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Abstract For 0 < p � 1, let hp(Rn) denote the local Hardy space. Let F be a Fourier integral operator
defined by the oscillatory integral

Ff(x) =
∫∫

R2n
exp(2πi(φ(x, ξ) − y · ξ))b(x, y, ξ)f(y) dy dξ,

where φ is a C∞ non-degenerate real phase function, and b is a symbol of order µ and type (ρ, 1 − ρ),
1
2 < ρ � 1, vanishing for x outside a compact set of R

n. We show that when p � 1 and µ � −(n −
1)(1/p − 1/2) then F initially defined on Schwartz functions in hp(Rn) extends to a bounded operator
F : hp(Rn) → hp(Rn). The range of p and µ is sharp. This result extends to the local Hardy spaces the
seminal result of Seeger et al . for the Lp spaces. As immediate applications we prove the boundedness of
smooth Radon transforms on hypersurfaces with non-vanishing Gaussian curvature on the local Hardy
spaces.

Finally, we prove a local version for the boundedness of Fourier integral operators on local Hardy
spaces on smooth Riemannian manifolds of bounded geometry.
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1. Introduction

Let F be a properly supported Fourier integral operator of order 0 and of type (ρ, 1 − ρ)
associated with a local canonical graph. We defer this and other basic definitions to the
next section. It was proved by Hörmander and Eskin [3,7] when ρ > 1

2 and by Beals [1]
and Greenleaf and Uhlmann [5] when ρ = 1

2 that the operator F is bounded on L2
loc

and consequently a Fourier integral operator of order µ maps L2
s,comp into L2

s−µ,loc. Here
and in what follows Lp

s denotes the Lp-Sobolev space of order s, Lp
loc denotes the space

of functions f such that ψf ∈ Lp for all compactly supported smooth functions ψ, and
Lp

comp =: (Lp′

loc)
∗ = Lp

loc ∩ E ′. For p �= 2 it has been known for some time that a Fourier
integral operator of order µ cannot be bounded on Lp unless µ � −(n−1)|1/p−1/2|, [11].
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In [14] Seeger et al . proved that in fact this is the correct range for the Lp boundedness
for such an operator. They showed that if F is a Fourier integral operator of order µ,
then

F : Lp
comp(Rn) → Lp

loc(R
n)

boundedly, for 1 < p < ∞ and µ � −(n − 1)|1/p − 1/2|. To prove their theorem, Seeger
et al . showed that, given two smooth cut-off functions ψ1, ψ2, the operator F̃ = ψ2Fψ1

in fact maps F̃ : h1(Rn) → h1(Rn) continuously when F has order −(n − 1)/2. They
then used interpolation for an analytic family of operators together with the L2-result
to obtain the result for the case when 1 < p < 2. The result for p > 2 then follows by
duality, since the adjoint of F is again a Fourier integral operator of the same order.

In this paper we study the mapping properties of the operators F when acting on the
local Hardy spaces hp in Rn, introduced by Goldberg [4]. Our main result shows that, if
F is a Fourier integral operator associated with a canonical graph, of order µ, and if F̃
is defined as above, then

F̃ : hp(Rn) → hp(Rn)

is bounded, when 0 < p � 1 and µ � −(n − 1)(1/p − 1/2), thus extending the Seeger et
al . result to the local Hardy spaces hp, with 0 < p < 1. Finally, we extend this result to
Riemannian manifolds of bounded geometry. For some previous related work, see [12].

The paper is organized as follows. We begin by giving the basic definitions. We also
make a standard reduction that allows us to work with an operator defined by an oscil-
latory integral Tb in the more familiar setting of Rn. Here b denotes the symbol in the
class Sµ

ρ,1−ρ (see (2.4), below). We first prove that such an operator Tb is bounded from
hp to Lp (Theorem 2.2), when µ � −(n − 1)(1/p − 1/2) and 0 < p � 1. Section 3 is
devoted to this. In § 4 we use a characterization of local Hardy spaces in terms of local
Riesz transforms (Proposition 4.1) to reduce the question of the boundedness of Tb on
hp to the uniform boundedness of operators of the form PεTb from hp to Lp, where Pε

are suitable pseudodifferential operators of order 0 and type (1, 0). We remark that while
Theorem 2.2 also holds when ρ = 1

2 , Proposition 4.2 fails to hold in this case. This is the
reason for us to restrict ourselves to the case ρ > 1

2 .
In the last section we prove the extension of our main result, Theorem 2.1, to the case

of a Fourier integral operator of order µ acting between paracompact smooth manifolds
X and Y of bounded geometry (see Theorem 5.1).

2. Basic definitions and statement of the main result

Let X and Y be smooth paracompact manifolds of the same dimension n. Denote by
dσX and dσY the standard symplectic forms on T ∗X and T ∗Y , respectively.

Let C be a conic Lagrangian submanifold of T ∗X \ {0} × T ∗Y \ {0}, the latter being
endowed with the symplectic form dσX − dσY . We assume that C is locally the graph
of a homogenous canonical transformation H. A smooth map H from T ∗Y \ {0} to
T ∗X \ {0} preserving the symplectic forms, i.e. such that H∗dσX = dσY , is called a
canonical transformation. Such a map H turns out to always be a diffeomorphism. It is
said to be homogeneous if H(y, λη) = λH(y, η) for all λ > 0 and (y, ξ) ∈ T ∗Y \ {0}.
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We are concerned with operators F ∈ Iµ(X × Y, C), i.e. linear operators between the
distribution spaces on X and Y whose kernels are Lagrangian distributions of order µ

having their wavefront sets contained in

C′ = {(x, ξ, y, η) : (x, ξ, y,−η) ∈ C}.

We refer the reader to [2,6,8,18] for the global theory of Fourier integral operators.
What is relevant to the present work is the local representation of Fourier integral

operators. In local coordinates, such an operator F can be written as

Ff(x) =
∫

Rn

∫
RN

e2πiΦ(x,y,θ)b(x, y, θ) dθf(y) dy. (2.1)

Here b denotes a classical symbol of order µ′, i.e. such that

|∂β
x,y∂α

θ b(x, y, θ)| � Cβ,α(1 + |θ|)µ′−|α|,

and the order µ′ = µ − (N − n)/2. Moreover, the phase function Φ is real, positively
homogenous of degree 1 in θ, C∞(R2n × RN \ {0}) and satisfies the following non-
degeneracy conditions:

(i) dΦ �= 0 everywhere (on the support of b);

(ii) on the set ΣΦ = {Φθ = 0} the differentials dΦθ1 , . . . ,dΦθN
are linearly independent.

Henceforth, we denote by Φθ, Φθj , Φxk,θ�
, etc., the partial derivatives ∂θΦ, ∂θj Φ, ∂2

xjθ�
Φ,

etc., of Φ with respect to the indicated variables.
By Hörmander’s theorem on the equivalence of phase functions (see [18, Proposi-

tion VIII 1.5]) one can reduce the number N of frequency variables to n, so that, after
this reduction, the order of the Fourier integral operator F coincides with the order of
the symbol b.

Possibly by multiplying by a smooth cut-off function, one may assume that, modulo
a smoothing operator, the symbol b is supported in a small conic neighbourhood of ΣΦ.
Then, it turns out that the mapping

(x, y, θ) �→ (x, Φx(x, y, θ), y,−Φy(x, y, θ))

is a smooth mapping onto a conic open set of T ∗X \ {0} × T ∗Y \ {0}, sending ΣΦ onto
a conic Lagrangian submanifold C′ such that the wavefront set of F satisfies

WF (F) ⊆ C′ = {(x, Φx(x, y, θ), y, Φy(x, y, θ)) : Φθ(x, y, θ) = 0}.

The local Hardy spaces on Rn were introduced by Goldberg [4] (see also [17, Chap-
ter III.5]. They can be described as follows. Let Ψ be a fixed Schwartz function,

∫
Ψ = 1.

For a tempered distribution f let MΨ be the maximal operator

MΨf(x) = sup
0<t�1

|f ∗ Ψt(x)|,
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where, as usual, Ψt(x) = t−nΨ(x/t). Let 0 < p � 1. We say that a tempered distribution
f is in hp(Rn) if

‖f‖hp(Rn) := ‖MΨ (f)‖Lp(Rn) < ∞.

We are now in a position to state our main result.

Theorem 2.1. Let C ⊆ T ∗(Rn)\{0}×T ∗(Rn)\{0} be a submanifold which is locally
a canonical graph and let F ∈ Iµ(Rn × Rn, C). Let hp(Rn) denote the local Hardy space
for 0 < p � 1 and let µ � −(n−1)(1/p−1/2). For ψ1, ψ2 smooth cut-off functions define
F̃ = ψ1Fψ2. Then

F̃ : hp(Rn) → hp(Rn)

is bounded.

We can extend this result to a class of paracompact smooth manifolds (see Theo-
rem 5.1).

Moreover, we can allow the symbol b to belong to the more general class Sµ
ρ,1−ρ, with

1
2 < ρ � 1 (see Theorem 2.2).

Now we make a reduction that allows us to study the boundedness of an operator
defined by an oscillatory integral in R2n.

The assumption that the conic Lagrangian manifold C is locally the graph of such
a map H, i.e. that C has the form C = {(H(y, ξ), (y, ξ)) : (y, ξ) ∈ T ∗Y \ {0}}, allows
us to make the following reduction. Given any point (x0, ξ0, y0, η0) ∈ C, there exists a
neighbourhood on which one can choose local coordinates so that

C = {(x, φx, φη, η)},

for some smooth phase function φ = φ(x, η) such that

φη(x0, η0) = y0.

Note that in this case, the phase function Φ(x, y, ξ) in these coordinates has the expres-
sion Φ(x, y, θ) = φ(x, θ) − y · θ and the operator F takes the form

Ff(x) =
∫∫

R2n

exp(2πi(φ(x, ξ) − y · ξ))b(x, y, ξ)f(y) dξ dy. (2.2)

(In order to use more familiar notation, we henceforth rename the variable θ as ξ.)
Since C is locally the graph of a diffeomorphism, the φ(x, ξ) function turns out to be

real-valued, C∞(Rn \ {0}) and homogeneous of degree 1 in ξ, and moreover

det(φxiξj
) �= 0 (2.3)

for ξ �= 0 and (x, ξ) in the support of b.
As mentioned above, we can allow the symbol b to vary in a more general class, which

now we define. Let 1
2 < ρ � 1. One says that b ∈ Sµ

(ρ,1−ρ) if b ∈ C∞(R2n × Rn) satisfies
the estimates

|∂β
x,y∂α

ξ b(x, y, ξ)| � Cα,β(1 + |ξ|)µ−ρ|α|+(1−ρ)|β| (2.4)
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for some constants Cα,β and all multi-indices α, β and x, ξ ∈ Rn. We also assume that b

vanishes for x outside a fixed compact set.
Consider the Fourier integral operator T = Tb with symbol b and phase φ

T (f)(x) =
∫∫

R2n

exp(2πi(φ(x, ξ) − y · ξ))b(x, y, ξ)f(y) dy dξ, (2.5)

initially defined for f in the Schwartz class S(Rn).
For this kind of operator, our main result is the following.

Theorem 2.2. Let T be defined as in (2.5) with symbol b ∈ Sµ
(ρ,1−ρ). Let 0 < p � 1

and suppose that

µ � −(n − ρ)
(

1
p

− 1
2

)
.

Then T , initially defined on Schwartz functions, extends to a bounded linear operator

T : hp(Rn) → hp(Rn).

Note that, in this setting, we need not require the symbol b to be also compactly
supported in the y-variable.

In order to state our next main result, we need a few more definitions. Suppose that,
with any x varying in an open set Ω in Rn is associated a hypersurface Hx with non-zero
Gaussian curvature and surface measure dsx. We assume that the mapping x �→ Hx is
smooth in Ω. Let ψ ∈ C∞

0 (Ω × Rn) and let dλ(x, y) = ψ(x, y) dsx(y).
We will denote the Fourier transform of a tempered distribution f by f̂ . If f is inte-

grable, we have

f̂(ξ) =
∫

Rn

exp(−2πiξ · x)f(x) dx.

For f ∈ S(Rn) we define the smooth Radon transform as the operator

R(f)(x) = (dλ(x, ·) ∗ f)(x), (2.6)

i.e.
R(f)(x) =

∫
exp(2πix · ξ) d̂λ(x, ·)(ξ)f̂(ξ) dξ.

For 0 < p � 1 and s ∈ Rn we define the potential local Hardy spaces

hp
s(R

n) = {f ∈ S ′ : f, Λsf ∈ hp(Rn)}, (2.7)

where (̂Λsf)(ξ) = (1 + |ξ|2)s/2f̂(ξ).

Theorem 2.3. Let R be a smooth Radon transform as in (2.6). Then, initially defined
on Schwartz functions, R extends to a bounded linear operator

R : hp
s(R

n) → hp(Rn)

if s � (n − 1)(1/p − 1).
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Consider an operator of the form (2.5). If we assume further that b also has compact
support in the ξ-variable, then Tf can be written as an integral operator with kernel

K(x, y) =
∫

Rn

exp(2πi(φ(x, ξ) − y · ξ))b(x, y, ξ) dξ,

which is singular at the points (x, y) such that

∇ξ(φ(x, ξ) − y · ξ) = 0.

Henceforth, we write φξ in place of ∇ξφ. Then, for x ∈ Rn, the set of singular points for
the kernel K is

Σx = {y ∈ Rn : y = φξ(x, ξ) for some ξ ∈ Rn}. (2.8)

We now have our main hp to Lp result.

Theorem 2.4. Let T be a Fourier integral operator defined by the oscillatory integral
as in (2.5), where b ∈ Sµ

(ρ,1−ρ). Suppose that

µ < −n − ρ

2
and

1
p

− 1
2

= − µ

n − ρ
.

Then T , initially defined on the dense subspace S(Rn), extends to a bounded linear
operator

T : hp(Rn) → Lp(Rn).

3. Proof of Theorem 2.4

A distribution f ∈ hp(Rn) admits an atomic decomposition

f =
∑

j

λjaj ,

where the λj are constants such that
∑

j |λj |p ≈ ‖f‖p
hp(Rn) and the aj are p-atoms. A

function a is called a p-atom if

(i) supp a ⊆ B(x0, δ),

(ii) |a(x)| � |B|−1/p,

(iii)
∫

xαa(x) dx = 0 if δ � 1 and |α| � M = 1 + [n(1/p − 1)], and no further condition
is required if δ > 1.

Here [x] denotes the integral part of the real number x and we denote by B(x0, δ) the
ball centred at x0 and of radius δ.

We recall that the Schwartz space S(Rn) is contained and dense in hp(Rn) (see [4,13]).
Using the atomic decomposition of hp(Rn), it suffices to show that there exists a

constant A > 0 such that, for all p-atoms a,∫
|Ta(x)|p dx � A.
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We first assume that the atom a has support in a ball B of radius δ > 1. Note that since
µ < 0, T is bounded from L2 into itself. Let r = 2/p. By applying Hölder’s inequality
with r and its conjugate exponent r′ we see that

∫
|Ta(x)|p dx � |supp(b)|1−p/2

( ∫
|Ta(x)|2 dx

)p/2

� |supp(b)|1−p/2‖T‖(L2,L2)‖a‖p
2

= C‖a‖p
2.

Next,

‖a‖p
2 =

( ∫
B

|a(x)|2 dx

)p/2

�
( ∫

B

|B|−2/p dx

)p/2

� |B|−1+p/2 = cnδn(−1+p/2).

Since δ > 1, we obtain that ∫
|Ta(x)|p dx � A,

with A independent of the atom a and δ > 1.
Next we consider the case of an atom a supported on a ball B of radius δ � 1. For

x ∈ Rn, let Σx be the singular region defined in (2.8). Recall that the set {(x, y) :
y ∈ Σx} contains the singularity of the kernel K of the operator T . We will now adapt
the decomposition of the cotangent space introduced by Seeger et al . [14] to the present
situation.

For each integer j � 1 we fix a collection of unit vectors {ξν
j } such that

(i) |ξν
j − ξν′

j | � 2−j/2 if ν �= ν′,

(ii) if ξ is any unit vector, then there exists a unit vector ξν
j such that |ξ − ξν

j | � 2−j/2.

Recall that it suffices to take a collection {ξν
j } which is maximal with respect to (i). It

should also be noted that there are at most c2j(n−1)/2 elements in the collection {ξν
j }.

Consider now the ball B = B(ȳ, δ) of centre ȳ and radius δ � 1. We first define the
sets R̃ν

j as
R̃ν

j = {y ∈ Rn : |y − ȳ| � c̄2−j/2, |πν
j (y − ȳ)| � c̄2−jρ}, (3.1)

where πν
j denotes the orthogonal projection in the direction of ξν

j and c̄ is a constant
independent of j to be fixed later. Note that

|R̃ν
j | ≈ 2−(n−1)j/2 · 2−jρ = 2−(n−1+2ρ)j/2. (3.2)

By (2.3), for every ξ, the mapping

x �→ y = φξ(x, ξ) = (∂ξ1φ(x, ξ), . . . , ∂ξnφ(x, ξ))
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has a nowhere-vanishing Jacobian, i.e.

|det jac(x �→ y = φξ(x, ξ))| = |det(φxjξk
)(x, ξ)| � κ > 0,

with κ independent of x and ξ on the unit sphere.
We define Rν

j to be the preimage of R̃ν
j under the mapping φξ with ξ = ξν

j :

Rν
j = {x ∈ Rn : |ȳ − φξ(x, ξν

j )| � c̄2−j/2, |πν
j (ȳ − φξ(x, ξν

j ))| � c̄2−jρ}. (3.3)

Now

|R̃ν
j | =

∫
Rν

j

|det(φxjξk
)(x, ξ)| dx � κ

∫
Rν

j

dx = κ|Rν
j |,

so that
|Rν

j | � κ−1|R̃ν
j |.

Thus, given the ball B = B(ȳ, δ) we define

B∗ =
⋃

2−j�δ

⋃
ν

Rν
j . (3.4)

Note that, by the above estimate for |Rν
j | and (3.2), we obtain that

|B∗| �
∑

2−j�δ

∑
ν

|Rν
j | � c

∑
2−j�δ

2−(n−1+2ρ)j/22(n−1)j/2 � cδρ. (3.5)

We wish to estimate∫
Rn

|Ta(x)|p dx =
∫

B∗
|Ta(x)|p dx +

∫
cB∗

|Ta(x)|p dx, (3.6)

where B is the ball of radius δ � 1 containing the support of the atom a and B∗ is
defined in (3.4).

By Hölder’s inequality, we have

∫
B∗

|Ta(x)|p dx � |B∗|1−p/2
( ∫

B∗
|Ta(x)|2 dx

)p/2

� cδ(1−p/2)ρ‖Ta‖p
L2 .

We distinguish two cases. Suppose first that

−n

2
< µ < −n − ρ

2
.

The operator T is then bounded from Lq(Rn) to L2(Rn) when

1
2

=
1
q

− µ

n
(3.7)
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(see [17, Chapter IX.3]). Hence, in this case,

‖Ta‖p
L2 � ‖T‖(Lq,L2)‖a‖p

Lq � c|B|−1+p/q � cδn(−1+p/q).

Therefore, we obtain that∫
B∗

|Ta(x)|p dx � cδ(1−p/2)ρ+n(−1+p/q) � c,

using the above condition, (3.7) and the relation between p and ρ.
We now assume that

µ � − 1
2n.

If we set
ã = |B|1/p−1/qa,

then ã becomes a q-atom, with support contained in the same ball B as a. Therefore, ã is
also an element of Hq(Rn) and in fact an atom of Hq(Rn). Since T : Hq(Rn) → L2(Rn)
is bounded when 1/2 = 1/q − µ/n [10] (see also [17, Chapter III]) we have∫

B∗
|Ta(x)|p dx � cδ(1−p/2)ρ‖T‖(Hq,L2)‖a‖p

Hq

� cδ(1−p/2)ρ|B|(1/q−1/p)p‖ã‖p
Hq

� cδ(1−p/2)ρ+n(p/q−1)

� c

by the same argument as before.
We now turn to the estimate of the second integral on the right-hand side of (3.6).

Also in this case, we will adapt the decomposition of the kernel K of the operator T into
kernels Kν

j constructed by Seeger et al . in [14].
Recall that we have defined M = [n(1/p − 1)] + 1. Now we set

γ =
M(1 + n(1/p − 1))
(M − n(1/p − 1))ρ

. (3.8)

Note that γ � 1/ρ � 1.
Consider the collection of shells {Cj}, j = 0, 1, 2, . . . , where

C0 = {ξ ∈ Rn : |ξ| � 21/γ}

and
Cj = {ξ ∈ Rn : 2(j−1)/γ � |ξ| � 2(j+1)/γ}, j = 1, 2, . . . . (3.9)

For j > 0 fixed, we consider the collection of unit vectors {ξν
j }ν as above. Set

Γ ν
j =

{
ξ ∈ Rn :

∣∣∣∣ξν
j − ξ

|ξ|

∣∣∣∣ � 2 · 2−j/2
}

. (3.10)
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We now construct a partition of unity associated with the Γ ν
j . Let φ̃ be a non-negative

function in C∞
0 (Rn) such that φ̃(y) = 1 when |y| � 1 and φ̃(y) = 0 when |y| � 2. Set

ην
j (ξ) = φ̃

(
2j/2

(
ξ

|ξ| − ξν
j

))
, ξ �= 0.

Then ην
j ∈ C∞

0 (Rn \ {0}) is homogeneous of degree 0 in ξ, with support on the cone Γ ν
j

and identically 1 on the cone{
ξ ∈ Rn :

∣∣∣∣ξν
j − ξ

|ξ|

∣∣∣∣ � 2−j/2
}

.

Since
∑

ν ην
j (ξ) �= 0 for all ξ �= 0, we set

χν
j (ξ) = ην

j (ξ)
( ∑

ν

ην
j (ξ)

)−1

,

so that, for every j = 1, 2, . . . ,∑
ν

χν
j (ξ) = 1 for all ξ �= 0.

Let θ be C∞ with support on the interval (2−1/γ , 21/γ) and let it satisfy∑
k∈Z

θ(2−k/γt) = 1 for all t > 0.

For j > 0 set
ψ̂j(ξ) = θ(2−j/γ |ξ|) and ψ̂0(ξ) = 1 −

∑
j>0

ψ̂j(ξ).

It then follows that, for all ξ ∈ Rn,

1 = ψ̂0(ξ) +
+∞∑
j=1

∑
ν

χν
j (ξ)ψ̂j(ξ). (3.11)

Using this decomposition we then write

T =
+∞∑
j=0

Tj =
∑

j

∑
ν

T ν
j ,

where

T ν
j f(x) =

∫∫
R2n

bν
j (x, y, ξ) exp(2πi(φ(x, ξ) − y · ξ))f(y) dξ dy

=
∫

Rn

Kν
j (x, y)f(y) dy,

Kν
j (x, y) =

∫
Rn

bν
j (x, y, ξ) exp(2πi(φ(x, ξ) − y · ξ)) dξ (3.12)
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and

bν
0(x, y, ξ) = b0(x, y, ξ) = b(x, y, ξ)ψ̂0(ξ),

bν
j (x, y, ξ) = bj(x, y, ξ)χν

j (x, ξ) = b(x, y, ξ)ψ̂j(ξ)χν
j (ξ), j = 1, 2, . . . .

Note that for j > 0 the symbol bν
j has support in the ξ-variables in the region Cj ∩ Γ ν

j

and that the surface measure of the set Γ ν
j intersected with the unit sphere has a size

approximately equal to 2−j/2. Thus, the ‘radius’ of Γ ν
j on the sphere of radius 2j/γ is

2j(2−γ)/2γ .
We wish to prove some estimates for the kernels Kj of the operators Tj . In order to

do this, it suffices to prove appropriate estimates for the kernels Kν
j .

As in [14] we linearize the phase φ(x, ξ) − y · ξ when ξ is in supp(bν
j ). For simplicity,

we write ξν
j = ξ̄ and we select coordinates in the ξ-variables so that ξ1 is the direction of

ξ̄ and ξ′ = (ξ2, . . . , ξn) is orthogonal to ξ̄.
We then write

φ(x, ξ) − y · ξ = (φξ(x, ξ̄) − y) · ξ − (φ(x, ξ) − φξ(x, ξ̄) · ξ)

and we set
hx(ξ) = φ(x, ξ) − φξ(x, ξ̄) · ξ.

The two estimates in the following lemma can be proved by [14, (3.17) and (3.18)] (or
see [17, Chapter IX]).

Lemma 3.1. The function hx satisfies the estimates

(i) |(∂ξ1)
Nhx(ξ)| � AN2−Nj/γ ,

(ii) |(∇ξ′)Nhx(ξ)| � AN2−Nj/2γ ,

for any integer N � 1 and (x, ξ) in the support of bν
j .

We note that the condition ξ in the support of bν
j in the present choice of coordinates

translates into

2(j−1)/γ � |ξ| � 2(j+1)/γ and |ξ′| � c · 2j(2−γ)/2γ .

3.1. Estimates for the kernel Kj sizes

In order to complete the proof of Theorem 2.4 we need the following estimates for sizes
of the kernel Kj .

Proposition 3.2. The kernels Kj satisfy the following estimates:

(i) for all y ∈ Rn, ∫
Rn

|Kj(x, y)| dx � A;
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(ii) for all y, y′ ∈ Rn,∫
Rn

|Kj(x, y) − qj(x, y − y′)| dx � A2jM/γ |y − y′|M ,

where qj(x, y − y′) is the Taylor polynomial of Kj centred at y′ of order M − 1;

(iii) for y ∈ B and 2−j � δ, ∫
cB∗

|Kj(x, y)| dx � A2−jρδ−1.

The constant A > 0 is independent of j, y, y′ and δ.

The argument is somewhat standard, but we include it for sake of completeness. We
write the kernel Kν

j by linearizing the phase and including the error made in this process
into the symbol. Explicitly,

Kν
j (x, y) =

∫
Rn

exp(2πi(φ(x, ξ) − y · ξ))bν
j (x, y, ξ) dξ

=
∫

Rn

exp(2πi(φξ(x, ξ̄) − y) · ξ)τν
j (x, y, ξ) dξ,

where
τν
j (x, y, ξ) = bν

j (x, y, ξ) exp(2πihx(ξ)).

We consider the partial differential operator

L = (I − 22j∂2
ξ2
1
)(I − 2jρ〈∇ξ′ ,∇ξ′〉).

It is easy to check that for every positive integer N

LN (exp(2πi(φξ(x, ξ̄) − y) · ξ)) = exp(2πi(φξ(x, ξ̄) − y) · ξ)

× (1 + 4π2|2j(φξ(x, ξ̄) − y)1|2)N

× (1 + 4π2|2jρ/2(φξ(x, ξ̄) − y)′|2)N ,

where v1 denotes the first component of the vector v, while v′ denotes the vector
(v2, . . . , vn).

Recalling that τν
j (x, y, ξ) = bν

j (x, y, ξ) exp(2πihx(ξ)) and the estimates for bν
j we easily

see that for all non-negative integers N

|LNτν
j (x, y, ξ)| � AN2−j(n−ρ)/2γ .

Then, by integration by parts we obtain

|Kν
j (x, y)| � (1 + 4π2|2j(φξ(x, ξ̄) − y)1|2)−N (1 + 4π2|2jρ/2(φξ(x, ξ̄) − y)′|2)−N

×
∫

supp(τν
j )

|LNτν
j (x, y, ξ)| dξ

� (1 + 4π2|2j(φξ(x, ξ̄) − y)1|2)−N (1 + 4π2|2jρ/2(φξ(x, ξ̄) − y)′|2)−N

× AN2−j(n−ρ)/2γ · 2j/γ · 2(n−1)j(2−γ)/2γ .
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Next we take N > n/2 and integrate the above inequality in x ∈ Rn.
We make the change of variables z = φξ(x, ξ̄) and recall that the determinant Jacobian

of this map is bounded below by the uniform positive constant κ:∫
Rn

|Kν
j (x, y)| dx � CN

∫
Rn

2j(2−(n−ρ)+(n−1)(2−γ))/2γ

(1 + 4π2|2j(z − y)1|2 + 4π2|2jρ/2(z − y)′|2)N
dz

= CN

∫
Rn

2j(2−(n−ρ)+(n−1)(2−γ)−2γ−(n−1)ργ)/2γ

(1 + 4π2|u|2)N
du

= CN2j(n+ρ−γ(nρ+2−ρ)) · 2−j(n−1)/2

� CN2−j(n−1)/2,

for all y ∈ Rn, since

γ � 1
ρ

� n + ρ

nρ + 2 − ρ
.

Therefore,∫
Rn

|Kj(x, y)| dx �
∑

ν

∫
Rn

|Kν
j (x, y)| dx �

∑
ν

CN2−j(n−1)/2 � A,

for all y ∈ Rn; this proves (i).
Next we turn our attention to (ii). We begin by noticing that, with computations

analogous to the one just made, one can show that for all multi-indices α we have∫
Rn

|∂α
y Kν

j (x, y)| dx � C · 2|α|j/γ · 2−j(n−1)/2,

for all y ∈ Rn. Now let qν
j (x, y − y′) be the Taylor polynomial of the function Kν

j (x, y),
centred at y = y′, of order M − 1. Then∫

Rn

|Kν
j (x, y) − qν

j (x, y − y′)| dx � C · 2jM/γ · 2−j(n−1)/2|y − y′|M

and, summing over ν, we obtain (ii).
Finally, we prove (iii). Let B be the ball of centre ȳ and radius δ � 1, with j such that

2−j � δ. Let k be an integer such that 2−k � δ � 2−k+1. We claim that there exists a
constant C > 0 such that for every y ∈ B and x ∈ cB∗ we have

|2j(φξ(x, ξν
j ) − y)1|2 + |2jρ/2(φξ(x, ξν

j ) − y)′|2 � C2jρ−k. (3.13)

Arguing as before, i.e. performing the same change of variable, we see that∫
cB∗

|Kν
j (x, y)| dx

� AN

∫
cB∗

2j(2−(n−ρ)+(n−1)(2−γ))/2γ

(1 + 4π2|2j(φξ(x, ξν
j ) − y)1|2 + 4π2|2jρ/2(φξ(x, ξν

j ) − y)′|2)N
dx

� AN

∫
Rn

2j(2−(n−ρ)+(n−1)(2−γ))/2γ · 2−jρ+k

(1 + 4π2|2j(z − y)1|2 + 4π2|2jρ/2(z − y)′|2)N−1 dz
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� AN

∫
Rn

2j(2−(n−ρ)+(n−1)(2−γ)−2γ−(n−1)ργ)/2γ · 2−jρ+k

(1 + 4π2|u|2)N−1 du

� AN2−j(n−1)/2 · 2−jρδ−1,

for y ∈ B and 2j � δ. Finally, summing in ν we obtain the desired conclusion.
We now complete the proof of Theorem 2.4. We estimate the second integral on the

right-hand side of (3.6). We split the integration region into two parts, one where |Ta| � 1
and one where |Ta| > 1. In the first case we can estimate the integral with |supp(b)|.
Thus, we may assume that |Ta| > 1 in the region of integration, so that∫

cB∗
|Ta(x)|p dx �

∫
cB∗

|Ta(x)| dx.

Set

β =
1
ρ

(
1 + n

(
1
p

− 1
))

.

Then∫
cB∗

|Ta(x)| dx �
∫

cB∗
|T0a(x)| dx +

∑
2j<δ−β

∫
cB∗

|Tja(x)| dx +
∑

2j�δ−β

∫
cB∗

|Tja(x)| dx.

(3.14)
We begin with the last term on the right-hand side. Note that 2−j � δβ � δ. Using

Proposition 3.2 (iii) we have

∑
2j�δ−β

∫
cB∗

|Tja(x)| dx �
∑

2j�δ−β

∫
B

∫
cB∗

|Kj(x, y)| dx |a(y)| dy

� A
∑

2j�δ−β

2−jρ

δ

∫
B

|a(y)| dy

� A
∑

2j�δ−β

2−jρ

δ
δn(1−1/p)

� A · δβρ−1+n(1−1/p)

� A

because of our choice of β.
Now we consider the other sum in (3.14). We use the moment condition of the atom

a, which holds since δ � 1. Using Proposition 3.2 (ii) we have

∑
2j<δ−β

∫
cB∗

|Tja(x)| dx =
∑

2j<δ−β

∫
cB∗

∣∣∣∣
∫

B

(Kj(x, y) − qj(x, y − ȳ))a(y) dy

∣∣∣∣ dx

�
∑

2j<δ−β

∫
B

∫
cB∗

|Kj(x, y) − qj(x, y − ȳ)| dx |a(y)| dy
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�
∑

2j<δ−β

2jM/γ

∫
B

|y − ȳ|M |a(y)| dy

�
∑

2j<δ−β

2jM/γ · δM+n(1−1/p)

� A · δ−βM/γ · δM+n(1−1/p)

� A,

recalling that M = [n(1/p − 1)] + 1 and that γ = Mβ(M + n(1 − 1/p))−1.
We finally estimate

∫
cB∗ |T0a(x)| dx. We note that, since δ � 1, a is also an atom

in Hp(Rn). Therefore, â ∈ C(Rn) and |â(η)| � cn,p|η|n(1/p−1) (see, for example, [17,
§ III.5.4]), while the Fourier transform of b0(x, y, ξ) exp(−iy ·ξ) in y is a Schwartz function
in all of its arguments. Then, by Parseval, if N is large enough,∫

cB∗
|T0a(x)| dx =

∫
cB∗

∣∣∣∣
∫

Rn

∫
|ξ|�21/γ

b0(x, y, ξ)e2πi(φ(x,ξ)−y·ξ)a(y) dy dξ

∣∣∣∣ dx

� AN

∫
cB∗

∫
|ξ|�21/γ

∫
Rn

(1 + |η|)−N |â(η)| dη dξ dx

� A.

This completes the estimate for
∫

cB∗ |Ta(x)|p dx and the proof of Theorem 2.4.

4. Proof of Theorem 2.2

In order to prove Theorem 2.2 we use Theorem 2.4 and the characterization of the local
Hardy spaces stated below. The local Riesz transforms rk are defined as follows. Let ψ̂0

be as in (3.11). For k = 1, . . . , n set

(̂rkf)(ξ) = f̂(ξ)(1 − ψ̂0(ξ))
(

− iξk

|ξ|

)
.

Moreover, we say that a tempered distribution is bounded if f ∗ Ψ ∈ L∞(Rn) for all
Ψ ∈ S(Rn). Then we have the following characterization of the local Hardy spaces (cf. [17,
§ III.4.3] for the analogous characterization for the classical Hardy spaces Hp(Rn)). We
denote by ψ̌ the inverse Fourier transform of a tempered distribution ψ.

Proposition 4.1. Let f be a tempered distribution which is bounded. Let Ψ ∈
C∞
0 (Rn),

∫
Ψ dx = 1 be fixed. Then f ∈ hp(Rn) if and only if ψ̌0 ∗ f ∈ hp(Rn) and

there exists a constant A > 0 such that for all ε with 0 < ε � 1 we have∑
|α|�M

‖rα(f) ∗ Ψε‖Lp(Rn) � A.

Here rα, as usual, denotes the composition rα1
1 ◦ · · · ◦ rαn

n , M = [n(1/p − 1)] + 1, and
Ψε(x) = ε−nΨ(x/ε).
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The proof of this proposition is somewhat standard, although not quite immediate.
The authors have not found it in the literature and they give details in [13].

Note that the distribution Tbf has compact support, so that ψ̌ ∗ (Tbf) ∈ S(Rn); hence,
ψ̌ ∗ (Tbf) ∈ hp. Thus, given this characterization, it suffices to prove the following result.

Proposition 4.2. Let P = Pτ be the pseudodifferential operator with symbol τ ∈ Sµ′

1,0
given by

(Pτf)(x) =
∫

Rn

τ(x, ξ) exp(2πix · ξ)f̂(ξ) dξ.

Then, the composition of P with the Fourier integral operator Tb can be written as sum

PτTb = F + E,

where F is a Fourier integral operator with the same phase φ(x, η) as Tb and symbol
p ∈ Sµ+µ′

ρ,1−ρ, and E is a smoothing linear operator in the sense that

E : hp(Rn) → Lp
s(R

n)

for every s � 0.

Proof of Proposition 4.2. Let R > 0 be large enough so that suppx(b) ⊂ B(0, R).
Let χ ∈ C∞

0 (Rn) be identically 1 on B(0, 2R) and with support contained in B(0, 3R).
Let

τ(0)(x, ξ) = χ(x)τ(x, ξ) and τ(∞)(x, ξ) = (1 − χ(x))τ(x, ξ).

We initially assume that τ has compact support in the variable ξ. This assumption
allows us to perform changes in the integration orders and guarantees that the expressions
that we write are well defined. However, the estimates will not depend on the size of the
ξ-support. Thus, by a limiting argument, we will be able to remove the compactness
assumption at the end of the proof.

We write

(PτTb)f(x) =
∫∫

τ(0)(x, ξ) exp(2πi(x − y) · ξ)Tbf(y) dξ dy

+
∫∫

τ(∞)(x, ξ) exp(2πi(x − y) · ξ)Tbf(y) dξ dy

=
∫∫

|η|>1

( ∫∫
τ(0)(x, ξ) exp(2πi[(x − y) · ξ + φ(y, η)])b(y, z, η) dξ dy

)
× f(z) exp(−2πiz · η) dη dz

+
∫∫

|η|�1

( ∫∫
τ(0)(x, ξ) exp(2πi[(x − y) · ξ + φ(y, η)])b(y, z, η) dξ dy

)
× f(z) exp(−2πiz · η) dη dz
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+
∫∫

|η|>1

( ∫∫
τ(∞)(x, ξ) exp(2πi[(x − y) · ξ + φ(y, η)])b(y, z, η) dξ dy

)
× f(z) exp(−2πiz · η) dη dz

+
∫∫

|η|�1

( ∫∫
τ(∞)(x, ξ) exp(2πi[(x − y) · ξ + φ(y, η)])b(y, z, η) dξ dy

)
× f(z) exp(−2πiz · η) dη dz

=:
4∑

j=1

(T (j)f)(x).

It is a well-known fact that T (1) is a Fourier integral operator with the same phase
φ(x, η) as Ta and symbol p given by

p(x, z, η) = exp(−2πiφ(x, η))Pτ(0)(b(· , z, η) exp(2πiφ(· , η)))(x)

for |η| > 0 (see, for example, [18, Theorem 3.1]). We remark that p is (asymptotically
equivalent to a symbol) in Sµ+µ′

ρ,1−ρ and that it has compact support in x and z. (The fact
that p ∈ Sµ+µ′

ρ,1−ρ can be seen as in the proof of [18, Theorem 3.1].)
Next we turn to T (2). We wish to prove that

‖∂α
x (T (2)f)‖Lp � C‖f‖hp , (4.1)

where the constant C depends only on the orders µ, µ′, n, p, |α| and on the size of the
support of b.

Using the assumption (that we will remove later) that τ has compact support in ξ and
an integration by parts, for any non-negative integer N we write

(T (2)f)(x) =
∫∫

τ(0)(x, ξ) exp(2πi(x − y) · ξ)Tb0f(y) dy dξ

=
∫ ( ∫

LN
y (Tb0f)(y) dy

)
τ(0)(x, ξ)

(1 + 4π2|ξ|2)N
exp(2πi(x − y) · ξ) dξ,

where
Tb0f(y) =

∫∫
|η|�1

b(y, z, η) exp(2πi(φ(y, η) − z · η))f(z) dη dz,

and Ly = I − ∆y.
Now we claim that there exists a constant A = AN such that, for all f ∈ hp(Rn) and

y ∈ supp(b),
|LN

y (Tb0f)(y)| � A‖f‖hp . (4.2)

Assume the claim for now. Then, if we take N > (µ′ + n)/2

|(T (2)f)(x)| �
∫

Rn

( ∫
Rn

|LN
y (Tb0f)(y)| dy

)
|τ0(x, ξ)|

(1 + 4π2|ξ|2)N
dξ

� C‖f‖hp ,
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where the constant depends on the seminorm of τ but not on the size of the support.
Therefore,

‖T (2)f‖Lp � A‖f‖hp .

It is now easy to see that we can apply the same argument to ∂α
x (T (2)f)(x) to obtain

the desired estimate (4.1).
Before proving the claim, we also analyse the term T (4). We have

(T (4)f)(x) =
∫∫

|η|�1

( ∫∫
τ(∞)(x, ξ) exp(2πi[(x − y) · ξ − φ(y, η)])b(y, z, η) dξ dy

)
× exp(−2πiz · η)f(z) dη dz

=
∫

|y|�R

K∞(x, y − x)(Tb0f)(y) dy,

where Tb0 is defined as above, and K∞(x, y − x) is the kernel of the pseudodifferential
operator with symbol τ(∞)(x, ξ) = (1−χ(x))τ(x, ξ). It is well known that K∞ ∈ C∞(Rn×
Rn \ {0}) and that there exists a constant C = Cα,β > 0 such that

|∂β
x∂α

ξ K∞(x, z)| � C|z|−n−µ′−|α|−N ,

for z �= 0, when n + µ′ + |α| + N > 0.
Note that K∞(x, y − x)(Tb0f)(y) �= 0 implies |x − y| > R. Therefore, using the claim

again, we have

‖∂β
x (T (4)f)‖p

Lp =
∫

|x|>2R

∣∣∣∣
∫

|y|�R

∂β
xK∞(x, x − y)(Tb0f)(y) dy

∣∣∣∣
p

dx

� C‖f‖p
hp

∫
|x|>2R

( ∫
|y|�R

|x − y|−n−µ′−N dy

)p

dx

� C‖f‖p
hp

∫
|x|>2R

|x|−(n+µ′+N)p dx

� C‖f‖p
hp

if we choose N large enough.
Finally, we consider T (3). It is easy to see that

(T (3)f)(x) =
∫∫

|η|>1
p(x, z, η) exp(2πi(x − z) · η)f(z) dη dz,

where

p(x, z, η) = exp(−2πix · η)
∫

|y|�R, |y−x|�R

K∞(x, x − y)b(y, z, η) exp(2πiφ(y, η)) dy.

It is a standard argument to check that p ∈ S−N
ρ,1−ρ for all N > 0, using the fact that φ is

C∞ in η for |η| > 0. Then, it is a standard fact that it maps hp(Rn) into Lp
s(R

n) for all
s � 0.
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It remains only to prove the claim (4.2). It suffices to prove that, for every p-atom a

in hp, with support contained in a ball Bδ of radius δ,∣∣∣∣
∫∫

|η|�1
LN

y b(y, z, η) exp(2πi(φ(y, η) − z · η))a(z) dη dz

∣∣∣∣ � C,

where C is independent of δ.
Let

g(y, θ) =
( ∫

|η|�1
LN

y b(y, · , η) exp(2πi(φ(y, η) − (·) · η) dη

)̂
(θ).

Then g is C∞ and compactly supported in y, while it is C∞ and rapidly decreasing in θ.
If δ � 1, then a is also an atom of Hp(Rn) and |â(θ)| � cn,p|θ|n(1/p−1) (see, for example,

[17, § III.5.4]). Then∣∣∣∣
∫∫

|η|�1
LN

x (b(y, z, η) exp(2πi(φ(x, η) − z · η)))a(z) dη dz

∣∣∣∣
� CN

∫
(1 + |θ|)−N |θ|n(1/p−1) dθ

� C

uniformly in δ.
If δ > 1, then∣∣∣∣

∫∫
|η|�1

LN
x (b(y, z, η) exp(2πi(φ(x, η) − z · η)))a(z) dη dz

∣∣∣∣ � C‖a‖L1

� Cδn(1−1/p)

� C.

This proves the claim and hence the proposition. �

We are now ready to finish the proof of Theorem 2.2. In view of Proposition 4.1, it
suffices to show that ∑

|α|�M

‖rα(Tbf) ∗ Ψε‖Lp(Rn) � A

for every f ∈ hp(Rn), with A independent of ε.
We note that we can write

rα(Tbf) ∗ Ψε = PεTb,

where Pε is a pseudodifferential operator of order 0 (and type (1, 0)). Thus, by Proposi-
tion 4.2,

PεTb = Fε + Eε.

A careful analysis of the symbols of the operators Fε + Eε reveals that these operators
are bounded on hp(Rn) with norms uniformly bounded in ε. Hence, for f ∈ hp(Rn) and
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for every |α| � M ,

‖rα(Tbf) ∗ Ψε‖Lp = ‖PεTb(f)‖Lp

� ‖Fε(f)‖Lp + ‖Eε(f)‖Lp

� A‖f‖hp ,

with the constant A independent of ε. This proves the theorem.

5. The case of manifolds of bounded geometry

In this final section we extend our main result to the case of a smooth, complete Rieman-
nian manifold with bounded geometry. Since our main result, Theorem 2.1, is already
local in nature, it suffices to choose smooth manifolds on which the local Hardy spaces
are well defined and admit an atomic decomposition.

A smooth, complete, connected Riemannian manifold X is said to be of bounded
geometry if its radius of injectivity rin is positive and if every covariant derivative of
the curvature tensor is bounded. Examples of manifolds of bounded geometry are the
compact manifolds and homogeneous manifolds, e.g. Lie groups (see [9]).

Theorem 5.1. Let X and Y be smooth, connected, complete Riemannian manifolds
with bounded geometry of the same dimension n. Let C ⊆ T ∗(X) \ {0} × T ∗(Y ) \ {0} be
a submanifold which is locally a canonical graph and let F ∈ Iµ(X × Y, C). Let hp denote
the local Hardy space for 0 < p � 1 and let µ � −(n − 1)(1/p − 1/2). Then

F̃ : hp
comp(X) → hp

loc(Y )

is bounded.

On such manifolds, it is possible to define the local Hardy spaces and show that they
admit an atomic decomposition analogous to that in the Euclidean space Rn (see [15]).
Once the atomic decomposition for the local Hardy spaces is available, our main result,
Theorem 2.1, immediately extends to this setting.

We remark that in [16] Skrzypczak studied the boundedness of classical pseudodiffer-
ential operators on various scales of spaces, including the local Hardy spaces.
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