup S with
finite index in G. If S �≤ Z(G), there is a g ∈ G such that G′ � 〈g, S〉′ ≤ S, and G is
soluble. Next assume that S ≤ Z(G); then G/Z(G) is finite, so G′ is finite and again G is
soluble by Theorem 2. Now suppose that no such S exists. Then G has a free subgroup F
of rank 2 since G ∈ �. Thus, G′ � F ′ and G′ is free with countably infinite rank. If L
is a non-abelian subgroup of G, we have L′ � G′ � F ′ showing that L′ is not finitely
generated.

Conversely, assume the conditions hold and G is insoluble. Let L be a non-abelian
subgroup of G. Then L′ ≤ G′, so L′ is free of countable rank. Since by hypothesis L′ is
not finitely generated, L′ � G′ and G ∈ D2. �

COROLLARY 7. Let G be a locally free group. Then G ∈ D2 if and only if G′ is a free
group of countable rank.

Proof. On the basis that G is locally free, it is easy to see that G ∈ �. By Theorem 7
the condition on G is necessary. To prove sufficiency it is enough to show that if G′ is
free with countable rank and L is a non-abelian subgroup of G, then L′ is not finitely
generated. If this is false, L′ = K ′, where K is some finitely generated subgroup. But K
is free and non-cyclic, so K ′ cannot be finitely generated. �

For example, the free product �2 ∗ � is a locally free D2-group which is not free.
Note that this group is residually finite, and hence locally graded.

REMARKS. (i) If G ∈ D2 ∩ �, then G is locally graded. This follows directly from
Theorem 7.

(ii) It is not sufficient for G ∈ D2 that G′ be free of countably infinite rank.
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To see this, let F be the free group with a countably infinite basis {ai, bi | i =
1, 2, . . . }. Define an automorphism t of F by at

i = aibi, bt
i = ai, and write

G = 〈t〉 � F.

Put Fi = 〈ai, bi〉 and observe that [Fi, t] = Fi and G′ = [F, t] = F . Let Hi = 〈t, ai, bi〉;
then H ′

i ≥ [Fi, t] = Fi and H ′
i = Fi. Thus, H ′

i �� G′ and G �∈ D2.
(iii) The original theorem of Tits ([10]) states that finitely generated linear groups

belong to �, so Theorem 7 is applicable. In fact the theorem applies to any linear
D2-group. Indeed, let G be a linear group in D2 and assume G is not soluble. Then G
has a finitely generated insoluble subgroup H and G′ � H ′. By Tits’ theorem and
Theorem 7 we see that H ∈ � and H ′, and hence G′ is free of countably infinite rank
and so G ∈ �.

6.1. Groups whose derived subgroup satisfies the minimal condition. Up to this
point none of the special types of D2-group that we have studied has involved a Tarski
group, yet Tarski groups certainly belong to D2. Our final result shows that every
insoluble D2-group whose derived subgroup satisfies the minimal condition has a
factor which is of Tarski type.

THEOREM 8. Let G be an insoluble D2-group such that G′ satisfies the minimal
condition. Then G has the following properties.

(i) G′ is the unique smallest non-abelian subgroup of G.
(ii) Soluble subgroups of G are abelian.

(iii) G′ is finitely generated and perfect.
(iv) The subgroup M := G′ ∩ Z(G) is the unique maximum normal subgroup of G′,

and G′/M is an infinite simple group.
(v) G/M is a D2-group.

(vi) If N � G, then N ≤ Z(G) or G′ ≤ N.

Proof. (i) Let H be a non-abelian subgroup of G. Then H ′ � G′ and by min we
have H ′ = G′ and thus G′ ≤ H.

(ii) If H were a non-abelian soluble subgroup, we would have H ′ � G′ and G
soluble.

(iii) Since G′ is non-abelian, G′ � G′′ and hence G′ = G′′, so that G′ is perfect. If G′

were not finitely generated, every finitely generated subgroup of G′ would be abelian
by (i) and G′ would be abelian.

(iv) By (iii) G′ has a maximal normal subgroup M. Let x ∈ G. If [M, x] �= 1, then
G′ � 〈x, M〉′ ≤ M〈x〉. Now M〈x〉 is locally nilpotent since M � G′ and M is abelian.
Hence, M〈x〉 is nilpotent by Theorem 1 and G is soluble. Therefore, [M, x] = 1 for all
x ∈ G and M ≤ G′ ∩ Z(G) � G′. Since G′ ∩ Z(G) �= G′, the maximality of M shows
that M = G′ ∩ Z(G). Obviously, G′/M is simple: If it were finite, G′ would be abelian-
by-finite and hence soluble by the proof of Theorem 7.

(v) This follows from Lemma 1.
(vi) If N is non-abelian, then G′ ≤ N by (i). Assume that N is abelian. If x ∈ G,

then 〈x, N〉 is soluble and thus abelian by (ii). Hence, [N, x] = 1 and N ≤ Z(G).
�

REMARKS. (a) The group G′/M � G′Z(G)/Z(G) is a finitely generated infinite simple
group with all its proper subgroups abelian, so it is a Tarski group.
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(b) In the opposite direction note that properties (i) and (ii) imply that G ∈ D2.
For, if H is a non-abelian subgroup, H contains G′ and hence H ′ ≥ G′′ = G′. Thus,
H ′ = G′.
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