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Additive Families of Low Borel Classes
and Borel Measurable Selectors

J. Spurný and M. Zelený

Abstract. An important conjecture in the theory of Borel sets in non-separable metric spaces is

whether any point-countable Borel-additive family in a complete metric space has a σ-discrete refine-

ment. We confirm the conjecture for point-countable Π
0
3 -additive families, thus generalizing results

of R. W. Hansell and the first author. We apply this result to the existence of Borel measurable selec-

tors for multivalued mappings of low Borel complexity, thus answering in the affirmative a particular

version of a question of J. Kaniewski and R. Pol.

1 Introduction

The theory of non-separable metric spaces, as developed by A. H. Stone, R. W. Han-

sell, and others (see, e.g., [18] or [5]), very often relies upon the possibility of decom-

posing a given family of sets into countably many discrete pieces. If this is the case,

standard methods of descriptive set theory of separable spaces can be applied to get

results analogous to the separable ones. In particular, the existence of measurable se-

lectors for multivalued mappings on non-separable metric spaces often depends on

the existence of a σ-discrete decomposition of a certain kind (see [11, Section 3] or

[9, Theorem 4.1]).

A classical result of Stone, stating that any open cover of a metric space has a σ-

discrete locally finite open refinement (for the proof see [1, Theorem 4.4.1] and for

the definitions of notions not explained here see the next section), is a basic example

of a decomposition of a large family of sets into countably many discrete pieces.

The question of decomposability of a family of sets that are not necessarily open is

much more difficult and, naturally, some additional assumptions on the given family

must be imposed.

Hansell showed in [4, Theorem 2] that any Suslin-additive disjoint cover of an

absolute Suslin metric space is σ-discretely decomposable. By an improvement due

to J. Kaniewski and R. Pol (see [11, Theorem 1]), every point-finite Suslin-additive

cover of an absolute Suslin space is σ-discretely decomposable.

If the assumption of point-finiteness is weakened to point-countability, a more

appropriate notion of decomposability is the one of σ-discrete refinement (see [9,

p. 366] for the reason). By [6, Theorem 3.1(b)], under suitable set-theoretical as-

sumptions, there exists a point-countable Suslin-additive family in a Polish space
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that is not σ-discretely refinable. On the other hand, Pol showed in [13, Theorem

1.3] that any point-countable Borel-additive family of sets in an arbitrary metriz-

able space admits a σ-discrete refinement provided each member of the family is of

weight at most ℵ1. W. G. Fleissner showed in [2] (see also [3, Theorem 3N]) that un-

der an additional axiom of set theory every point-countable Suslin-additive family is

σ-discretely refinable.

Nevertheless, the central problem we are trying to solve is still wide open (see

survey papers [3, 8].)

Question 1.1 Is it provable in ZFC that every point-countable Borel-additive cover

of a complete metric space has a σ-discrete refinement?

In metrizable spaces, we use Σ
0
α and Π

0
α for the standard Borel classes of sets (see

[12, Chapter II, Section 11.A]). In particular, Σ 0
2 and Π

0
2 stand for the families of all

Fσ and all Gδ sets respectively.

Hansell answered Question 1.1 affirmatively if the family is Σ
0
2 -additive (see [9,

Theorem 3.3]). He also showed in [9, Example] that a Σ
0
2 -additive cover of a com-

plete space need not admit a σ-discrete refinement if the assumption of point-count-

ability is omitted.

Using a method different from the one used in [9], the first author obtained in

[16, Theorem 6] that a Π
0
2 -additive cover of a complete metric space has a σ-dis-

crete refinement. The method of the proof was an application of a Hurewicz-like

construction.

The aim of our paper is to show that this construction can be refined to yield

the following result further supporting the belief of [9, p. 366] that the answer to

Question 1.1 is affirmative.

Theorem 1.2 Let A be an Π
0
3 -additive family in an absolute Suslin space. If

(i) A is point-countable, or

(ii) every partial selector set for A is σ-discrete,

then A is σ-discretely refinable.

Assumption (ii) of Theorem 1.2 is rather natural, since this condition is satisfied

when one looks for measurable sections (see the proof of Theorem 6.2 or of [15,

Proposition 3.3, Theorem 4.3]).

Two important ingredients of our proof are the aforementioned [13, Theorem 1.3]

on decomposability of families consisting of sets of low weight and Fremlin’s theorem

[3, Proposition 8A] on point-countable families of meager sets in complete metric

spaces. We imitate Fremlin’s proof in Theorem 3.3 to get an analogous result for

families with σ-discrete partial selector sets.

Unfortunately, when trying to prove Theorem 1.2 for Borel sets of the second

additive class, we met obstacles that we have not been able to surmount.

As mentioned in the abstract, Theorem 1.2 is the key tool for obtaining Borel

measurable selectors for multivalued mappings of low Borel complexity. Thus we are

able to answer at least a very particular case of the problem formulated in [11, Ques-

tion 1] or in [3, 13C(f)]. The precise formulations of our results on Borel measurable

selectors are contained in Section 6.
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2 Preliminaries

By a space we always mean a nonempty metrizable topological space.

Let X be a space and A be a family of sets in X. We define properties mentioned

in the introduction and used in the sequel.

The family A is said to be discrete if every point x ∈ X has a neighbourhood meet-

ing at most one member of A. If A =
⋃

n∈ω An, such that each An is a discrete fam-

ily, A is called σ-discrete. The family A is called σ-discretely decomposable if for each

A ∈ A, there exist sets A(n), n ∈ ω, such that A =
⋃

n∈ω A(n) and {A(n) ; A ∈ A} is

a discrete family for each n ∈ ω. A family R is called a refinement of A if
⋃

R =
⋃

A

and for every R ∈ R, there exists A ∈ A with R ⊂ A. A family A is said to admit a

σ-discrete refinement if there exists a refinement of A that is σ-discrete (we also say

that A is σ-discretely refinable). If B is a family of sets in a space X, the family A is

called B-additive if
⋃

A ′ ∈ B for every A ′ ⊂ A. The family A is said to be point-

finite (respectively point-countable) if the set {A ∈ A ; x ∈ A} is finite (respectively

countable) for every x ∈ X.

Let A ′ ⊂ A. We say that a family S = ({xA})A∈A ′ is a partial selector for the

family A if xA ∈ A for every A ∈ A ′. The set {xA ; A ∈ A ′} is called the set of the

partial selector S and such sets are said to be partial selector sets for A.

For any F ⊂ X, we denote by A↾F the family {A∩F ; A ∈ A}. The following aux-

iliary notion will be helpful later on. We say that A is nowhere σ-discretely refinable

if
⋃

A 6= ∅ and A↾U is not σ-discretely refinable for any open U ⊂ X intersecting
⋃

A.

A space X is absolute Suslin if X is homeomorphic to a Suslin subset of a com-

plete metric space. It follows from [10, Theorem 1.1] and [5, Theorem 4.1] that X is

an absolute Suslin space if and only if there exists a complete metric space Y and a

continuous mapping f of Y onto X such that f preserves σ-discretely decomposable

families.

We recall that A ⊂ X has the Baire property in X if A = B∪N, where B is Π
0
2 in X

and N is meager in X. As it is well known, any Suslin set has the Baire property (see,

e.g., [14, Corollary 2.9.4]).

We denote by 2<ω the space of finite sequences of digits 0 and 1. Let |s| be the

length of s. We denote by ∅ the empty sequence and adopt the convention that the

length of the empty sequence is 0. For s ∈ 2<ω and i ∈ {0, 1}, we write s∧i for the

sequence (s0, . . . , s|s|−1, i). For a sequence σ in the Cantor set 2ω and n ∈ ω, we write

σ↾n for the finite sequence (σ0, . . . , σn−1). We adopt the convention that σ↾0= ∅.

3 Covers Consisting of Meager Sets

The aim of this section is to prove Theorem 3.3. We start with a simple lemma.

Lemma 3.1 Let A be a cover of a separable space X such that every partial selector set

of A is σ-discrete. Then there exists a countable subfamily A0 ⊂ A that covers X.

Proof Assuming the contrary, we can find sets Aα ∈ A, α ∈ [0, ω1), such that

Aα \
⋃

β<α Aβ 6= ∅. For each α < ω1, we select a point xα ∈ Aα \
⋃

β<α Aβ .
Then S = {xα ; α ∈ [0, ω1)} is an uncountable partial selector set for A. By the
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assumption, S is σ-discrete, which is impossible by virtue of separability of X. This

concludes the proof.

Lemma 3.2 Let X be a space of weight not exceeding ℵ1. Let A be a cover of X such

that every partial selector set of A is σ-discrete. Then A has a σ-discrete refinement.

Proof Let A be a cover of X as in the premise. Let A = {Aα ; α ∈ [0, κ)} be an

enumeration of the family A. We set

B0 = A0 and Bα = Aα \
⋃

β<α

Aβ , α ∈ (0, κ).

Then B = {Bα ; α ∈ [0, κ)} is a disjoint cover of X such that its each partial selector

set is σ-discrete. By the weight restriction on X, we may use [13, Theorem 1.1] to

deduce that B has a σ-discrete refinement C. Then C is a refinement of A, and we are

done.

The proof of the following theorem imitates a method used by Fremlin in [3,

Proposition 8A].

Theorem 3.3 Let A be a cover of a completely metrizable space such that every partial

selector set of A is σ-discrete. Then A contains a non-meager set.

Proof We assume that A is as in the hypothesis and does not contain a non-meager

set. For every A ∈ A, we select closed nowhere dense sets F(A, n), n ∈ ω, such that

A ⊂
⋃

n∈ω F(A, n). For every point x ∈ X, A ∈ A, and n ∈ ω, we find a sequence

(y(x, A, n, k))k∈ω converging to x such that its elements are not in F(A, n).

We construct inductively, for α ∈ [0, ω1), countable sets Xα ⊂ X and countable

families Aα ⊂ A as follows. We set X0 = {z}, where z is a point of X, and A0 = ∅.

Let α ∈ [1, ω1) and assume that the objects have been constructed for all ordinals

smaller than α.

If α is a successor ordinal, say α = β + 1, then we set

Xα = Xβ ∪ {y(x, A, n, k) ; x ∈ Xβ , A ∈ Aβ , k, n ∈ ω}.

Further, the family {Xβ∩A ; A ∈ A} is a cover of the separable space Xβ that satisfies

the assumption of Lemma 3.1. Thus, we can select a countable subfamily A ′
β ⊂ A

such that Xβ ⊂
⋃

A ′
β . Let Aα = Aβ ∪ A ′

β . This finishes the inductive step of the

construction for a nonlimit ordinal.

If α < ω1 is a limit ordinal, set

Xα =
⋃

η<α
Xη and Aα =

⋃

η<α
Aη.

This completes the construction.

We define

Y =
⋃

α<ω1

Xα and B =
⋃

α<ω1

Aα.
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Then

Y =
⋃

α<ω1

Xα,

since
⋃

α<ω1

Xα ⊂
⋃

α<ω1

Xα

and the latter set is an increasing union of ω1 many closed sets, hence closed as well.

Further, Y is a complete metric space of weight not exceeding ℵ1, and B↾Y is its

cover such that each partial selector set is σ-discrete.

Moreover, B ↾Y consists of sets meager in Y . Indeed, it is enough to show that

F(A, n) ∩ Y is nowhere dense in Y for every A ∈ B and n ∈ ω. Let A ∈ B, n ∈ ω,

and x ∈ F(A, n) ∩ Y be given. We find α < ω1 such that x ∈ Xα and A ∈ Aα. We

can choose a sequence (x j) of elements of Xα so that x j → x.

Then

{y(x j , A, n, k) ; j, k ∈ ω} ⊂ Y \ F(A, n) and x ∈ {y(x j , A, n, k) ; j, k ∈ ω}.

Hence x cannot be in the interior (relative to Y ) of F(A, n) ∩ Y .

According to Lemma 3.2, B ↾Y admits a σ-discrete refinement R. Then
⋃

R, as

a union of a σ-discrete family of meager sets in Y , is meager in Y (see [3, 7B(e)]).

On the other hand, Y =
⋃

R is not meager in Y . This contradiction finishes the

proof.

4 Auxiliary Lemmas

Lemma 4.1 Let A be a cover of a completely metrizable space X such that

(i) A is a Borel-additive family and point-countable, or

(ii) A consists of sets with the Baire property and every partial selector set for A is

σ-discrete.

Then there exists A ∈ A that is comeager in some nonempty open set V ⊂ X.

Proof Assume first that A satisfies the assumptions of (i). By virtue of [3, Proposi-

tion 8A], there exists a set A ∈ A that is not meager. Since A, as a Borel subset of X,

has the Baire property, A is comeager in some nonempty open set V .

We proceed analogously in (ii) except that we use Theorem 3.3 and finish the proof

as above.

The following easy assertion can be found, e.g., in [16, Lemma 2].

Lemma 4.2 Let A be a family of subsets of a metric space X and C ⊂ X. If A↾C is not

σ-discretely refinable, then there exists a set C̃ ⊂ C closed in C such that A↾C̃ is nowhere

σ-discretely refinable.

Proof Setting

G :=
⋃

{U ⊂ C ; U is open in C,A↾U has a σ-discrete refinement}

and C̃ := C \ G, one can easily check that C̃ is the desired set.
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Lemma 4.3 Let A be a Π
0
3 -additive cover of a completely metrizable space X such

that

(i) A is point-countable, or

(ii) every partial selector set for A is σ-discrete.

Let H ⊂ X be a Π
0
2 set such that A↾H is not σ-discretely refinable and let A0 ⊂ A

be finite. Then there exist a nonempty Π
0
2 set G ⊂ H \

⋃

A0 and A ∈ A such that A↾G

is nowhere σ-discretely refinable and A ∩ G is comeager in G.

Proof Let H be as in the premise. As A is Π
0
3 -additive, we can write

H \
⋃

A0 =
⋃

n∈ω
Gn,

where Gn ⊂ H, n ∈ ω, are Π
0
2 subsets of X. Since A↾H is not σ-discretely refinable,

we can find j ∈ ω such that A↾G j
is not σ-discretely refinable.

We use Lemma 4.2 to find a relatively closed set D ⊂ G j (hence D is Π
0
2 in X)

such that A↾D is nowhere σ-discretely refinable. We use Lemma 4.1 on a completely

metrizable space D and on the family A↾D to find an open set V ⊂ X intersecting D

and A ∈ A such that A ∩ V ∩ D is comeager in V ∩ D. By setting G := V ∩ D, we

finish the proof.

Notation 4.4 Let n, k ∈ ω, n ≥ k. Then 〈n, k〉 stands for the natural number
1
2
n(n+1)+k+1. Note that for given p ∈ ω, the numbers n, k ∈ ω with 〈n, k〉−1 = p

are uniquely determined.

Lemma 4.5 The set

P := {ν ∈ 2ω ; ∃k ∈ ω : (ν〈n,k〉)n≥k is not eventually zero}

is a true Σ
0
3 set.

Proof Denote Q = {α ∈ 2ω ; (αn) is eventually 0}. It is well known that Qω is a

true Π
0
3 subset of (2ω)ω (see [12, Exercise 23.1]). Define the mapping ϕ : 2ω → (2ω)ω

by

ϕ(ν)(k) = (ν〈n+k,k〉−1)n≥0.

Using the fact that each l ∈ ω can be uniquely expressed as 〈n + k, k〉 − 1, n, k ∈ ω,

it is routine to verify that ϕ is a homeomorphism of 2ω and (2ω)ω . Now it is easy to

check that ϕ(2ω \ P) = Qω , and we are done.

5 Proof of Theorem 1.2

Lemma 5.1 Let A be a Π
0
3 -additive cover of a complete metric space X such that

(i) A is point-countable, or

(ii) every partial selector set for A is σ-discrete.

Then the family A is σ-discretely refinable.
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Proof Let ρ be the metric on X. On the contrary, assume that A is not σ-discretely

refinable. For s ∈ 2<ω , we will construct

• an open ball B(s) ⊂ X,
• A(s) ∈ A,
• Σ

0
2 sets F j(s) ⊂ X, j ∈ ω, such that (F j(s)) j∈ω is non-increasing and A(s) =

⋂

j∈ω F j(s),

• Π
0
2 set G(s) ⊂ X,

• a complete metric ρ(s) on G(s) that is equivalent on G(s) to the original metric ρ.

For s ∈ 2<ω , we require:

(i) B(s∧0) ∪ B(s∧1) ⊂ B(s), B(s∧0) ∩ B(s∧1) = ∅,

(ii) B(s) ∩ G(s) 6= ∅,

(iii) diamρ(s)

(

B(s) ∩ G(s)
)

< 2−|s|, diamρ

(

B(s)
)

< 2−|s|,

(iv) A(s) ∩ G(s) is comeager in G(s),

(v) G(s) ∩
⋃

{A(t) ; t ∈ 2<〈k,k〉} = ∅ whenever |s| = 〈n, k〉 for some n, k ∈ ω,

k ≤ n,

(vi) G(s∧ι) ⊂ G(s) whenever |s| = 〈n, k〉 with k < n and ι ∈ {0, 1},

(vii) if |s| = 〈n, k〉, k < n, and s〈n,l〉 = 0 for all l < k, then

A(s) = A(s↾〈n−1,k〉), F j(s) = F j(s↾〈n−1,k〉), j ∈ ω,

G(s) = G(s↾〈n−1,k〉), ρ(s) = ρ(s↾〈n−1,k〉),

(viii) G(s∧1) ∩ B(s∧1) ⊂ F|s|+1(s∧1) whenever |s| = 〈n, k〉 with k < n,

(ix) A↾G(s) is nowhere σ-discretely refinable,

(x) if |s| = 〈n, k〉, k < n, and s〈n,l〉 = 0 for all l ≤ k, then

B(s) ∩ G(s↾〈n−1,n−1〉) 6= ∅.

We point out that condition (vii) also applies for s ∈ 2<ω with |s| = 〈n, 0〉, n ≥ 1.

Using Lemma 4.3 for H = X and A0 = ∅, we get a nonempty Π
0
2 set G(∅) ⊂

X and A(∅) ∈ A such that A ↾G(∅) is nowhere σ-discretely refinable and A(∅) ∩
G(∅) is comeager in G(∅). Since A(∅) ∈ A, there exists a nonincreasing sequence

(F j(∅)) j∈ω of Σ 0
2 sets with A(∅) =

⋂

j∈ω F j(∅). We choose a complete metric ρ(∅)

on G(∅) that is equivalent on G(∅) to ρ. Let B(∅) be an arbitrary open ball of X

centered at some point of G(∅) such that

diamρ(∅)

(

B(∅) ∩ G(∅)
)

< 1 and diamρ

(

B(∅)
)

< 1.

This finishes the first step of our construction, since properties (i)–(x) are vacuous

or clearly satisfied.

Let s ∈ 2<ω . Suppose that our construction has been done for all t ∈ 2<ω with

|t| ≤ |s|. Let n, k be uniquely determined natural numbers with |s| + 1 = 〈n, k〉. To

define our auxiliary objects for s∧0 and s∧1, we distinguish the following cases.

Case 1. Suppose that k = n or there is l < k such that s〈n,l〉 = 1.
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By (ii) and (ix), we have that A ↾B(s)∩G(s) is not σ-discretely refinable. Applying

Lemma 4.3 for

H := G(s) ∩ B(s), A0 := {A(t) ; t ∈ 2≤|s|},

we find a nonempty Π
0
2 set G ⊂ H \

⋃

A0 and A ∈ A such that A ↾G is nowhere

σ-discretely refinable and A ∩ G is comeager in G. Since A ∈ A, one can find a

nonincreasing sequence (F j) j∈ω of Σ
0
2 sets such that A =

⋂

j∈ω F j . By taking F0
=

· · · = F|s|+1
= X, we may achieve that G ⊂ F|s|+1. Further, we find a complete metric

τ on G that is equivalent on G to ρ. For ι ∈ {0, 1}, we set

A(s∧ι) := A, F j(s∧ι) := F j , j ∈ ω, G(s∧ι) := G, ρ(s∧ι) := τ .

Finally, it is easy to find B(s∧0) and B(s∧1) such that conditions (i)–(iii) are satisfied.

By the choice of F|s|+1, (viii) is satisfied. Conditions (iv)–(vi) and (ix) are easy to

check, and conditions (vii) and (x) are vacuous.

Case 2. Suppose that k < n and s〈n,l〉 = 0 for all l < k.

Denote v = s↾〈n−1,k〉. We define the desired objects for s∧ι, ι ∈ {0, 1}, by

A(s∧ι) := A(v), F j(s∧ι) := F j(v), j ∈ ω, G(s∧ι) := G(v), ρ(s∧ι) := ρ(v).

We immediately get that conditions (iv), (v), and (ix), where we replace s by s∧0 and

s∧1, are satisfied.

Claim 5.2 We have B(s) ∩ G(s↾〈n−1,n−1〉) 6= ∅ and G(s↾〈n−1,n−1〉) ⊂ G(s).

Proof If k = 0, then |s| = 〈n − 1, n − 1〉, and thus s↾〈n−1,n−1〉= s. Hence

B(s) ∩ G(s↾〈n−1,n−1〉) = B(s) ∩ G(s) 6= ∅

by (ii). The inclusion G(s↾〈n−1,n−1〉) ⊂ G(s) is obvious.

If k > 0, then |s| = 〈n, k− 1〉, and by (x), we get B(s)∩G(s↾〈n−1,n−1〉) 6= ∅ again.

Using (vi) and (vii) we get

G(s↾〈n−1,n−1〉) ⊂ G(s↾〈n−1,k−1〉) = G(s↾〈n,k−1〉) = G(s),

concluding the proof.

The set A(s∧1)∩G(s∧1) is comeager in G(s∧1) because we have already verified (iv)

for s∧1. The set F|s|+1(s∧1) is Σ
0
2 and contains A(s∧1) by definition. Since G(s∧1) =

G(v) ⊃ G(s↾〈n−1,n−1〉) (by (vi)), Claim 5.2 implies B(s) ∩ G(s∧1) 6= ∅. By the Baire

category argument, there is an open set V ⊂ B(s) such that ∅ 6= V ∩ G(s∧1) ⊂
F|s|+1(s∧1).

Claim 5.2 gives B(s) ∩ G(s ↾〈n−1,n−1〉) 6= ∅. According to condition (ix), the

restriction of A to both sets B(s) ∩ G(s↾〈n−1,n−1〉) and V ∩ G(s∧1) is nowhere σ-dis-

cretely refinable. Thus we can choose different centers of B(s∧0) and B(s∧1) in B(s)∩
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G(s↾〈n−1,n−1〉) and V ∩ G(s∧1) respectively. Radii of the balls are chosen sufficiently

small that B(s∧1) ⊂ V and conditions (i) and (iii) are satisfied.

Validity of conditions (vii), (viii), and (x) for s∧0 and s∧1 follows immediately

from the construction. It remains to verify (ii) and (vi). Since G(s∧0) = G(v) ⊃
G(s↾〈n−1,n−1〉), we have B(s∧0)∩G(s∧0) 6= ∅. Clearly, we have G(s∧1)∩B(s∧1) 6= ∅.

Thus we have verified (ii).

As for (vi), if k = 0, then there is nothing to prove. If k > 0, we use inductive

assumption (vii) for 〈n − 1, k − 1〉 to get

G(s∧ι) = G(v) ⊂ G(s↾〈n−1,k−1〉) = G(s).

This finishes the construction of the auxiliary objects.

Now we define a continuous mapping ϕ : 2ω → X by

ϕ(ν) =
⋂

p∈ω
B(ν↾p).

This is a standard construction leading to a continuous mapping according to (i) and

(iii). Following notation from Lemma 4.5, we set

P = {ν ∈ 2ω ; ∃k ∈ ω : (ν〈n,k〉)n≥k is not eventually zero}.

Claim 5.3 P = ϕ−1(
⋃

{A(s) ; s ∈ 2<ω}).

Granting this claim we get a contradiction. Indeed, the set
⋃

{A(s) ; s ∈ 2<ω} is

Π
0
3 by Π

0
3 -additivity of A, hence ϕ−1(

⋃

{A(s) ; s ∈ 2<ω}) is Π
0
3 , but on the other

hand, P is a true Σ
0
3 set by Lemma 4.5, a contradiction.

To prove Claim 5.3, choose ν ∈ P. Find the smallest k ∈ ω such that (ν〈n,k〉)n≥k

is not eventually zero. Then there exists q ∈ ω such that ν〈n, j〉 = 0 for all n ≥ q and

j < k. By (vii), we have that there are A ∈ A, a nonincreasing sequence (F j) j∈ω , a

Π
0
2 set G, and a metric d on G such that

A(ν↾〈n,k〉) = A, F j(ν↾〈n,k〉) = F j , G(ν↾〈n,k〉) = G, ρ(ν↾〈n,k〉) = d

for all n ≥ q. The sequence
(

B(ν↾〈n,k〉) ∩ G
)

n≥q
is a nonincreasing sequence of

nonempty closed sets in G such that

diamd

(

B(ν↾〈n,k〉) ∩ G
)

→ 0

for n → ∞. This and the completeness of d give ϕ(ν) ∈ G. Since the sequence

(ν〈n,k〉)n≥q contains 1 infinitely many times, we have

ϕ(ν) ∈ G ∩ B(ν↾〈n,k〉) ⊂ F〈n,k〉

for infinitely many n by (viii). This implies ϕ(ν) ∈ A ⊂
⋃

{A(s) ; s ∈ 2<ω}.

Now assume that ν ∈ 2ω \ P. Take an arbitrary t ∈ 2<ω \ {∅}. Find k, n ∈ ω,

k ≤ n, with |t| = 〈n, k〉. Again there is q ∈ ω, q > n, such that ν ↾〈m, j〉= 0 for all
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m ≥ q and j ≤ n + 1. As in the previous case we get ϕ(ν) ∈ G(ν↾〈q,n+1〉). By (v) we

have

(⋆) G(ν↾〈q,n+1〉) ∩ {A(u) ; u ∈ 2<〈n+1,n+1〉} = ∅.

Consequently, ϕ(ν) /∈ A(t) since 〈n, k〉 < 〈n + 1, n + 1〉.
From (⋆), it also follows that ϕ(ν) /∈ A(∅). Hence we have proved that

ϕ(ν) /∈
⋃

{A(s) ; s ∈ 2<ω}.

Thus we get the assertion of Claim 5.3.

Proof of Theorem 1.2. Let A be a Π
0
3 -additive family in an absolute Suslin metriz-

able space X. By replacing X with
⋃

A if necessary, we may assume that A is a cover

of X. According to results mentioned in Section 2, there exists a continuous mapping

f : Y → X of a complete metric space Y onto X such that f preserves σ-discretely

decomposable families. Then B = { f −1(A) ; A ∈ A} is a Π
0
3 -additive cover of Y

that inherits property (i) or (ii) of Theorem 1.2 from A.

Indeed, point-countability is obviously transferred from A to B. Concerning the

second property, let B be a partial selector set for B. Then f (B) is a partial selector

set for A, and thus is σ-discrete. Since B ⊂ f −1( f (B)), it easily follows that B is

σ-discrete as well.

According to Lemma 5.1, B has a σ-discrete refinement. Since f preserves σ-dis-

cretely decomposable families, A is σ-discretely refinable as well. This concludes the

proof.

6 Applications

As already mentioned, existence results for a Borel measurable selector from a set-

valued mapping ϕ : X → Y are standard to obtain, once we know that the family

{ϕ−1(U ) ; U ∈ U} is σ-discretely refinable for each discrete family U of open or

closed sets in Y (we recall that ϕ−1(U ) = {x ∈ X ; ϕ(x) ∩ U 6= ∅}). Using

classical methods contained, e.g., in [7, Lemma 5.3, Lemma 5.4, and Theorem 5.5],

[11, Section 3] or in [15, Section 4] and [16, Theorem 7], we get the following results

on Borel measurable selectors.

Theorem 6.1 Let X be an absolute Suslin space and Y be complete. Let ϕ : X → Y be

a set-valued mapping with nonempty closed values such that

(a1) ϕ−1(U ) is a Π
0
3 -set in X for each U ⊂ Y open, or

(a2) ϕ−1(F) is a Π
0
3 -set in X for each F ⊂ Y closed,

and

(b1) ϕ(x) is separable for each x ∈ X.

Then ϕ admits a Σ
0
4 -measurable selector.

Outline of the proof We just mention that, given ϕ : X → Y satisfying (a1) and U a

discrete family of open sets in Y , the family

A = {ϕ−1(U ) ; U ∈ U}
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is Π
0
3 -additive. Since ϕ satisfies (b1), A is point-countable and thus admits a σ-dis-

crete refinement according to Theorem 1.2. If we assume (a2), we use σ-discrete

covers of Y that consist of closed sets instead of open sets. In both cases, we may use

the standard techniques mentioned above to conclude the proof.

Theorem 6.2 Let X be an absolute Suslin space and Y be complete. Let ϕ : X → Y be

a set-valued mapping with nonempty closed values such that

(a2) ϕ−1(F) is a Π
0
3 -set in X for each F ⊂ Y closed, and

(b2) ϕ(x) ∩ ϕ(x ′) = ∅ for every couple x, x ′ ∈ X of distinct points.

Then ϕ admits a Σ
0
4 -measurable selector.

Outline of the proof Let ϕ satisfy (a2) along with (b2). We claim that we may use

Theorem 1.2 again.

Indeed, let F be a discrete family of closed sets in Y and F ′ ⊂ F be given. Let

S = (xF)F∈F ′ be a partial selector for ϕ−1(F) and S = {xF ; F ∈ F ′}.

Without loss of generality, we may assume that the points of S are pairwise dis-

tinct. For every F ∈ F ′, we choose a point yF ∈ F ∩ ϕ(xF). Then {{yF} ; F ∈ F ′} is

a discrete family of singletons and, by (b2),

{{xF} ; F ∈ F
′} = {ϕ−1({yF}) ; F ∈ F

′}.

Hence {{xF} ; F ∈ F ′} is a Borel-additive disjoint family of singletons. According to

[4, Theorem 2], it is a σ-discretely decomposable family. Hence S is a σ-discrete set.

Using Theorem 1.2, we now finish the proof as above.

An immediate application of the previous theorem is the following result.

Theorem 6.3 Let f : Y → X be a mapping from a complete space Y to an absolute

Suslin space X such that f −1(x) is closed in Y for each x ∈ X, and

(a3) f maps closed sets in Y to Π
0
3 sets in X.

Then f admits a Σ
0
4 -measurable section (i.e., the mapping x 7→ f −1(x), x ∈ X, admits

a Σ
0
4 -measurable selector).

It might be interesting to remark that we cannot replace closed sets in Theorem 6.3

(a3) by open sets.

Example 6.4 There exists a mapping f : X → Y of a complete metric space X onto a

complete metric space Y mapping open sets in X to Σ
0
2 sets in Y and a discrete family

U of open sets in X such that f (U) has no σ-discrete refinement, and, consequently,

f has no Borel measurable section.

Proof Let Ω = {α ; α < ω1} be the discrete space of all countable ordinals. Let Y

be the Baire space Ω
ω with the product topology and

Yα = {(yn) ∈ Y ; yn ≤ α for all n ∈ ω} , α < ω1.

Then {Yα ; α < ω1} is an increasing Σ
0
2 -additive cover of Y by closed separable

subsets.
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Fix a countable ordinal α < ω1. Let ϕ1 : R → R be such that ϕ1(I) = R for every

nonempty open interval I ⊂ R and ϕ2 : R → [0, α] be a surjective mapping. Then

ϕ = ϕ2 ◦ ϕ1 maps any nonempty open set in R onto [0, α]. Set Xα = R
ω and define

fα : Xα → Y as fα
(

(xn)
)

=
(

ϕ(xn)
)

, (xn) ∈ Xα. Then fα maps any nonempty open

set in Xα onto Yα.

Let X be the discrete union of spaces Xα, α < ω1, and f : X → Y be defined as

f (x) = fα(x) for x ∈ Xα. Let U ⊂ X be a nonempty open set. Let β be the least

countable ordinal satisfying U ∩ Xβ = ∅. If there is no such β, set β = ω1. Then

f (U ) =
⋃

{Yα ; α < β}, which is a Σ
0
2 set in Y . Thus f maps open sets in X to Σ

0
2

sets in Y .

If we put U = {Xα ; α < ω1}, then f (U) = {Yα ; α < ω1} does not have a

σ-discrete refinement. Indeed, if R were a refinement of {Yα ; α < ω1}, the family

R would consist of separable sets. Hence Y would be a union of a σ-discrete family

of separable sets and thus also σ-locally of weight less than ℵ1. But this contradicts a

theorem of A. H. Stone [17, 2.1(7)].

To conclude the proof, we realize that f cannot have a Borel measurable section.

Indeed, assume that g : Y → X is a Borel measurable selector from the mapping

y 7→ f −1(y), y ∈ Y . Then g−1(U) is a disjoint Borel-additive cover of Y , and thus

σ-discretely decomposable by [4, Theorem 2]. Since g−1(U) is a refinement of f (U),

f (U) is σ-discretely refinable.

But this contradicts the first part of the reasoning.
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