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Abstract. Let 0 be a lattice in a simply connected nilpotent Lie group G. Given an infinite
measure-preserving action T of 0 and a ‘direction’ in G (i.e. an element θ of the projective
space P(g) of the Lie algebra g of G), some notions of recurrence and rigidity for T along
θ are introduced. It is shown that the set of recurrent directions R(T ) and the set of rigid
directions for T are both Gδ . In the case where G = Rd and 0 = Zd , we prove that (a) for
each Gδ-subset1 of P(g) and a countable subset D ⊂1, there is a rank-one action T such
that D ⊂R(T )⊂1 and (b) R(T )= P(g) for a generic infinite measure-preserving action
T of 0. This partly answers a question from a recent paper by Johnson and Şahin. Some
applications to the directional entropy of Poisson actions are discussed. In the case where
G is the Heisenberg group H3(R) and 0 = H3(Z), a rank-one 0-action T is constructed
for which R(T ) is not invariant under the natural ‘adjoint’ G-action.

1. Introduction
Subdynamics is the study of the relationship between the dynamical properties of the
action of a group G, and those of the action restricted to subgroups of G. In this paper, we
consider measure-preserving actions defined on σ -finite standard measure spaces. In the
1980s Milnor generalized the study of subdynamics by defining a concept of directional
entropy of a Zd -action in every direction, including the irrational directions for which there
is no associated subgroup action [Mi]. To this end, he considered Zd as a lattice in Rd

and he exploited the geometry of mutual position of this lattice and the one-dimensional
subspaces (i.e. directions) in Rd . For a detailed account on the directional entropy of Z2-
actions and some applications to topological dynamics (expansive subdynamics) we refer
to [Pa] and references therein. In a recent paper [JoSa], Johnson and Şahin applied the
‘directional approach’ to study recurrence properties of infinite measure-preserving Z2-
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actions. They were motivated by Feldman’s proof of the ratio ergodic theorem [Fel]. In
particular, they showed that, for each such an action, say, T , the set R(T ) of all recurrent
directions of T is a Gδ-subset of the circle T. They also exhibited examples of rank-one
actions T and T ′ with R(T )= ∅ and T 6=R(T ′)⊃ {eπ iq

| q ∈Q}. They raised a question:
which Gδ-subsets of T are realizable as recurrence sets, that is, appear as R(T ) for some
T ? We answer this question in part.
• We show that each countable Gδ is a recurrence set.
• More generally, for each Gδ-subset1 of the projective space P(Rd) and a countable

subset D of1, there is a rank-one infinite measure-preserving free Zd -action T such
that D ⊂R(T )⊂1 (Theorem 5.2).

• We also prove that a generic infinite measure-preserving action T of Rd is recurrent
in every direction: i.e. R(T )= P(Rd) (Theorem 6.6).

In parallel to this, we introduce a concept of directional rigidity for Zd -actions and
obtain similar results for realization of Gδ-subsets of P(Rd) as rigidity sets.

As a by product, we obtain some examples of Poisson Rd -actions with the following
entropy properties.
• There is a Poisson action V = (Vg)g∈Rd of 0 entropy such that, for each non-zero

g ∈ Rd , the transformation Vg is Bernoulli of infinite entropy (Proposition 6.7).
• For each Gδ-subset 1⊂ P(Rd) and a countable subset D of 1, there is a Poisson

action V = (Vg)g∈Rd of zero entropy such that, for each non-zero g 6∈
⋃
θ∈1 θ , the

transformation Vg is Bernoulli of infinite entropy and, for each g ∈
⋃
θ∈D θ , the

transformation Vg is rigid and hence of zero entropy (Proposition 6.8).
In this connection we recall the main result from [FeKa]: there is a Gaussian action V =
(Vg)g∈Z2 of zero entropy such that every transformation Vg , 0 6= g ∈ Z2, is Bernoulli.

We extend the concepts of directional recurrence and directional rigidity to actions of
lattices 0 in simply connected nilpotent Lie groups G. By a ‘direction’ we now mean a
one-parameter subgroup in G. Thus the set of all directions is the projective space P(g),
where g denotes the Lie algebra of G. As in the Abelian case (considered originally
in [JoSa]), we show the following.
• Given a measure-preserving action T of 0, the set R(T ) of all recurrent directions

of T is a Gδ in P(g) (Theorems 3.5 and 3.6).
Since G acts on P(g) via the adjoint representation, we define another invariant ER(T ) of
even recurrence for T as the largest G-invariant subset of R(T ).
• Some examples of rank-one actions T of the Heisenberg group H3(Z) are

constructed for which R(T ) is either empty (Theorem 7.1), countably infinite
(Theorem 7.2) or uncountable (Theorem 7.3)†.

• An example of T is given such that ER(T ) 6=R(T ) (Theorem 7.2).
Given an action T of 0, we can define a natural analog of the ‘suspension flow’
corresponding to T . This is the induced (in the sense of Mackey) action T̃ of G associated
with T . Since R(T ) coincides with the set R(T̃ ) of conservative R-subactions of T̃ in the
Abelian case [JoSa], it is natural to conjecture that ER(T )=R(T̃ ) in the general case. It
remains an open problem. However, the analogous claim for the rigidity sets does not hold
in the non-Abelian case (Remark 3.2).

† We consider H3(Z) as a lattice in the three-dimensional real Heisenberg group H3(R).
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The outline of the paper is as follows. In §2, we introduce the main concepts and
invariants related to the directional recurrence and rigidity. In §3, we discuss relationship
between the directional recurrence and rigidity of an action of a lattice in a nilpotent
Lie group and similar properties of the suspension flow, i.e. the induced action of the
underlying Lie group. It is also shown here that the sets of recurrent and rigid directions
are both Gδ . In §4, we recall the (C, F)-construction of rank-one actions and provide a
sufficient condition for directions to be recurrent in terms of the (C, F)-parameters. This
condition is used in §5 to construct rank-one actions of Zd with various sets of recurrent
directions. In §6, we prove that a generic Zd -action is recurrent in every direction. This
section also contains some applications to the directional entropy of Poisson actions. In
§7, we study directional recurrence of infinite measure-preserving actions of H3(Z). The
final §8 contains a list of open problems and concluding remarks.

2. Recurrence, even recurrence, rigidity and even rigidity along directions
Let G be a simply connected nilpotent Lie group, g the Lie algebra of G and exp : g→ G
the exponential map. We note that exp is a diffeomorphism of g onto G [Mal]. Let P(g)
denote the set of lines (i.e. one-dimensional subspaces) in g. We endow P(g) with the
usual topology of projective space. Then P(g) is a compact manifold. The adjoint G-
action on g induces a smooth G-action on P(g). We denote this action by the symbol
‘·’. Given v ∈ g\{0}, we let exp(v) := {exp(tv) | t ∈ R}. Then exp(v) is a closed one-
dimensional subgroup of G. We note that if w = tv for some t ∈ R\{0}, then exp(w)=
exp(v). Hence, for each line θ ∈ P(g), the notation exp(θ) is well defined. Moreover,
g exp(θ)g−1

= exp(g · θ) for each g ∈ G.
Let R = (Rg)g∈G be a measure-preserving action of G on a σ -finite standard measure

space (Y,Y, ν).

Definition 2.1.
(i) We recall that R is called conservative if for each subset B ∈Y, ν(B) > 0, and for

each compact set K ⊂ G, there is an element g ∈ G\K , such that

ν(B ∩ Rg B) > 0.

(ii) We call R recurrent along a line θ ∈ P(g) if the flow (exp(tv))t∈R is conservative
for some (and hence for each) v ∈ θ\{0}.

(iii) We recall that R is called rigid if there is a sequence (gn)n≥1 of elements in G such
that gn→∞ and

lim
n→∞

ν(B ∩ Rgn B)= µ(B)

for each subset B ∈Y of finite measure.
(iv) We call R rigid along a line θ ∈ P(g) if the flow (exp(tv))t∈R is rigid for some (and

hence for each) v ∈ θ\{0}.

Denote by R(R) the set of all θ ∈ P(g) such that R is recurrent along θ . Denote by
Ri(R) the set of all θ ∈ P(g) such that R is rigid along θ . Of course, Ri(R)⊂R(R). It
is easy to see that if a G-action R′ is isomorphic to R then R(R′)=R(R) and Ri(R′)=
Ri(R).
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PROPOSITION 2.2. The sets R(R) and Ri(R) are G-invariant.

Proof. Let θ ∈R(R). Fix an element g0 ∈ G. Take a subset B ⊂ Y of positive measure
and a compact K ⊂ G. Since R is recurrent along θ , there is g ∈ exp(θ) such that g 6∈ K
such that ν(B ∩ Rg B) > 0. Hence

0< ν(Rg0 B ∩ Rg0 Rg B)= ν(Rg0 B ∩ Rg0gg−1
0

Rg0 B).

Since g0gg−1
0 ∈ exp(g0 · θ) and g0gg−1

0 6∈ g0 K g−1
0 , it follows that the flow (Rg)g∈g0·θ is

conservative. Thus R(R) is G-invariant. In a similar way we can verify that Ri(R) is
G-invariant. �

From now on we fix a lattice 0 in G. We recall that there exists a lattice in G if and
only if the structural constants of g are all rational [Mal]. Moreover, every lattice in G is
uniform [Mal], i.e. co-compact. We fix a right-invariant metric dist(· , ·) on G, compatible
with the topology.

Let T = (Tγ )γ∈0 be a measure-preserving action of 0 on a σ -finite standard measure
space (X,B, µ). Although, in general, T does not extend to a G-action on (X,B, µ), it
is possible to give an analog of Definition 2.1 for T .

Definition 2.3.
(i) We call T recurrent along a line θ ∈ P(g) if, for each ε > 0 and every subset A ∈

B, µ(A) > 0, there is an element γ ∈ 0\{10} and an element g ∈ exp(θ) such that
dist(γ, g) < ε and µ(A ∩ Tγ A) > 0.

(ii) We call T evenly recurrent along a line θ ∈ P(g) if T is recurrent along every line
from the G-orbit of θ .

(iii) We call T rigid along a line θ ∈ P(g) if there is a sequence (γn)n≥1 of elements in
0 such that limn→∞ infg∈exp(θ) dist(γn, g)= 0 and

lim
n→∞

µ(A ∩ Tγn A)= µ(A)

for each subset A ∈B with µ(A) <∞†.
(iv) We call T evenly rigid along a line θ ∈ P(g) if T is rigid along every line from the

G-orbit of θ .

We denote by R(T ) the set of all θ ∈ P(g) such that T is recurrent along θ . We denote
by Ri(T ) the set of all θ ∈ P(g) such that T is rigid along θ . In a similar way, we denote
by ER(T ) and ERi(T ) the set of all θ ∈ P(g) such that T is evenly recurrent along them
and evenly rigid along them, respectively.

Of course, R(T )⊃ ER(T ), Ri(T )⊃ ERi(T ), R(T )⊃Ri(T ) and ER(T )⊃ ERi(T ).
For G Abelian, R(T )= ER(T ) and Ri(T )= ERi(T ). However, in general, R(T ) 6=
ER(T ) (see Theorem 7.2 below) and Ri(T ) 6= ERi(T ).

† This means that Tγn → Id as n→∞ in the weak topology on the group of all µ-preserving invertible
transformations of X .
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Remark 2.4.
(i) It is easy to see that if θ is ‘rational’, i.e. the intersection 0 ∩ exp(θ) is non-trivial,

say, there is γ0 6= 10 such that 0 ∩ exp(θ)= {γ n
0 | n ∈ Z}, then θ is recurrent if and

only if γ0 (i.e. the action of Z generated by γ0) is conservative. In a similar way, if θ
is rigid if and only if γ0 is rigid.

(ii) If θ ∈R(T ), then we have {γ · θ | γ ∈ 0} ⊂R(T ). In a similar way, if θ ∈Ri(T ),
then we have {γ · θ | γ ∈ 0} ⊂Ri(T ). This can be shown in a similar way as in
Proposition 2.2 (plus the fact that dist is right-invariant).

Given g ∈ G and θ ∈ P(g), we denote by dist(g, exp(θ)) the distance from g to the
closed subgroup exp(θ), i.e.

dist(g, exp(θ)) := inf
h∈exp(θ)

dist(g, h)= min
h∈exp(θ)

dist(g, h).

Since, in Definition 2.3(i), there is no estimate (from below) for the ratio µ(A ∩
Tγ A)/µ(A), the following lemma—which is equivalent to Definition 2.3(i)—is more
useful for applications.

LEMMA 2.5. Let θ ∈R(T ). Then, for each ε > 0, a compact K ⊂ G and a subset A ⊂ X
of finite measure, there is a Borel subset A0 ⊂ A and Borel one-to-one map R : A0→ A
and a Borel map ϑ : A0 3 x 7→ ϑx ∈ 0\K such that µ(A0)≥ 0.5µ(A) and Rx = Tϑx x
and dist(ϑx , exp(θ)) < ε for all x ∈ A0.

Proof. We use a standard exhaustion argument. Let

0ε := {γ ∈ 0\{1} | dist(γ, exp(θ)) < ε}.

Enumerate the elements of 0ε : i.e. let 0ε = {γn}n≥1. We now set A1 := A ∩ T−1
γ1

A, B1 :=

Tγ1 A1, A2 := (A\(A1 ∪ B1)) ∩ T−1
γ2
(A\(A1 ∪ B1)), B2 := Tγ2 A2, and so on. Then we

obtain two sequences (An)n≥1 and (Bn)n≥1 of Borel subsets of A such that Ai ∩ A j =

Bi ∩ B j = ∅ whenever i 6= j and Tγi Ai = Bi for all i . We let A0 :=
⊔

i≥1 Ai and B0 :=⊔
i≥1 Bi . It follows, from Definition 2.3(i), that µ(A\(A0 ∪ B0))= 0. Since µ(A0)=

µ(B0), it follows that µ(A0)≥ 0.5µ(A). It remains to let ϑx := γi for all x ∈ Ai , i ≥ 1. �

3. Recurrence and rigidity along directions in terms of the induced G-actions
Denote by T̃ = (T̃g)g∈G the action of G induced from T (see [Ma, Zi]). We recall that the
space of T̃ is the product space (G/0 × X, λ× µ), where λ is the unique G-invariant
probability measure on the homogeneous space G/0. To define T̃ we first choose
a Borel cross section s : G/0→ G of the natural projection G→ G/0. Moreover,
we may assume without loss of generality that s(0)= 1G and s is a homeomorphism
when restricted to an open neighborhood of 0, this neighborhood is of full measure
and the measure of the boundary of the neighborhood is zero. Define a Borel map
hs : G × G/0→ 0 by setting

hs(g, g10)= s(gg10)
−1gs(g10).

Then hs satisfies the one-cocycle identity: i.e. hs(g2, g1g0)hs(g1, g0)= hs(g2g1, g0)
for all g1, g2, g ∈ 0. We now set, for g, g1 ∈ G and x ∈ X ,

T̃g(g10, x) := (gg10, Ths (g,g10)x).
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Then (T̃g)g∈G is a measure-preserving action of G on (G/0 × X, λ× µ). We note that
the isomorphism class of T̃ does not depend on the choice of s.

THEOREM 3.1. Let G = Rd and 0 = Zd , d ≥ 1. Then R(T̃ )=R(T ) and Ri(T̃ )=
Ri(T ).

Proof. We consider the quotient space G/0 as [0, 1)d . Given g = (g1, . . . , gd) ∈ Rd ,
we let [g] = (E(g1), . . . , E(gd)) and {g} := (F(g1), . . . , F(gd)), where E(.) and F(.)
denote the integer part and the fractional part of a real. If the cross section s : [0, 1)d → Rd

is given by the formula s(y) := y, then we have hs(g, y)= [g + y] for all g ∈ G and
y ∈ [0, 1)d .

(A) We first show that Ri(T )=Ri(T̃ ). Let θ ∈Ri(T ). Then there are γn ∈ 0 and
tn ∈ θ such that dist(γn, tn)→ 0 and Tγn → IdX weakly as n→∞. We claim that T̃tn →

Id(G/0)×X weakly as n→∞. Indeed, let εn := tn − γn . Then

T̃tn (y, x)= ({tn + y}, T[tn+y]x)= ({εn + y}, Tγn T[εn+y]x). (3.1)

Since the Lebesgue measure of the subset Yn := {y ∈ [0, 1)d | εn + y ∈ [0, 1)d} goes to
one as n→∞ and {εn + y} = y and [εn + y] = 0 for all y ∈ Yn , it follows that T̃tn →

Id(G/0)×X as n→∞. Thus we obtain that θ ∈Ri(T̃ ).
Conversely, let θ ∈Ri(T̃ ). Then there are tn ∈ θ , n ∈ N, such that

T̃tn → Id(G/0)×X weakly as n→∞. (3.2)

It follows from (3.1) that the sequence of transformations y 7→ {tn + y} of G/0 converge
to IdG/0 as n→∞. This, in turn, implies that there is a sequence (γn)n∈N of elements
of 0 such that limn→∞ dist(tn, γn)= 0. Therefore, the Lebesgue measure of the subset
{y ∈ G/0 | [tn + y] = γn} converges to one as n→∞. Now (3.1) and (3.2) yield that
Tγn → IdX . Hence θ ∈Ri(T ).

(B) We now show that† R(T )=R(T̃ ). Take θ ∈R(T ). Given a subset A ⊂ G/0 × X
of positive measure, a compact K ⊂ G and ε > 0, we find two subsets B ⊂ X and C ⊂
G/0 of finite positive measure such that

(Leb× µ)(A ∩ (B × C)) > 0.99Leb(B)µ(C). (3.3)

For t ∈ G, we set Bt := {y ∈ B | t + y ∈ B and [t + y] = 0}. Then we find ε1 > 0 so small
that Leb(Bt ) > 0.5Leb(B) for each t ∈ G such that dist(t, 0) < ε1. By Lemma 2.5, there
are elements γ1, . . . , γl ∈ 0, t1, . . . , tl ∈ θ\K and pairwise disjoint subsets C1, . . . , Cl

of C such that max1≤ j≤l dist(γ j , t j ) <min(ε, ε1), the sets Tγ1 A1, . . . , Tγl Cl are mutually
disjoint subsets of C and µ(

⊔l
j=1 C j ) > 0.4µ(C). We now let A′ :=

⊔l
j=1 Bt j × C j . Of

course, A′ is a subset of B × C . We have

T̃t j (b, c)= ({t j + b}, Tγ j c)⊂ B × C if b ∈ B j and c ∈ C j

for each j = 1, . . . , l. Moreover, the sets T̃t j (B j × C j ), j = 1, . . . , l, are pairwise
disjoint and (Leb× µ)(

⊔l
j=1(B j × C j )) > 0.2(Leb× µ)(B × C). It now follows

† Although this fact was originally stated in [JoSa], we give here an alternative proof because, in our opinion,
the proof of the inclusion R(T )⊂R(T̃ ) was not completed there.
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from (3.3) that there is j ∈ {1, . . . , l} such that (Leb× µ)(T̃t j (A ∩ (B j × C j ) ∩ A) > 0.
Hence θ ∈R(T̃ ).

Conversely, let θ ∈R(T̃ ). Given ε > 0, let Y = [1/2, 1/2+ ε)⊂ G/0. It is easy to see
that if gY ∩ Y 6= ∅ for some g ∈ G, then dist(g, 0) < ε and the map Y 3 y 7→ [g + y] ∈
Zd is constant. Let A be a subset of X of finite positive measure. Then there is g ∈ θ such
that dist(g, 0) > 100 and

0< (Leb× µ)((Y × A) ∩ T̃g(Y × A))= Leb(gY ∩ Y )µ(A ∩ Tγ A),

where γ := [g + y] ∈ 0 for all y ∈ Y . It follows that dist(γ, θ) < ε and γ 6= 0. Hence
θ ∈R(T ). �

Remark 3.2. We note that the equality Ri(T̃ )= ERi(T ) does not hold for non-Abelian
nilpotent groups. Consider, for instance, the case where G = H3(R) and H = H3(Z)
(see §7 for their definition). Let T be an ergodic action of H3(Z). We claim that T̃ is
not rigid and hence Ri(T̃ )= ∅. Indeed, if T̃ were rigid, then the quotient G-action by
translations on G/0 is also rigid. However, the latter action is mixing relative to the
subspace generated by all eigenfunctions [Au-Ha]. On the other hand, there are examples
of weakly mixing H3(Z)-actions T such that Ri(T ) contains the line passing through the
center [Da3].

COROLLARY 3.3. Let G = Rd and 0 = Zd , d ≥ 1. If an action T of 0 is ergodic and
extends to an action T̂ of G on the same measure space where T is defined, then R(T )=
R(T̂ ).

Proof. It follows, from the condition of the corollary, that the induced G-action T̃ is
isomorphic to the product T̂ × D, where D is the natural G-action by translations on
G/0 [Zi, Proposition 2.10]. Since D is finite measure-preserving, R(T̂ × D)=R(T̂ )
(see Lemma 3.4(ii) below). It remains to apply Theorem 3.1. �

We leave the proof of the following non-difficult statement to the reader as an exercise.

LEMMA 3.4. Let F = (Ft )t∈R be a flow-preserving a σ -finite measure and let S = (St )t∈R
be a probability-preserving flow.
(i) F is conservative if and only if the transformation F1 is conservative.
(ii) F is conservative if and only if the product flow (Ft × St )t∈R is conservative†.
(iii) F is rigid if and only if F1 is rigid.

We now describe the ‘topological type’ of R(T ) and ER(T ) as subspaces of P(g). We
first consider the Abelian case and provide a short proof of [JoSa, Theorem 1.3] stating
that R(T ) is a Gδ .

THEOREM 3.5. Let G = Rd and 0 = Zd , d ≥ 1. The subsets R(T ) and Ri(T ) are both
Gδ in P(Rd).

† A similar claim for transformations (i.e. Z-actions) is proved in [Aa]. We note that (ii) follows from that claim
and (i).
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Proof. Let (X̃ , µ̃) be the space of T̃ . Denote by Aut(X̃ , µ̃) the group of all µ̃-preserving
invertible transformations of X̃ . We endow it with the standard weak topology. Then
Aut(X̃ , µ̃) is a Polish group (see [DaSi] and references therein). Fix a norm on Rd . Denote
by S the unit ball in Rd . We define a map m : S→ Aut(X̃ , µ̃) by setting m(v) := T̃v . It
is obviously continuous. We recall that the subset R of conservative infinite measure-
preserving transformations of (X̃ , µ̃) is a Gδ in Aut(X̃ , µ̃) [DaSi]. It follows from this
fact and Lemma 3.4(i) that the set

m−1(R)= {v ∈ S | the flow (T̃tv)t∈R is conservative}

is a Gδ in S: i.e. the intersection of a countable number of open subsets. Since m−1(R)

is centrally symmetric (i.e. if v ∈m−1(R), then −v ∈m−1(R)), we may assume, without
loss of generality, that these open sets are also centrally symmetric. The natural projection
of S onto P(Rd) is just the ‘gluing’ of the pairs of centrally symmetric points. We note
that the projection of m−1(R) to P(Rd) is exactly R(T̃ ). It follows that R(T̃ ) is a Gδ in
P(g). It remains to apply Theorem 3.1.

To show that Ri(T ) is a Gδ argue in a similar way and use the fact that the set of all
rigid transformations is a Gδ in Aut(X̃ , µ̃) [DaSi] and apply Lemma 3.4(iii). �

We now consider the general case (independently of Theorem 3.5).

THEOREM 3.6. The subsets R(T ) and Ri(T ) are both Gδ in P(g).

Proof. Let 0\{1} = {γk | k ∈ N}.
(A) We first prove that R(T ) is a Gδ . For each g ∈ G, the map

P(g) 3 θ 7→ dist(g, exp(θ)) := inf
h∈exp(θ)

dist(g, h) ∈ R (3.4)

is continuous. Now for a subset A ⊂ X with 0< µ(A) <∞ and ε > 0, we construct a
sequence A1, A2, . . . of subsets in A as given by (cf. with the proof of Lemma 2.5):

A1 :=

{
A ∩ T−1

γ1
A if dist(γ1, exp(θ)) < ε,

∅ otherwise,

A2 :=

{
(A\(A1 ∪ Tγ1 A1)) ∩ T−1

γ2
(A\(A1 ∪ Tγ1 A1)) if dist(γ2, exp(θ)) < ε,

∅ otherwise,

and so on. Then (as in Lemma 2.5) Ai ∩ A j = ∅, Tγi Ai ⊂ A and Tγi Ai ∩ Tγ j A j = ∅ if
i 6= j . For each m ∈ N, we set

2ε,A,m :=

{
θ ∈ P(g)

∣∣∣∣ ∑
j≤m

µ(A j ) > 0.4µ(A)
}
.

We note that for each j > 0, the map P(g) 3 θ 7→ µ(A j ) ∈ R is lower semicontinuous.
Indeed, this map is (up to a multiplicative constant) the indicator function of the subset
{θ | dist(γ j , exp(θ)) < ε}which is open because (3.4) is continuous. It follows that2ε,A,m
is an open subset in P(g). Fix a countable family D of subsets of finite positive measure
in X such that D is dense in B. We claim that

R(T )=
⋂

D∈D

∞⋂
l=1

∞⋃
m=1

21/ l,D,m . (3.5)
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Indeed, if T is recurrent along a line θ ∈ P(g), then, for each ε > 0 and each subset A
of positive measure, µ(

⊔
j A j )≥ 0.5µ(A) (as in Lemma 2.5). We then obtain that there

exists m > 0 with µ(
⊔m

j=1 Ai ) > 0.4µ(A). Hence θ ∈2ε,A,m . Now let A run D and let ε
run {1/ l | l ∈ N}. Then θ belongs to the right-hand side of (3.5).

Conversely, take θ from the right-hand side of (3.5). Let A be a subset of X of positive
measure. Then there is D ∈D such that µ(A ∩ D) > 0.999µ(D). Take l ∈ N. Select
m > 0 such that θ ∈21/ l,D,m . Then

µ

(⊔
j≤m

D j

)
> 0.4µ(D) and hence µ

(⊔
j≤m

Tγ j D j

)
> 0.4µ(D).

Therefore there is j < d with µ(Tγ j A ∩ A) > 0 and (because θ ∈21/ l,D,m) dist(γ j ,

exp(θ)) < 1/m.
(B) To show that Ri(T ) is Gδ we first denote by τ a metric on Aut(X, µ) compatible

with the weak topology. Now it suffices to note that

Ri(T )=
∞⋂

k=1

∞⋂
N=1

⋃
{n>N |τ(Tγn ,Id)<1/k}

{θ ∈ P(g) | dist(γn, exp(θ)) < 1/k}

and use (3.4). �

4. (C, F)-construction and directional recurrence of rank-one actions
We first recall a (C, F)-construction of group actions (see [Da1] for a detailed exposition
and various applications).

Let (Cn)n>0 and (Fn)n≥0 be two sequences of finite subsets in 0 such that the following
conditions hold:
(I) F0 = {1}, 1 ∈ Cn and #Cn > 1 for all n;
(II) FnCn+1 ⊂ Fn+1 for all n;
(III) Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1 and n; and
(IV) γ FnCn+1Cn+2 · · · Cm ⊂ Fm+1 eventually in m for each γ ∈ 0 and every n.
Then the infinite product space Xn := Fn × Cn+1 × Cn+1 × · · · is a (compact) Cantor set.
It follows from (II) and (III) that the map

Xn 3 ( fn, cn+1, cn+2, cn+3, . . . ) 7→ ( fncn+1, cn+2, cn+3, . . . ) ∈ Xn+1

is a continuous embedding. Denote by X the (topological) inductive limit of the sequence
X1 ⊂ X2 ⊂ · · · . Then X is a locally compact Cantor set. For a subset A ⊂ Fn , we let
[A]n := {x = ( fn, cn+1, . . . ) ∈ Xn | fn ∈ A}. Then [A]n is a compact-open subset of X .
We call it an n-cylinder. The family of all cylinders (i.e. the family of all compact-
open subsets of X ) is a base of the topology in X . Given γ ∈ 0 and x ∈ X , in view
of (II) and (IV), there is n such that x = ( fn, cn+1, . . .) ∈ Xn and γ fn ∈ Fn . Then we
let Tγ x := (γ fn, cn+1, . . .) ∈ Xn ⊂ X . It is standard to verify that Tγ is a well defined
homeomorphism of X . Moreover, Tγ Tγ ′ = Tγ γ ′ for all γ, γ ′ ∈ 0: i.e. T := (Tγ )γ∈0
is a continuous action of 0 on X . It is called the (C, F)-action of 0 associated with
(Cn, Fn−1)n>0 (see [Da1, Da3]). This action is free and minimal. There is a unique (up to
scaling) T -invariant σ -finite Borel measure µ on X . It is easy to compute that

µ([A]n)=
#A

#C1 · · · #Cn
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for all subsets A ⊂ Fn , n > 0, provided that µ(X0)= 1. We note that µ(X)=∞ if and
only if

lim
n→∞

#Fn

#C1 · · · #Cn
=∞. (4.1)

Of course, (X, µ, T ) is an ergodic conservative dynamical system. It is of funny rank one
(see [Da1] and [Da3] for the definition). Conversely, every funny rank-one free system
appears this way: i.e. it is isomorphic to a (C, F)-system for an appropriately chosen
sequence (Cn, Fn−1)n≥1. We state, without proof, a lemma from [Da3].

LEMMA 4.1. Let A be a finite subset Fn and let g ∈ G. Then [A]n ∩ Tg[A]n 6= ∅ if and
only if g ∈

⋃
m>n ACn+1 · · · CmC−1

m · · · C
−1
n+1 A−1. Furthermore, if we let

N g,A
m := {(a, cn+1, . . . , cm) ∈ A × Cn+1 × · · · × Cm | gacn+1 · · · cm ∈ ACn+1 · · · Cm},

then µ([A]n ∩ Tg[A]n)= limm→∞ (#N g,A
m /#C1 · · · #Cm).

To state the next assertion we need more notation. Denote the natural projection by
π : g\{0} → P(g). Let κ be a metric on P(g) compatible with the topology. Given two
sequences (An)

∞

n=1 and (Bn)
∞

n=1 of finite subsets in G, we write An � Bn as n→∞ if

lim
n→∞

max
a∈An ,b∈Bn

κ(π(log(ab), π(log(a))= 0.

PROPOSITION 4.2. Let T = (Tγ )γ∈0 be a (C, F)-action of 0 associated with a sequence
(Cn, Fn−1)

∞

n=1 satisfying (I)–(IV). Then

(i) R(T )⊂
⋂
γ∈0 γ · (

⋂
∞

n=1
⋃

m≥n π(log(Cn · · · CmC−1
m · · · C−1

n \{1}))).
(ii) If, moreover, the group generated by all C j , j > 0, is commutative and C j\{1} �

C1 · · · C j−1 as j→∞, then

R(T )⊂
⋂
γ∈0

γ ·

( ∞⋂
n=1

⋃
m≥n

π(log(CmC−1
m \{1}))

)
.

(iii) If, in addition, there is c j ∈ 0 such that C j = {1, c j } for each j > 0, then

R(T )⊂
⋂
γ∈0

γ ·

( ∞⋂
n=1

{π(log cm) | m ≥ n}
)
.

Proof. (i) Let θ ∈R(T ). Then for each n > 0, there is a sequence (γm)
∞

m=1 of elements
of 0 such that γm 6= 1 and µ(Tγm [1]n ∩ [1]n) > 0 for each m and dist(γm, exp(θ))→ 0 as
m→∞. Hence we deduce from Lemma 4.1 that

inf
{

dist(γ, exp(θ)) | γ ∈
⋃
m>n

Cn+1 · · · CmC−1
m · · · C

−1
n+1\{1}

}
= 0.

This yields that θ ∈ π(log(
⋃

m>n Cn+1 · · · CmC−1
m · · · C−1

n+1\{1})). Therefore

R(T )⊂
⋂
n≥1

⋃
m>n

π(log(Cn+1 · · · CmC−1
m · · · C−1

n+1\{1})).

Since R(T ) is invariant under 0, in view of Remark 2.4(ii), the claim (i) follows.
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(ii) Denote by A the smallest closed Lie subgroup of G containing all C j , j > 0. Since
A is Abelian, the restriction of log to A is a group homomorphism. Hence the condition
C j\{1} � C1 · · · C j−1 as j→∞ implies C j C−1

j \{1} � C1C−1
1 · · · C j−1C−1

j−1 as
j→∞. Now (ii) easily follows from (i).

(iii) It suffices to note that CmC−1
m \{1} = {cm, c−1

m } and π(log cm)= π(log c−1
m ). �

5. Directional recurrence sets for actions of Abelian lattices
In this section we consider the case of Abelian G in more detail. Our purpose here is
to realize various Gδ-subsets of P(g) as R(T ) for rank-one actions T of G. Since G is
simply connected, there is d > 0 such that G = Rd . Hence g= Rd and the maps exp and
log are the identities. Replacing 0 with an automorphic lattice we may assume, without
loss of generality, that 0 = Zd . In the subsequent work, we assume that d > 1 (the case
d = 1 is trivial). By dist(· , ·) we denote the usual distance between a point and a closed
subset of Rd . We also note that ER(T )=R(T ) for each measure-preserving action T
of 0. We now restate Proposition 4.2 for the Abelian case.

PROPOSITION 5.1. Let T = (Tγ )γ∈Zd be a (C, F)-action of Zd associated with a
sequence (Cn, Fn−1)

∞

n=1 satisfying (I)–(IV). Then

(i) R(T )⊂
⋂
∞

n=1 π(
∑

j≥n(C j − C j )\{0}).
(ii) If, moreover, C j\{0} � C1 ∪ · · · ∪ C j−1 as j→∞, then

R(T )⊂
∞⋂

n=1

⋃
m≥n

π((Cm − Cm)\{0}).

(iii) In, in addition, there is c j ∈ Zd such that C j = {0, c j } for each j > 0, then

R(T )⊂
∞⋂

n=1

{π(cm) | m ≥ n}.

The following two theorems are the main results of this section.

THEOREM 5.2. Let 1 be a Gδ-subset of P(Rd) and let D be a countable subset of 1.
Then there is a rank-one free infinite measure-preserving action T of Zd such that D ⊂
R(T )⊂1. In particular, each countable Gδ-subset (e.g. each countable compact) of
P(Rd) is realizable as R(T ) for some rank-one free action T of Zd .

Proof. First, suppose that 1 6= ∅. Then, without loss of generality, we may think that
D 6= ∅. Let (δn)

∞

n=1 be a sequence such that δn ∈ D, for each n, and every element of D
occurs in this sequence an infinite number of times. Let (εn)

∞

n=1 be a decreasing sequence
of positive reals with limn→∞ εn = 0. There exists an increasing sequence L1 ⊂ L2 ⊂

· · · of closed subsets in P(Rd) such that P(Rd)\1=
⋃

j≥1 L j . Let L+1 ⊂ L+2 ⊂ · · · be

a sequence of open subsets in P(Rd) such that L+j ⊃ L j and δ j 6∈ L+j , for each j , and⋃
j≥1 L+j 6= P(Rd). We will construct, inductively, two sequences (Fn)

∞

n=0 and (Cn)
∞

n=1
satisfying (I)–(IV) and (4.1). We note, in advance, that, in our construction, #Cn = 2 and
Fn is a symmetric cube in Zd : i.e. there is an ∈ N such that

Fn = {(i1, . . . , id) | −an < ij ≤ an, j = 1, . . . , d},
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for each n. Suppose that we have defined the subsets C1, F1, . . . , Cn−1, Fn−1. Our
purpose is to construct Cn and Fn . Choose cn ∈ Zd such that (cn + Fn−1) ∩ Fn−1 = ∅,
dist(cn, δn) < εn and

max
f ∈Fn−1

dist(cn, cn + f ) < εn, (5.1)

π(cn) 6∈ L+n . (5.2)

For that use the fact that δn 6∈ L+n . We now let Cn := {0, cn} and define Fn to be a huge
symmetric cube in Zd that contains Fn−1 + Cn . Continuing this construction procedure
an infinite number of times we obtain infinite sequences (Fn)

∞

n=0 and (Cn)
∞

n=1. It is easy
to see that (I)–(IV) and (4.1) are all satisfied. Let T = (Tγ )γ∈Zd denote the associated
(C, F)-action. It is free and of rank one. Let (X, µ) be the space of this action.

We first show that D ⊂R(T ). Take δ ∈ D, ε > 0 and a cylinder B ⊂ X . Then there are
an infinite number of n > 0 such that δ = δn and hence dist(cn, δ) < εn < ε. If n is large
enough, B = [Bn−1]n−1 for some subset Bn−1 ⊂ Fn−1. Since [Bn−1]n ⊂ [Bn−1]n−1 and
Tcn [Bn−1]n = [cn + Bn−1]n ⊂ [Bn−1]n−1 with µ([Bn−1]n)= 0.5µ([Bn−1]n−1),

µ(Tcn B ∩ B)≥ µ(Tcn [Bn−1]n ∩ [B]n−1)= µ([Bn−1 + cn]n)= 0.5µ(B).

Since each subset of finite measure in X can be approximated with a cylinder up to an
arbitrary positive real, we deduce that δ ∈R(T ).

We now show that R(T )⊂1. It follows from (5.1) that {cn} � Fn−1 as n→∞.
Hence, by Proposition 5.1(iii), R(T )⊂

⋂
∞

n=1 {π(cm) | m ≥ n}. Applying (5.2), we obtain
that π(cm) 6∈ L+m ⊃ L+n ⊃ Ln, for each m ≥ n. Hence R(T ) ∩ Ln = ∅ for each n, which
yields R(T )⊂1.

It remains to consider the case where 1= ∅. Fix θ ∈ P(Rd). Suppose that we have
defined the subsets C1, F1, . . . , Cn−1, Fn−1. Choose cn ∈ Zd such that (cn + Fn−1) ∩

Fn−1 = ∅, (5.1) is satisfied,

π(cn) is up to εn close to θ (in the metric on P(Rd)) and (5.3)

min
f ∈Fn−1−Fn−1

dist(cn + f, θ) > 10. (5.4)

We now let Cn := {0, cn} and define Fn to be a huge symmetric cube in Zd that contains
Fn−1 + Cn . Continuing an infinite number of times, we obtain infinite sequences (Fn)

∞

n=0
and (Cn)

∞

n=1. It is easy to see that (I)–(IV) and (4.1) are all satisfied. Let T = (Tγ )γ∈Zd

denote the associated (C, F)-action. It follows from Proposition 5.1(iii), (5.1) and (5.3)
that R(T )⊂ {θ}. If T were recurrent along θ , then there is γ ∈ Zd such that γ 6= 0,
dist(γ, θ) < 0.1 and µ([0]n ∩ Tγ [0]n) > 0. It follows, from Lemma 4.1, that there is l > n
such that γ ∈ Fl−1 − Fl−1 + cl . This contradicts (5.4). Thus we obtain that R(T )= ∅. �

THEOREM 5.3. There is a rank-one free infinite measure-preserving action T of Zd such
that R(T )= P(Rd).

Proof. Given t ∈ N and N > 0, we let

Kt,N := {(i1, . . . , id) ∈ Zd
| |ij |< N and t divides ij , j = 1, . . . , d}.
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Then, for each ε > 0 and each integer t > 0, there is N > 0 such that

sup
δ∈P(Rm )

min
0 6=γ∈Kt,N

dist(γ, δ) < ε. (5.5)

Fix a sequence of positive reals εn , n ∈ N, decreasing to zero. We will construct,
inductively, the sequences (Fn−1)n>0 and (Cn)n>0 that satisfy (I)–(IV) and (4.1). As
usual, F0 = {0}. Suppose we have defined (F j , C j )

n
j=1. Suppose that Fn is a symmetric

cube. Denote by tn the length of an edge of this cube. We now construct Cn+1 and Fn+1.
By (5.5), there is Nn such that min0 6=γ∈K3tn ,Nn

dist(γ, δ) < εn for each δ ∈ P(Rd). Let
Cn+1 :=K3tn ,Mn , where Mn is an integer large enough so that

#{γ ∈K3tn ,Mn | γ +K3tn ,Nn ⊂K3tn ,Mn}> 0.5#K3tn ,Mn . (5.6)

Now let Fn+1 be a huge symmetric cube in Zd such that Fn+1 ⊃ Fn + Cn+1. Continuing
this construction process an infinite number of times, we define the infinite sequences
(Fn)n≥0 and (Cn)n≥1, as desired. Let T be the (C, F)-action of Zd associated with these
sequences. It is free and of rank one. Denote by (X, µ) the space of this action. We claim
that R(T )= P(Rd). Indeed, take ε > 0, δ ∈ P(Rd) and a cylinder B ⊂ X . Then there
is n > 0 and a subset Bn ⊂ Fn such that B = [Bn]n and εn < ε. There is γ ∈K3tn ,Nn\{0}
such that dist(γ, δ) < εn . By (5.6), #(Cn+1 ∩ (Cn+1 − γ ))≥ 0.5#Cn+1. Therefore

µ(Tγ B ∩ B)≥ µ(Tγ [Bn + (Cn+1 ∩ (Cn+1 − γ ))]n+1 ∩ [Bn]n)

= µ([Bn + (Cn+1 ∩ (Cn+1 + γ ))]n+1)

≥ 0.5µ(B).

The standard approximation argument implies that T is recurrent along δ. �

Remark 5.4.
(i) If we choose Mm in the above construction large enough so that the inequality

#{γ ∈K3tn ,Mn | γ +K3tn ,Nn ⊂K3tn ,Mn }> (1− n−1)#K3tn ,Mn

holds in place of (5.6), then the corresponding (C, F)-action T will possess the
stronger property Ri(T )= P(Rd).

(ii) In a similar way, the statement of Theorem 5.2 remains true if we replace R(T ) with
Ri(T ).

6. The generic Zd -action is recurrent in every direction
Let (X, µ) be a σ -finite non-atomic standard measure space. We recall that the group of all
µ-preserving invertible transformations of X is denoted by Aut(X, µ). It is endowed with
the weak topology under which it is a Polish space. For a nilpotent Lie group G, we denote
by AG

µ the set of all µ-preserving actions of G on (X, µ). We consider every element A ∈
AG
µ as a continuous homomorphism g 7→ Ag from G to Aut(X, µ). The group Aut(X, µ)

acts on AG
µ by conjugation: i.e. (S · A)g := S Ag S−1 for all g ∈ G, S ∈ Aut(X, µ) and

A ∈AG
µ . We endow AG

µ with the compact-open topology: i.e. the topology of uniform
convergence on the compact subsets of G.

The following lemma is well known. We state it without proof.
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LEMMA 6.1. AG
µ is a Polish space. The action of Aut(X, µ) on this space is continuous.

Let S1 be the unit sphere in g and let K := exp(S1).

LEMMA 6.2. Let µ(X)= 1. Then the subset

Z := {A ∈AG
µ | h(Ag)= 0 for each g ∈ K }

is an invariant Gδ in AG
µ .

Proof. Denote by P the set of all finite partitions of X . Fix a countable subset P0 ⊂ P
which is dense in P in the natural topology. For each P ∈ P0 and n > 0, the map

AG
µ × K 3 (A, g) 7→ H

(
P
∣∣∣∣ n∨

j=1

A− j
g P

)
∈ R

is continuous. Therefore the map

m P,n :AG
µ 3 A 7→ m P,n(A) :=max

g∈K
H
(

P
∣∣∣∣ n∨

j=1

A− j
g P

)
∈ R

is well defined and continuous. Hence the subset

Z ′ :=
⋂

P∈P0

∞⋂
r=1

∞⋂
N=1

⋃
l>N

{A ∈AG
µ | m P,l(A) < 1/r}

is a Gδ in AG
µ . We now show that Z ′ = Z . It is easy to see that Z ′ ⊂ Z because

h(Ag)= supP∈P0
H(P |

∨
∞

j=1 A− j
g P). Conversely, let A ∈ Z . Fix P ∈ P0, r > 1 and

N > 0. Then for each g ∈ K , there is lg > N such that H(P |
∨lg

j=1 A− j
g P) < 1/r . Of

course, this inequality holds in a neighborhood of g in G. Since K is compact and the map
N 3 n 7→ H(P |

∨n
j=1 A− j

g P) decreases, there is l > N such that H(P |
∨l

j=1 A− j
g P) <

1/r for all g ∈ K : i.e. m P,l(A) < 1/r . This means that A ∈ Z ′. It is obvious that Z is
Aut(X, µ)-invariant. �

Let 0 be a co-compact lattice in G. Fix a a cross section s : G/0→ G of the natural
projection G→ G/0 such that the subset s(G/0) is relatively compact in G. Denote by
hs the corresponding one-cocycle. Given a 0-action T on (X, µ), we construct (via hs) the
induced G-action T̃ on the space (G/0 × X, λ× µ). In the following lemma we show
that the ‘inducing’ functor is continuous.

LEMMA 6.3. The map A0
µ 3 T 7→ T̃ ∈AG

λG/0×µ
is continuous.

Idea of the proof. It is enough to note that, for each compact subset K ⊂ G, the set F :=
{hs(g, y) | g ∈ K , y ∈ G/0} ⊂ 0 is finite. Therefore, given two 0-actions T and T ′, if the
transformation Tγ is ‘close’ to T ′γ for each γ ∈ F , then the transformation T̃g is ‘close’ to
T̃ ′g uniformly on K . �

From now on let µ(X)=∞. Denote by (X•, µ•) the Poisson suspension of (X, µ).
Given R ∈ Aut(X, µ), let R• stand for the Poisson suspension of R (see [Ro, Ja-Ru]). We
note that Aut(X•, µ•) is a topological Aut(X, µ)-module.
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LEMMA 6.4. The map Aut(X, µ) 3 R 7→ R• ∈ Aut(X•, µ•) is a continuous homomor-
phism.

Idea of the proof. Let UR and UR• denote the Koopman unitary operators generated by
R and R•, respectively. Then it is enough to note that UR• is unitarily equivalent in a
canonical way to the exponent

⊕
n≥0 U�n

R (see [Ne, Ro]) and the map UR 7→U�n
R is

continuous in the weak operator topology for each n. �

LEMMA 6.5. Let a transformation R ∈ Aut(X, µ) be non-conservative. If there is an
ergodic countable transformation subgroup N ⊂ Aut(X, µ) such that

{S Rn x | n ∈ Z} = {Rn Sx | n ∈ Z} at almost every x ∈ X for each S ∈ N , (6.1)

then R• is a Bernoulli transformation of infinite entropy.

Proof. We consider Hopf decomposition of X : i.e. a partition of X into two R-invariant
subsets Xd and Xc such that the restriction of R to Xd is totally dissipative and the
restriction of R to Xd is conservative (see [Aa]). By the hypothesis, µ(Xd) > 0. It
follows, from (6.1), that Xd is invariant under N . Since N is ergodic, µ(Xc)= 0: i.e.
R is totally dissipative so there is a subset W ⊂ X such that X =

⋃
n∈Z RnW (mod 0) and

RnW ∩ T m W = ∅ if n 6= m. Therefore R• is Bernoulli [Ro]. Since µ �W is not purely
atomic, h(R•)=∞ [Ro]. �

We now state the main result of this section.

THEOREM 6.6. The subset V of Zd -actions T on (X, µ) with R(T )= P(Rd) is residual
in AZd

µ .

Proof. Let λ denote Haar measure on the torus Rd/Zd . It follows, from Lemmata 5.3 and
5.4, that the mapping

AZd

µ 3 T 7→ T̃ • ∈ARd

λ×µ

is continuous. Let Z := {A ∈ARd

(λ×µ)• | h(Ag)= 0 for each g ∈ Rd
}. By Lemma 6.2, Z is

a Gδ in ARd

µ . Hence the subset W := {T ∈AZd

µ | T̃
•
∈ Z} is a Gδ in AZd

µ . Of course, W
is Aut(X, µ)-invariant. It is well known that the subset E := {T ∈AZd

µ | T is ergodic} is

an Aut(X, µ)-invariant Gδ in AZd

µ . Hence the intersection W ∩ E is also an Aut(X, µ)-

invariant Gδ in AZd

µ . Take an action T ∈AZd
∩ E and a line θ ∈ P(Rd). If θ 6∈R(T ),

then θ 6∈R(T̃ ). Since T is ergodic, T̃ is also ergodic. Hence the Qd -action (T̃q)q∈Qd is
also ergodic. Then, by Lemma 6.5, h(T̃ •r )=∞ for each r ∈ θ , r 6= 0. Therefore T 6∈W .
This yields that W ∩ E ⊂ V . It remains to show that W ∩ E is dense in AZd

µ . Let T be an
ergodic free action of Zd such that Ri(T )= P(Rd) (see Remark 5.4(i) and Theorem 5.3).
By Theorem 3.1, Ri(T̃ )= P(Rd). Then, in view of Lemma 6.4, for each g ∈ Rd , the
transformation T̃ •g is rigid. Hence h(T̃ •g )= 0. Thus T ∈W ∩ E . It follows, from the
Rokhlin lemma for the infinite measure-preserving free Zd -actions, that the conjugacy
class of T (i.e. the Aut(X, µ)-orbit of T ) is dense in AZd

µ (see, e.g., [DaSi]). Of course,
the conjugacy class of T is a subset of W ∩ E . �
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Using some ideas from the proof of the above theorem, we can prove the following
proposition.

PROPOSITION 6.7. There is a Poisson action† V of Rd of zero entropy such that, for each
0 6= g ∈ Rm , the transformation Vg is Bernoullian and of infinite entropy.

Proof. By Theorem 5.2, there exists rank-one (by cubes) infinite measure-preserving
actions T of Zd such that R(T )= ∅. Then T̃ • is a Poisson (finite measure-preserving)
action of Rd . We note that h(T̃ •)= h(T̃ •� Zd)= h((T̃ � Zd)•). We note T̃ � Zd

= I × T ,
where I denotes the trivial action of Zd on the torus (Rd/Zd , λ). It follows, from [Ja-Ru],
that h((I × T )•)= h(T •). Since T is of rank one, h(T •)= 0, by [Ja-Ru]‡. Thus we
obtain that h(T̃ •)= 0. On the other hand, arguing as in the proof of Theorem 6.6, we
deduce, from Theorem 3.1 and Lemma 6.5, that, for each g ∈ Rd

\{0}, the transformation
T̃ •g is Bernoulli and of infinite entropy. �

In a similar way, using Remark 5.4(ii), we can show the following more general
statement.

PROPOSITION 6.8. Let 1 be a Gδ-subset of P(Rd) and let D be a countable subset
of 1. Then there is a Poisson action V of Rd of zero entropy such that, for each non-
zero g 6∈

⋃
θ∈1 θ , the transformation Vg is Bernoulli and of infinite entropy and, for each

g ∈
⋃
θ∈D θ , the transformation Vg is rigid (and hence of zero entropy).

7. Directional recurrence for actions of the Heisenberg group
Consider now the three-dimensional real Heisenberg group H3(R), which is perhaps the
simplest example of a non-commutative simply connected nilpotent Lie group. We recall
that

H3(R)=


1 t1 t3

0 1 t2
0 0 1

∣∣∣∣∣∣ t1, t2, t3 ∈ R

 .
We introduce the notation

a(t) :=

1 t 0
0 1 0
0 0 1

 , b(t) :=

1 0 0
0 1 t
0 0 1

 , c(t) :=

1 0 t
0 1 0
0 0 1

 .
Then the maps R 3 t 7→ a(t) ∈ H3(R), R 3 t 7→ b(t) ∈ H3(R), R 3 t 7→ c(t) ∈ H3(R) are
continuous homomorphisms, the subset {c(t) | t ∈ R} is the center of H3(R), a(t1)b(t2)=
b(t2)a(t1)c(t1t2) for all t1, t2 ∈ R and1 t1 t3

0 1 t2
0 0 1

= c(t3)b(t2)a(t1) for all t1, t2, t3 ∈ R.

† We recall that a probability-preserving action of a group G is called Poisson if it is isomorphic to the Poisson
suspension of an infinite measure-preserving action of G.
‡ This fact was proved in [Ja-Ru] only for d = 1. However, in the general case, the proof is similar.
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We also note that the Lie algebra of H3(R) is

h3(R) :=


0 t1 t3

0 0 t2
0 0 0

∣∣∣∣∣∣ α, β, γ ∈ R
 .

The exponential map exp : h3(R)→ H3(R) is given by the formula

exp

0 t1 t3
0 0 t2
0 0 0

=
1 t1 t3 +

t1t2
2

0 1 t2
0 0 1

 .
The adjoint action of H3(R) on h3(R) is given by the formula1 x z

0 1 y
0 0 1

 ·
0 α γ

0 0 β

0 0 0

=
0 α γ + xβ − yα

0 0 β

0 0 0

 .
We also give an example of a right-invariant metric d on H3(R): that is,

d(c(t3)b(t2)a(t1), c(t ′3)b(t
′

2)a(t
′

1)) := |t1 − t ′1| + |t2 − t ′2| + |t3 − t ′3 + t ′2(t
′

1 − t1)|.

Let 0 be a lattice in H3(R). It is well known (see, e.g., [DaLe]) that there is k > 0 such
that 0 is automorphic to the lattice

{c(n3/k)b(n2)a(n1) | n1, n2, n3 ∈ Z}.

From now on, we will assume that k = 1 and hence

0 = H3(Z) := {c(n3)b(n2)a(n1) | n1, n2, n3 ∈ Z}.

Let Fn := {c( j3)b( j2)a( j1) | | j1|< Ln, | j2|< Ln, | j3|< Mn}, where Ln and Mn are
positive integers. It is easy to verify that if Ln→∞, Mn→∞ and Ln/Mn→ 0 as
n→∞, then (Fn)≥1 is a Følner sequence in H3(Z).

In the following three theorems, we construct rank-one actions of H3(Z) with various
sets of recurrence and rigidity: empty, countable and uncountable.

THEOREM 7.1. There is a rank-one free infinite measure-preserving action T of H3(Z)
such that R(T )= ∅.

Proof. Let Cn := {1, a(tn)}, where (tn)n∈N is a sequence of integers that grows fast, and
let (Fn)n≥0 be a Følner sequence in H3(R) such that (I)–(IV) and (4.1) are satisfied and,
in addition, Cn\{1} � C1 · · · Cn−1 as n→∞. Denote by T the (C, F)-action of H3(Z)
associated with (Cn, Fn−1)n∈N. Let θ ∈ P(h3(R)) stand for the line in h3(R) that passes

through the vector
(0 1 0

0 0 0
0 0 0

)
. Since π(log a(tn))= θ , we deduce, from Proposition 4.2(iii),

that

R(T )⊂
⋂
γ∈0

γ ·

( ∞⋂
n=1

{π(log a(tm)) | m ≥ n}
)
⊂

⋂
γ∈0

{γ · θ} = ∅. �
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Given t ∈ R, let θt ∈ P(h3(R)) be the line in h3(R) that passes through the vector( 0 1 t
0 0 0
0 0 0

)
. Then exp(θt ) 3 c(t)a(1). We also denote by θ∞ the line in h3(R) that passes

through the vector
( 0 0 1

0 0 0
0 0 0

)
. Of course, the set {θl | l ∈ Z} is the H3(Z)-orbit {γ · θ0 | γ ∈

H3(Z} of θ0. The point θ∞ is the only limit point of this orbit in P(h3(R)). In a similar
way, the set {θt | t ∈ R} is the H3(R)-orbit of θ0. The closure of this orbit is the union of
this orbit with the limit point θ∞.

THEOREM 7.2. There is a rank-one free infinite measure-preserving action T of H3(Z)
such that R(T )= {θl | l ∈ Z} ∪ {θ∞}. Therefore ER(T )= {θ∞} and hence R(T ) 6=
ER(T ).

Proof. We let

Fn := {c( j3)b( j2)a( j1) | | j1|< Ln, | j2|< Ln, | j3|< Mn} and

Cn := {c(ikn)a( jkn) | j = 0, 1 and |i | ≤ In},

where (Ln)n≥1, (Mn)n≥1, (kn)n≥1 and (In)n≥1 are sequences of integers chosen in such a
way such that:
(•) (I)–(IV) from §4 and (4.1) are satisfied;
(∗) Cn\{1} � C1 · · · Cn−1 as n→∞;
(�) Ln→∞, Mn→∞, Ln/Mn→ 0; and
(◦) In→+∞, Ln−1/In→ 0.
Denote by T the (C, F)-action of H3(Z) associated with (Cn, Fn−1)n∈N. It is well defined
in view of (•). Moreover, (Fn)n≥1 is a Følner sequence in H3(Z) in view of (�). It is
standard to verify that⋃

m>n

π(log(CmC−1
m \{1}))= {θl | l ∈ Z} ∪ {θ∞}

for each n > 0. Hence, by Proposition 4.2(ii), R(T )⊂ {θn | n ∈ Z} ∪ {θ∞}. In view of
Remark 2.4(ii), to prove the converse inclusion it suffices to show that θ1, θ∞ ∈R(T ).
For n ≥ 1, take a subset D ⊂ Fn−1. It follows, from the definition of Fn−1, that, for each
γ ∈ D, there is j ∈ Z such that | j |< Ln−1 and a(kn)γ a(−kn)= γ c( jkn). Let

C ′n := {w ∈ Cn | c( jkn)a(kn)w ∈ Cn whenever | j |< Ln−1}. (7.1)

Then C ′n = {c(ikn) | |i |< In, |i ± Ln−1|< In}. Hence #C ′n/#Cn→ 1/2 as n→∞, in
view of (◦), and hence

max
D⊂Fn−1

|µ([D]n−1)/µ([DC ′n]n)− 1/2| → 0 (7.2)

as n→∞. On the other hand, in view of (7.1), we have

Ta(kn)[DC ′n]n =
⊔
γ∈D

Ta(kn)[γC ′n]n =
⊔
γ∈D

[a(kn)γ a(−kn)a(kn)C ′n]n ⊂
⊔
γ∈D

[γCn]n .

Thus Ta(kn)[DC ′n]n ⊂ [D]n−1. Since a(kn) ∈ exp(θ1) and (7.2) holds, it follows that T is
recurrent along θ1. To prove that θ∞ ∈R(T ), we let

C ′′n := {w ∈ Cn | c(kn)w ∈ Cn}.

Then #C ′′n/#Cn→ 1 and hence maxD⊂Fn−1 |µ([D]n−1)/µ([DC ′n]n)− 1| → 0 as n→∞.
Moreover, Tc(kn)[DC ′′n ]n ⊂ [DCn]n = [D]n−1. Hence T is recurrent along θ∞. �
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THEOREM 7.3. There is a rank-one free infinite measure-preserving action T of H3(Z)
such that R(T )=Ri(T )= {θt | t ∈ R} ∪ {θ∞} = ER(T )= ERi(T ).

Proof. Let

Fn := {c( j3)b( j2)a( j1) | | j1|< Ln, | j2|< Ln, | j3|< Mn},

Cn := {c( jkn)a(ikn) | | j | ≤ ln Jn, |i | ≤ ln In},

C0
n := {c( jkn)a(ikn) | | j | ≤ ln, |i | ≤ ln},

where (Ln)n≥1, (Mn)n≥1, (kn)n≥1, (In)n≥1, (Jn)n≥1 and (ln)n≥1 are sequences of integers
such that (•), (∗), (�) hold,
(M) supt∈R∪{∞} min1 6=γ∈C0

n
dist(γ, θt ) < 1/n and

(N) #({w ∈ Cn |
⋃

d∈Fn−1

⋃
c∈C0

n
d−1cdw ⊂ Cn}) > (1− 1/n)#Cn ,

for each n ∈ N. Denote by T the (C, F)-action of H3(Z) associated with (Cn, Fn−1)n∈N.
It is standard to verify that⋃

m>n

π(log(CmC−1
m \{1}))= {θt | t ∈ R} ∪ {θ∞}.

Hence, by Proposition 4.2(ii), R(T )⊂ {θt | t ∈ R} ∪ {θ∞}. To prove the converse
inclusion, we take θt for some t ∈ R ∪ {∞}. By (M), there is γ ∈ C0

n\{1} such that
dist(γ, θt ) < 1/n. Let

C ′n :=
{
w ∈ Cn

∣∣∣∣ ⋃
d∈Fn−1

d−1γ dwC0
n ⊂ Cn

}
.

Then #C ′n/#Cn > 1− 1/n, in view of (N), and hence, for each subset D ⊂ Fn−1, we have
µ([D]n−1\[DC ′n]n) < µ([D]n)/n. On the other hand,

Tγ [DC ′n]n =
⊔
d∈D

Tγ [dC ′n]n =
⊔
d∈D

[dd−1γ dC ′n]n ⊂
⊔
d∈D

[dCn]n = [D]n−1.

It follows that T is rigid along θt . Thus we have shown that {θt | t ∈ R} ∪ {θ∞} ⊂Ri(T ).
�

8. Some open problems and concluding remarks
(1) Which Gδ-subsets of P(g) are realizable as R(T ) or Ri(T ) for an ergodic infinite

measure-preserving action T of 0? In particular, let θ ∈ P(g). Is the subset P(g)\{θ}
is realizable? In the case where G = R2 and 0 = Z2, P(g) is homeomorphic to the
circle. Is a proper arc of this circle realizable?

(2) Suppose that a subset of P(g) is realizable as R(T ) or Ri(T ). Can we choose T in
the class of rank-one actions?

(3) In view of Theorem 3.1 and Remark 3.2, do we have R(T̃ )= ER(T ) in the non-
Abelian case?

(4) Does Corollary 3.3 extend to the non-Abelian case: i.e. does ER(T )=R(T̂ ), where
T̂ is an extension of T to a G-action on the same measure space, where T is defined?

https://doi.org/10.1017/etds.2015.127 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.127


1860 A. I. Danilenko

(5) A multiple recurrence (and even recurrence) along directions can be defined in the
following way. Let T be a measure-preserving action of 0 on a σ -finite measure
space (X, µ) and let p ∈ N. We call T p-recurrent along a line θ ∈ P(g) if, for each
ε > 0 and every subset A ⊂ X of positive measure, there is an element γ ∈ 0\{10}
and an element g ∈ exp(θ) such that dist(γ, g) < ε and µ(A ∩ Tγ A ∩ · · · ∩ T p

γ A) >
0. Denote by Rp(T ) the set of all θ ∈ P(g) such that T is p-recurrent along θ . Then
R(T )=R1(T )⊃R2(T )⊃ · · · and

⋂
p≥1 Rp(T )⊃Ri(T ). We note that all these

inclusions are strict and every set Rp(T ) is a Gδ . The results obtained in this work
for R(T ) extend to Rp(T ) with similar proofs for each p.

(6) Let T be a (C, F)-action of 0 associated with a sequence (Cn, Fn−1)n≥1 satisfying
(I)–(IV) and (4.1) from §4. Given d > 0, we denote by C⊗d

n and F⊗d
n the dth

Cartesian power of Cn and Fn , respectively. Then the sequence (C⊗d
n , F⊗d

n−1)n≥1

of subsets in 0d satisfies (I)–(IV) and (4.1) from §4. It is easy to see that the
(C, F)-action T⊗d of 0d is canonically isomorphic to the dth tensor product of T :
i.e. T⊗d

(γ1,...,γd )
= Tγ1 × · · · × Tγd for all γ1, . . . , γd ∈ 0. The Lie algebra gd of Gd is

g⊗ · · · ⊗ g (d times). There is a natural shiftwise action of the permutation group
6d on gd . This action pushes down to the projective space P(gd). It is easy to see
that the sets R(T⊗d) and Ri(T⊗d) are invariant under 6d . In the case where G = R
and 0 = Z, Theorem 5.2 can be refined in the following way: given a 6d -invariant
subset 1⊂ P(Rd) and a countable 6d -invariant subset D of 1, there is a rank-one
free infinite measure-preserving action T of Z such that D ⊂R(T⊗d)⊂1. In
particular, each countable 6d -invariant Gδ-subset D of P(Rd) is realizable as
R(T⊗d) for some rank-one free action T of Z. This generalizes and refines partly†
one of the main results from the recent paper by Adams and Silva [AdSi]: for each
62-invariant subset D of rational directions, there is a rank-one action T of Z such
that D is the intersection of R(T⊗2) with the set of all rational directions in R2. We
also note that the Zd -action T , constructed in Theorem 5.3, has the form T = S⊗d

for a (C, F)-action S of Z.
(7) The theory of directional recurrence can be generalized in a natural way from infinite

measure-preserving 0-actions to non-singular 0-actions.
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