Correcting Astigmatism in SEM Images

Charles E. Lyman
Department of Materials Science and Engineering, 5 East Packer Avenue, Lehigh University, Bethlehem, PA 18018
charles.lyman@lehigh.edu

Every scanning electron microscope (SEM) operator should be able to correct an astigmatic image manually. While many SEMs are now equipped with automated astigmatism correction, there are situations, particularly at high magnification, where there is no substitute for eye-hand coordination to make this important correction. There are many ways to correct for astigmatism manually; this article presents the author’s preferred technique.

The goal is to make the focused electron probe as small as possible. To view the effect of astigmatism on the image, produce a live image on the SEM viewing screen of a specimen with tiny, random, equiaxed details (no linear features). Linear features tend to fool the eye and cause an incorrect setting of the stigmators. Set the magnification to a high value where the fine details of the random features can be easily viewed (see Figure 1). This may be 5,000× to 10,000× for a tungsten (W) gun SEM and 50,000× to 100,000× for a field emission gun (FEG) SEM. If available, switch to reduced raster scan so that an image feature can be focused in real time. The presence of astigmatism can be detected by underfocusing the objective lens, causing the image details to line up with the beam shape at that focus. By overfocusing, these details line up along a direction orthogonal to that of the underfocus condition. At exact focus the image appears to be acceptable, but it is not really as sharp as it could be because the probe size is larger than it should be. Without correcting for astigmatism, the smallest electron probe for that particular condenser lens setting will not have been achieved.

To correct for astigmatism, the operator should find these steps helpful: (1) set the magnification to a high value such that the astigmatism can be detected, typically a step or two higher than that planned for image acquisition; (2) switch to rapid scan with a reduced raster; (3) set the objective lens at the best focus (exact focus) as shown in Figure 1; (4) sharpen the image with the x-stigmator control; (5) refocus the image with the objective lens control; (6) sharpen the image with the y-stigmator; (7) refocus the image; and (8) repeat steps 4 through 7 until the image cannot be further improved. Figure 2 shows the effect of removing astigmatism from the image: the image shows finer details because the probe size is smaller. Once the focus and stigmation are set at high magnification, these settings will be valid at all lower magnifications.

If the image is noisy or of low contrast, not enough electron probe current was available in the specimen to produce a smooth, noise-free image. To mitigate noise in recorded images, the dwell time of the beam on each pixel could be increased, lengthening the image recording time. Another way to provide more current in the electron probe is to weaken the condenser lens a bit, which will also increase the probe size. But for low and medium magnifications, the larger current and resulting greater contrast will outweigh the increase in electron probe size (for probe sizes < 2 pixels at the specimen). These are changes to operating conditions that SEM operators might make multiple times in a single session if both low- and high-magnification images are required. With a field-emission electron source such situations are less likely because the electron probe typically will have a large current even at small probe sizes.

Incomplete astigmatism correction can be caused by the following: stigmating at the same magnification used for image acquisition, stigmating on non-random specimen...

Figure 1: Through-focus images showing the stretching of the beam in orthogonal directions as the objective lens is first under-focused, brought to exact focus, and then over-focused. The out-of-focus images of particles are aligned with the shape of the elongated electron beam. At exact focus the image of random particles appears to be acceptable, but it is not. Image width = 12 μm.
Don’t track dirt on your sample!
Use Evactron® plasma cleaning

Don’t let contaminated chambers and dirty specimens terminate your microscope session. Dual action *turbo plasma cleaning™* removes adventitious hydrocarbons with:

- Plasma etch plus UV active desorption
- Hollow cathode plasma radical source
- No sputter etch damage or debris
- A compact and efficient plasma source
- Cleaning in minutes for days of perfect imaging and analysis

Need clean sample and chamber surfaces? Let us show you the “fastest way to pristine”™!

WWW.EVACTRON.COM 1-650-369-0133
details, and just using the focus and stigmator controls to sharpen the image without a strategy [1].

Reference

Figure 2: Images before and after astigmatism correction. At exact focus the astigmatic electron probe is larger than after correction when the contribution to the probe size attributable to astigmatism is eliminated. Image width = 10 μm.
Quantitative WDS and EDS microanalysis
· FE-EPMA and SEM
· Microanalysis standards
· Compositional mapping
· Quality control
· Sample preparation
· Hardware developments
· Microanalysis applications
· CL and Soft X-ray spectroscopy
· Early Career Scholar presentations
· Sponsor technical presentations

GROUP SESSIONS
Tutorials · User group meetings · Problem solving · Microanalysis software tools and demonstrations

SCIENTIFIC AND SOCIAL EVENTS
Opening reception · Group meals and banquet · Poster session · Networking opportunities

Efficient, precise and realistically proportioned instruments are ideal for microscopists. Our line of micro-tools includes needles, gravers, chisels, knives, hooks and mirrors, probes, spatulas, scribes and microrulers. All 32 tools are offered singly or in sets of eight tools with handles. Available in tip diameters from .025mm to 1.00mm.

www.minitoolinc.com
info@minitoolinc.com

PELCO® Silicon Nitride & Silicon Dioxide Membranes
Next Generation SiN TEM Support Films

- Robust and clean 8, 15, 50 and 200nm SiN substrates
- Ø3.0mm frame
- EasyGrip™ edges
- Free from debris
- Super flat 8, 15, and 40nm silicon dioxide substrates

TED PELLA, INC.
Microscopy Products for Science and Industry
www.tedpella.com sales@tedpella.com 800.237.3526

minus k® TECHNOLOGY
25 years
VIBRATION ISOLATION
Now only 2 1/4 inches tall

BREAKTHROUGH
Ultimate 0.5 Hz Performance!
Perfect for Microscopes
No Air! No Electricity!
sales@minusk.com www.minusk.com

www.themas.org