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In this paper, we present Reo, which forms a paradigm for composition of software

components based on the notion of mobile channels. Reo is a channel-based exogenous

coordination model in which complex coordinators, called connectors, are compositionally

built out of simpler ones. The simplest connectors in Reo are a set of channels with

well-defined behaviour supplied by users. Reo can be used as a language for coordination of

concurrent processes, or as a ‘glue language’ for compositional construction of connectors

that orchestrate component instances in a component-based system. The emphasis in Reo is

just on connectors and their composition, and not on the entities that connect to,

communicate and cooperate through these connectors. Each connector in Reo imposes a

specific coordination pattern on the entities (for example, components) that perform I/O

operations through that connector, without the knowledge of those entities. Channel

composition in Reo is a very powerful mechanism for construction of connectors. We

demonstrate the expressive power of connector composition in Reo through a number of

examples. We show that exogenous coordination patterns that can be expressed as

(meta-level) regular expressions over I/O operations can be composed in Reo out of a small

set of only five primitive channel types.

1. Introduction

Modular design and construction of software involves modules that rather intimately

know and rely on each other’s interfaces and fit together like pieces in a jigsaw puzzle. In

contrast, software components are expected to be more independent of each other and the

specific application environments in which they are deployed. Because modules can be less

independent of their application environments, the provisions for the required interfacing

among them can be designed into the modules that make up a modular system. However,

if the functionality of each such module is to be supported by a component instead, the

bulk of this interfacing must be left out of the individual components, because provisions

for interfacing of a component depend on the context in which it is deployed and the

other components that it may interact with. Thus, typically, the components that comprise

a system do not exactly fit together as pieces of a jigsaw puzzle, but leave significant

interfacing gaps that must somehow be filled with additional code. Such interfacing code

is often referred to as ‘glue code’, and is typically highly special purpose and specific.

Simplified programming languages, sometimes called scripting languages, are often used

to write such glue code.
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The (scripting) programs that constitute the glue code are inherently no different from

other software. In complex systems, the bulk of the specialised glue code by itself can grow

in its size and rigidity, rendering the system hard to evolve and maintain, in spite of the

fact that this inflexible code wraps and connects reusable, maintainable and replaceable

components.

An alternative to writing scripts or specialised glue code is to construct the glue code

compositionally, out of primitive connectors. A promising approach in this direction is to

use channels as the primitives out of which such connectors are constructed. Reo defines

the primitive operations that allow composition of channels into complex connectors.

A channel is a point-to-point medium of communication with its own unique iden-

tity and two distinct ends. Channels can be used as the only primitive constructs in

communication models for concurrent systems. Like the primitive constructs in other

communication models, channels provide the basic temporal and spatial decouplings of the

parties in a communication, which are essential for explicit coordination. Channel-based

communication models are ‘complete’ in the sense that they can easily model the primitives

of other communication models (for example, message passing, shared spaces or remote

procedure calls). Furthermore, channel-based models have some inherent advantages

over other communication models, especially for concurrent systems that are distributed,

mobile, and/or whose architectures and communication topologies dynamically change

while they run:

— Efficiency: Like remote procedure calls and message passing, channel-based models

support point-to-point communication. As such, in contrast to shared data space

models, the intended target of communication is always unique and internally known

to the system. In truly distributed systems, this allows more efficient implementations

of point-to-point models.

— Security: In shared data space models, the data in every communication (if not its

actual information content) is always exposed for everyone to observe and consume.

Furthermore, third parties can, accidentally or intentionally, produce data that look

like, and thus may get co-opted as, the data of some particular communication. In

contrast, point-to-point models shield communication from accidental exposure to or

intentional interference by third parties.

— Architectural Expressiveness: Figure 1 shows examples of the connections among

component instances (represented as boxes) using three different communication

models. In this figure, channels and direct connections are shown as straight lines; the

shared data space is shown as an amorphous blob; and the software bus is shown

as an elongated rectangle. A point-to-point communication model of an application

(Figure 1.a) represents its communication pattern and is highly expressive of its

architecture: in such a model, it is clear to see which other components or entities

can possibly be affected if a given component or entity is modified or replaced.

Models such as shared data spaces (Figure 1.b) and software buses (Figure 1.c) are

not architecturally expressive because they contain no explicit representation of such

relevant information as which specific components or entities actually communicates

with each other.
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Fig. 1. Architectural expressiveness.

— Anonymity: Anonymous communication means that the parties involved in a com-

munication need not necessarily know each other. In contrast to remote procedure

calls or message passing models, channel-based models can support the anonymous

communication, which is one of the hallmarks of shared data space models.

The characteristics of channel-based models are attractive from the point of view

of coordination. Dataflow models, Kahn networks (Kahn 1974) and Petri-nets can be

viewed as specialised channel-based models that incorporate certain basic constructs for

primitive coordination. IWIM (Arbab 1996; Katis et al. 2000) is an example of a more

elaborate coordination model based on channels, and Manifold (Bonsangue et al. 2000)

is an incarnation of IWIM as a real coordination programming language that supports

dynamic reconfiguration of Kahn network topologies.

A common strand running through these models is a notion that is called ‘exogenous

coordination’ in IWIM (Arbab 1998). This is the concept of ‘coordination from outside’

the entities whose actions are coordinated. Exogenous coordination is already present,

albeit in a primitive form, in dataflow models: unbeknownst to a node, its internal activity

is coordinated (or, in this primitive instance, merely synchronised) with the rest of the

network by virtue of the input/output operations that it performs. IWIM and Manifold

allow much more sophisticated exogenous coordination of active entities in a system.

In this paper we describe Reo, which is a channel-based model for exogenous coordin-

ation that was introduced in Arbab and Mavaddat (2002). The name Reo is pronounced

‘rhe-oh’ and comes from the Greek word ρεω which means ‘[I] flow’ (as water in streams

and channels). In plain English text, ρεω is best transcribed as Reo.

Our work on Reo builds upon the IWIM model of coordination and the coordination

language Manifold, and extends our earlier work on components. In Arbab et al. (2000a)

a language for dynamic networks of components was introduced, and in de Boer and

Bonsangue (2000) a compositional semantics for its asynchronous subset is given. A

formal model for component-based systems is presented in Arbab et al. (2000b), together

with a formal-logic-based component interface description language that conveys the

observable semantics of components, a formal system for deriving the semantics of a

composite system out of the semantics of its constituent components, and the conditions

under which this derivation system is sound and complete. A concrete incarnation of

mobile channels to support our formal model for component-based systems is presented

in Scholten (2001). The generalisation of data-flow networks for describing dynamically
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reconfigurable or mobile networks has also been studied in Broy (1995) and Grosu and

Stoelen (1996) for a different notion of observables using the model of stream functions.

Reo is based on a calculus of channels in which complex connectors are constructed

through the composition of simpler ones, the simplest connectors being an arbitrary set of

channels with well-defined behaviour. Reo can be used as the ‘glue code’ in Component

Based Software Engineering, where a system is compositionally constructed out of com-

ponents that interact and cooperate with each other anonymously through Reo connectors.

The rest of this paper is organised as follows. The basic concepts of components, con-

nectors, channels, and so on are introduced in Section 2. What Reo expects from channels

is described in Section 3. Most of the channel operations defined in Section 3 are not to

be used in the (instances of) components directly; they are low-level operations that are

used internally by Reo to define its higher-level operations on connectors. Connectors and

channel composition are discussed in Section 4. Patterns and channel types are described in

Sections 5 and 6, respectively. Sections 7, 8, and 9 provide an insight into the operational

semantics of Reo with hints as to its actual implementation. Section 10 contains a

number of examples of simple connectors constructed out of channels. In Section 11 the

expressiveness of the compositional paradigm of Reo is demonstrated through a number

of more complex connectors that can be used to implement any coordination pattern

that can be expressed as a regular expression over channel input/output operations. In

contrast to the informal operational semantics described in Sections 7, 8, and 9, Section 12

contains an overview of a particularly interesting formal coalgebraic semantics for Reo.

Finally, a summary of our conclusions and future work is presented in Section 13.

2. Basic concepts

Reo is a coordination model, and as such has very little to say about the computational

entities whose activities it coordinates. These entities can be fragments or modules of se-

quential code, passive or active objects, threads, processes, agents or software components.

Without loss of generality, we refer to these entities as component instances in Reo. From

the point of view of Reo, a system consists of a number of component instances executing

at one or more locations, communicating through connectors that coordinate their

activities. This is shown in Figure 2, where component instances are represented as boxes,

channels as straight lines, and connectors are delineated by dashed lines. Each connector in

Reo is, in turn, constructed compositionally out of simpler connectors, which are ultimately

composed out of channels. This is why each dashed closed curve representing a connector

in Figure 2 contains only a set of channels connected together in a specific topology.

A component instance, p, is a non-empty set of active entities (for example, processes,

agents, threads, actors, and so on) whose only means of communication with the entities

outside of this set is through input/output operations that they perform on a (dynamic)

set of channel ends that are connected to p. The communication among the active entities

inside a component instance, and the mechanisms used for this communication, are of no

interest. Likewise, Reo is oblivious to the synchronisation, mutual exclusion and coordi-

nation that may have to take place among the active entities inside a component instance

for their proper utilisation of the channel ends that are connected to that component
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Fig. 2. Components and connectors.

instance. All these details are internal to a component instance and, thus, irrelevant.

What is relevant is only the inter-component-instance communication which takes place

exclusively through channels that comprise Reo connectors. Indeed, the constituents inside

a component instance may themselves be other component instances that are connected

by Reo connectors.

A component is a software implementation whose instances can be executed on physical

or logical devices. Thus, a component is an abstract type that describes the properties of

its instances.

A physical or logical device where an active entity executes is called a location. Examples

of a location include a Java virtual machine; a multi-threaded Unix process; and a

machine, as identified, for example, by an IP address. A component instance may itself be

distributed, in the sense that its constituents may be executing at different locations (in

which case, this too is an internal detail of the component instance to which Reo is obli-

vious). Nevertheless, there is always a unique location associated with every (distributed)

component instance, indicating where that component instance is (nominally) located.

There can be zero or more component instances executing at a given location, and com-

ponent instances may migrate from one location to another while they execute (mobility).

As far as Reo is concerned, the significance of a location is that inter-component com-

munication may be cheaper among component instances that reside at the same location.

The only primitive medium of communication between two component instances is

a channel, which represents an atomic connector in Reo. A channel has its own unique

identity. Channels are dynamically created in Reo and they are automatically garbage

collected; that is, they are not explicitly destroyed.

A channel itself has no direction, but each channel in Reo has exactly two directed

ends, with their own identities, through which components refer to and manipulate that

channel and the data it carries. There are two types of channel ends: sources and sinks. A

source channel end accepts data into its channel. A sink channel end dispenses data out

of its channel. A channel end that is known to a component instance can be used by any

of the active entities inside that component instance in Reo operations.

Channels are used in Reo exclusively to transfer data using input/output operations

performed on their ends (specifically, observe that channels do not support ‘message

passing’ with the ‘method-call’ semantics). A subset of Reo operations (for example, the
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input/output operations) can be performed by (an entity inside) a component instance

on a channel end only if the channel end is connected to that component instance. The

identity of a channel-end may be known to zero or more component instances, but each

channel end can be connected to at most one component instance at any given time. The

connection of a channel end to a component instance is a logical notion that is independent

of the locations of the channel end and the component instance. The active entities inside

a component instance that shares the same location with one of its connected channel

ends may be able to manipulate that channel end more efficiently, but co-location (of

component instances and their connected channel ends) is not a prerequisite for any such

operation.

Both components and channels are assumed to be mobile in Reo. A component instance

may move from one location to another during its lifetime. When this happens, the channel

ends connected to this component instance remain connected, preserving the topology of

channel connections. Furthermore, a channel end connected to a component instance

may be moved by the active entities inside that component instance to another location,

perhaps to enhance the efficiency of subsequent operations on this channel end, still

preserving the topology of channel connections. Irrespective of locations, a channel end

connected to a component instance may be disconnected from that component instance,

and connected to another component instance. This, of course, dynamically changes the

topology of channel connections in the system.

3. Primitive channel operations

The set of primitive operations on channels and channel ends in Reo is summarised in

Table 1. The names of all these operations begin with an underscore because they are to

be used internally by Reo only: (the active entities inside) component instances are not al-

lowed to perform these operations directly.

The first column in Table 1 gives the syntax of the operations. Italics denote meta-

symbols. Square brackets are meta-symbols that indicate optional parameters. The argu-

ment chantype designates a channel type, for example, one of the identifiers that appear in

Tables 6 and 7.

— The parameter loc identifies a location.

— The parameter e stands for a channel-end-value, which is either a source or a sink end

of a channel.

— The optional parameter t indicates a time-out value greater than or equal to 0. When

no time-out is specified for an operation, it defaults to ∞. An operation returns with a

result that indicates failure if it does not succeed within its specified time-out period.

— The parameter conds is a channel wait condition expression described in Section 3.6.

— The parameter inp is a sink of a channel, from which data items can be obtained.

— The parameter outp is the source of a channel, into which data items can be written.

— The parameter v is a variable from/into which a data item is to be transferred

into/from the specified channel end.

— The parameter pat is a pattern (see Section 5) that must match with a data item for

it to be transferable to v.
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Table 1. Primitive channel operations.

Operation Con. Description

create(chantype) – Creates a channel of type chantype and returns the

identifiers of its two channel ends.

forget(e) N changes e such that it no longer refers to the channel

end it designates.

move(e, loc) Y moves e to the location loc.

connect([t,] e) N Connects the specified channel end, e, to the component

instance that contains the active entity that performs

this operation.

disconnect(e) N Disconnects the specified channel end from the

component instance that contains the active entity that

performs this operation.

wait([t,] conds) N Suspends the active entity that performs this operation,

waiting for the conditions specified in conds to become

true for the specified channel ends.

read([t,] inp[, v[, pat]]) Y Suspends the active entity that performs this operation,

waiting for a value that can match with pat, to become

available for reading from the sink channel end inp into

the variable v. The read operation is non-destructive:

the value is copied from the channel into the variable,

but the original remains intact.

take([t,] inp[, v[, pat]]) Y This is the destructive variant of read: the channel

loses the value that is read.

write([t,] outp, v) Y Suspends the active entity that performs this operation

until it succeeds in writing the value of the variable v

to the source channel end outp.

The second column in Table 1 indicates whether or not a connection between the

component instance and the channel end involved in an operation is a prerequisite for the

operation. Clearly, this is irrelevant for the create operation. The operations forget,

connect and disconnect, and the conditions in wait can specify any channel end

irrespective of whether or not it is connected to the component instance involved. The

move and the I/O operations read, write, and take, on the other hand, fail if the

active entities that perform them reside in component instances that are not connected to

the channel ends involved in these operations.

Every channel type in Reo must support the primitive operations in Table 1, with a

‘reasonable variation’ of the semantics for each operation as described below. We allow

‘reasonable variations’ in the precise semantics of these primitives because we wish to

allow for such varieties of channels as ‘read-only’ channels, ‘immutable’ channels, and

‘lossy channels’, each of which may require slight deviations in the exact semantics of

how some of these operations are supported. For instance, a read-only channel may not

support the destructive effect of take, an immutable channel may not allow destruction
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or modification of the data items it contains through take and write, and a lossy

channel may throw away certain data items at the time of their write, and so on.

As far as Reo is concerned, the effect of concurrently performing more than one I/O

operation on a channel end is undefined. For instance, if an I/O operation is already

pending on a channel end e and another active entity performs another I/O operation

on e , the channel to which e belongs can reject the second operation as an error, preempt

the first operation and perform the second, serialise the operations in some order, and

so on, or even behave unpredictably. Reo simply does not depend on this aspect of the

behaviour of its primitive channels. See Section 4.1.3 for concurrent I/O operations on

nodes.

3.1. Channel create

The create operation creates a channel and returns the identifiers of its pair of channel

ends†. The ends of a newly created channel are not initially connected to any component

instance. Like other values, channel end identifiers can be spread within or among

component instances by copying, parameter passing, or through writing/reading them

to/from channel ends. This way, channel ends created in an active entity within one

component instance can become known in other active entities in the same or another

component instance. There is no explicit operation in Reo to delete a channel. In practice,

useless channels that can no longer be referred to by any (active entity in any) component

instance may be garbage collected.

3.2. Channel forget

The forget operation changes its e argument such that it no longer refers to the channel

end it designates. An active entity that (indirectly) performs this operation (by performing

its corresponding Reo operation forget described in Section 4.1.2) causes e to be forgotten

by all active entities inside the same (immediately enclosing) component instance. This

contributes to the eligibility of a channel as a candidate for garbage collection.

3.3. Channel move

The move operation moves the channel end identified by its e argument to the specified

location. Although the mobility of channel ends has significant consequences both for the

applications as well as the implementation of channels, it is indeed transparent to Reo.

The only consequence of moving a channel end is that it may allow more efficient access

to the channel end and the data content of the channel by subsequent channel operations

performed by the active entities at the new location. The location or moving of a channel

end does not disrupt the state of or the flow of data through the channel.

† Earlier papers on Reo stipulated an optional pattern argument for create to specify a filter for the new

channel. This has now been dropped because the same effect can be obtained by joining an appropriate

Filter(pattern) channel with any arbitrary channel. See Section 6.2.

https://doi.org/10.1017/S0960129504004153 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004153


Reo: a channel-based coordination model for component composition 337

Table 2. Channel conditions.

Condition Description Complement

connected(e) channel end e is (not) connected notconnected(e)

empty(e) channel end e is (not) empty notempty(e)

full(e) channel end e is (not) full notfull(e)

contains(e , pat) data matching pat does (not) exist in channel end e notcontains(e , pat)

3.4. Channel connect

The connect operation succeeds when the specified channel end is connected to the

component instance that contains the active entity performing it. Pending connect requests

on the same channel end are granted on a first-come-first-serve basis.

The connect operation allows the same channel end to be dynamically passed around

to be used by different component instances, while preserving the one-to-one property of

channel connections: at any given time, there is at most one component instance connected

to each of the two ends of a channel. In this way, Reo guarantees the soundness and com-

pleteness properties that are shown to be required for compositionality (Arbab et al.

2000b).

3.5. Channel disconnect

The disconnect operation succeeds when the specified channel end is disconnected from

the component instance that contains the active entity performing it. Disconnecting a

channel end pre-empts and retracts all read, take and write operations that may be

pending on that channel end; as far as these operations are concerned, it is as if the

channel end were not connected to the component instance in the first place. One end of

a channel is oblivious to whether or not its opposite end is connected or moves.

3.6. Channel wait

The wait operation succeeds when its condition expression is true. The parameter conds

is a boolean combination (using and, or, negation and parentheses for grouping) of a set

of predefined primitive conditions on channel ends. For our purposes in this paper, the

primitive channel conditions are the ones defined in Table 2. Although the primitive con-

ditions that appear in a wait expression may refer to different channels, a wait operation

preserves the atomicity of its expression: it succeeds only if the expression as a whole is true.

For completeness, Reo requires the negation of every channel condition xxx to also be

defined as notxxx. Thus, every condition in the first column of Table 2 has its complement

condition also defined in the third column of this table. The relationship between

notempty(e) and full(e) depends on the specific semantics of different channel types.

The wait operation applies De Morgan’s law on its condition expression to push

boolean negation operators all the way down to be ‘absorbed’ by its primitive channel
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conditions. Thus, for instance,

¬( connected(x ) ∧ full(y))

becomes

¬ connected(x ) ∨ ¬ full(y),

which allows the two negation operators to be absorbed by their respective primitive

conditions, yielding the simplified ‘positive’ condition expression

notconnected(x ) ∨ notfull(y).

3.7. Channel read

The read operation succeeds when a data item that matches with the specified pattern pat

is available for reading through the sink channel end inp and it is read into the specified

variable v. If no explicit pattern is specified, the default wild-card pattern * is assumed.

When no variable is specified, no actual reading takes place, but the operation succeeds

when a suitable data item is available for reading. Observe that the read operation is

non-destructive, that is, the data item is only copied and not removed from the channel.

3.8. Channel take

The take operation is the destructive version of read, that is, the data item is actually

removed from the channel. When no variable is specified as the destination in a take

operation, the operation succeeds when a suitable data item is available for taking and it

is removed through the specified channel end.

3.9. Channel write

The write operation succeeds when the content of the specified variable is consumed by

the channel to which outp belongs.

4. Connectors

A connector is a set of channel ends with their connecting channels organised in a graph

of nodes and edges such that:

— Zero or more channel ends coincide on every node.

— Every channel end coincides on exactly one node.

— There is an edge between two (not necessarily distinct) nodes if and only if there is a

channel whose ends coincide on those nodes.

We use x �→ N to denote the fact that the channel end x coincides with the node N , and

x̂ to denote the unique node on which the channel end x coincides. For a node N , we

define the set of all channel ends coincident on N as [N ] = {x | x �→ N }, and disjointly

partition it into the sets Src(N ) and Snk (N ), denoting, respectively, the sets of source and

sink channel ends that coincide on N .
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Observe that nodes are not locations. A node is a fundamental concept in Reo

representing an important topological property: all channel ends x ∈ [N ] coincide on the

same node N . This property entails specific implications in Reo regarding the flow of data

among the channel ends x ∈ [N ], irrespective of a concern for any location. While, in

practice, an implementation of Reo should try to internally move all channel ends x ∈ [N ]

to the same location in order to improve the efficiency of data-flow operations through a

node N , strictly speaking, this is unnecessary and the semantics of a node in Reo does not

require it to correspond to or reside on any specific location.

A node N is called a source node if Src(N ) �= �∧Snk (N ) = �. Analogously, N is called

a sink node if Src(N ) = � ∧ Snk (N ) �= �. A node N is called a mixed node if Src(N ) �=
� ∧ Snk (N ) �= �.

The graph representing a connector is not directed. However, for each channel end xc of

a channel c, we use the directionality of xc to assign a local direction in the neighbourhood

of x̂c to the edge that represents c. The local direction of the edge representing a channel

c in the neighbourhood of the node of its sink xc is presented as an arrow emanating from

x̂c . Likewise, the local direction of the edge representing a channel c in the neighbourhood

of the node of its source xc is presented as an arrow pointing to x̂c .

By definition, every channel represents a (simple) connector. More complex connectors

are constructed in Reo out of simpler ones using the join operation described in

Section 4.1.7.

4.1. Node operations

Table 3 shows the node counterparts of the operations in Table 1. The names of the

operations in Table 3 do not have underscore prefixes: they are meant to be used by

components. The operations in Table 3 that modify nodes are defined only on non-hidden

nodes (see Section 4.1.9). They all fail with an appropriate error if any of their node

arguments is hidden. As in Table 1, the second column in Table 3 shows whether the

connectivity of (all channel ends coincident on) the node argument(s) of each operation

is a prerequisite for that operation.

Observe that although syntactically the operations in Table 1 have channel end

arguments, semantically they operate on nodes, not on channel ends. In other words,

semantically, these operations are truly node operations, in spite of the fact that syn-

tactically, their arguments are channels ends. A channel end e is merely a shorthand

for the node ê . It is convenient to use channel ends as arguments for Reo operations

to designate their corresponding nodes indirectly, instead of requiring direct syntactic

references to those nodes. This indirection alleviates the need for components to deal with

nodes explicitly as separate entities. The components know and can manipulate channel

ends only. These are created by the create operation, and are passed as arguments to the

other operations in Table 3, where they actually represent the nodes that they coincide on,

rather than the specific channel ends that they are. This makes components immune to

the dynamic creation and destruction of the nodes, while third parties perform join and

split operations on those nodes. In effect, a node operation (for example, connect, wait

or an I/O operation) involving a channel end e is an operation on the node ê , although
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Table 3. Node operations.

Operation Con. Description

create(chantype) – This operation performs create(chantype), creates a

node for each of the two resulting channel ends, and returns

the identifiers of the two channel ends.

forget(e) N This operation atomically performs the set of operations

forget(x), ∀x ∈ [ê].

move(e , loc) Y This operation atomically performs the set of operations

move(x , loc), ∀x ∈ [ê].

connect([t,] e) N If ê is not a mixed node, this operation atomically performs

the set of operations connect([t,] x), ∀x ∈ [ê].

disconnect(e) N This operation atomically performs the set of operations

disconnect(x), ∀x ∈ [ê].

wait([t,] nconds) N This operation succeeds when the conditions specified in

nconds become true.

read([t,] e[, v[, pat]]) Y If ê is a sink node connected to the component instance,

this operation succeeds when a value compatible with pat

is non-destructively read from any one of the channel ends

x ∈ [ê] into the variable v.

take([t,] e[, v[, pat]]) Y If ê is a sink node connected to the component instance,

this operation succeeds when a value compatible with pat

is taken from any one of the channel ends x ∈ [ê] and read

into the variable v.

write([t,] e, v) Y If ê is a source node connected to the component instance,

this operation succeeds when a copy of the value v is written

to every channel end x ∈ [ê] atomically.

join(e1, e2) Y If at least one of the nodes ê1 and ê2 is connected to the

component instance, this operation merges them into a new

node (that is, after the join, ê1 and ê2 become synonyms

for the same node).

split(e[, quoin]) N This operation produces a new node N and splits the set

of channel ends in [ê] between the old ê and N , according

to the set of edges specified in quoin.

hide(e) N This operation hides the node ê such that it cannot be

modified in any other operation.

the actual node designated by ê may change between the time when the operation is issued

and when it is eventually performed.

For example, suppose a component instance C1 knows a channel end e , which at

the moment happens to topologically coincide on the node N1. Because components are

denied any direct means to refer to nodes, the only way C1 can refer to N1 is as ê (or ê ′

if it also knows another channel end e ′ that happens to currently coincide on N1 as well).

A component cannot rely on any property of ê other than the trivial property e ∈ [ê]

(specifically, it cannot generally depend on ê and ê ′ to actually be the same node). C1 is
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thus unaffected by any change of topology that may occur at N1 (although not necessarily

by the consequences of this change). For instance, if another component instance, C2,

performs a join or a split operation on N1, making e coincide on another node, N2, C1

remains oblivious to this topological change and can still refer to ê , which now designates

the node N2.

Defining Reo operations such that an operation op is written as op(e) instead of op(ê)

accommodates a convenient short-hand and makes it unnecessary for components to even

have a data type for nodes. However, placing nodes in a semantic domain that is beyond

the realm of direct syntactic access and manipulation by components is a subtle design

decision with rather more profound implications on the conduct of coordination.

Coordination can be conducted endogenously, or exogenously (Arbab 1998). In endo-

genous coordination models the primitives that cause and affect the coordination of an

entity with others can reside only inside that entity itself. For instance, this is the case for

models based on object-oriented message passing paradigms. In exogenous coordination

models the primitives that cause and affect the coordination of an entity with others

generally reside inside other entities. Exogenous coordination models allow third parties

to orchestrate the interactions among others. An underlying exogenous coordination

model is essential for a component model in which components are building blocks to be

(dynamically) composed together by other entities. This is the case in Reo: topologies of

connectors (that is, coincidence of channel ends on nodes) can generally be manipulated

by (active entities inside) component instances that are not (necessarily) subjects of the

coordination protocols they impose. The fact that component instances have no direct

access to nodes allows topological manipulations to take place without their knowledge

or involvement. This facilitates exogenous coordination, making it possible to change a

node without having to interfere with or update any part of the component instances that

(only indirectly) refer to that node (through its coincident channel ends).

4.1.1. Node create A create operation:

(1) performs its corresponding create operation,

(2) creates a node for each of the two new resulting channel ends, and

(3) returns these same channel ends.

4.1.2. Node forget A forget operation performed by (an active entity inside) a compon-

ent instance on the node ê atomically performs the set of channel operations forget(x )

for all channel ends x ∈ [ê]. When (an active entity inside) a component instance performs

a forget operation on one of the nodes that it is connected to, all I/O operations pending

on that node are retracted (that is, they fail).

Strictly speaking, the forget operation itself does not directly affect the connection

status of its operand node. However, forgeting a connected node always makes it eligible

for the implicit disconnect rule described in Section 4.1.10, which promptly disconnects

the node.

4.1.3. Node I/O operations A read, take or write operation performed by (an active

entity inside) a component instance on a channel end e becomes and remains pending on
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the node ê (although the actual node ê may change while the operation is pending, as

described in Sections 4.1.7 and 4.1.8) until either its time-out expires, or the conditions

are right for the execution of its corresponding channel end operation(s). The node I/O

operations can succeed only if the nodes they refer to are connected to the component

instances that (contain the active entities that) perform them. Because mixed nodes cannot

be connected to any component instance (see Sections 4.1.5 and 4.1.7), read, take and

write cannot be performed on mixed nodes.

The precise semantics of read, take and write, as well as the semantics of mixed

nodes, depends on the generic properties of the channels that coincide on their involved

nodes. This is described in Section 8.

Intuitively, read and take operations non-deterministically obtain one of the suitable

values available from the sink channel ends that coincide on their respective nodes.

The write operation, on the other hand, replicates its value and atomically writes

a copy to every source channel end that coincides on the node of its channel-end

parameter.

A component instance C may include more than one active entity. Each such active

entity can concurrently issue an I/O operation on a node N connected to C , specifying

the same or different channel ends in [N ]. Reo defines the semantics of concurrent

node I/O operations consistently with the semantics of its mixed nodes. When multiple

write operations are concurrently pending on a source node N , they can succeed only

one at a time: whenever a value can be replicated to all source channel ends in [N ],

a pending write operation is selected to succeed non-deterministically. When multiple

take operations are concurrently pending on a sink node N , they can succeed only

simultaneously: any non-deterministically selected value available through one of the sink

channel ends in [N ] that matches with the read-patterns of all pending take operations

is removed from its channel end and replicated to all pending take operations to make

them succeed.

4.1.4. Node move The move operation in Reo exists only to accommodate efficient

performance in distributed systems: it enables physical relocation of channel ends, but

entails no semantic consequences. As defined in Table 3, the move operation performed

on a channel end e atomically moves all channel ends that coincide on ê to its location

argument, loc. This may allow more efficient access to these channel ends by subsequent

operations performed at the specified location.

There are three occasions where moving a node may be useful. First, when a component

instance connects to a node, it typically intends to subsequently perform some I/O

operations on that node. Thus, a move operation often immediately follows a connect.

Second, when a component instance moves from one location to another, all of its

currently connected nodes should also move together with it to preserve the efficiency

of its subsequent channel end operations at its new location. In this case, the (non-

Reo) component-instance-move operation should perform the respective node move

operations as well. Third, a distributed component instance may move a node to a

location in order to allow more efficient operations on that node by its internal active

entities.
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Table 4. Node conditions.

Condition Description Complement

connected(e) some channel end in [ê] is (not) connected notconnected(e)

connectedAll(e) every channel end in [ê] is (not) connected notconnectedAll(e)

empty(e) some channel end in [ê] is (not) empty notempty(e)

emptyAll(e) every channel end in [ê] is (not) empty notemptyAll(e)

full(e) some channel end in [ê] is (not) full notfull(e)

fullAll(e) every channel end in [ê] is (not) full notfullAll(e)

contains(e , pat) some channel end in [ê] does (not) contain data

matching pat

notcontains(e , pat)

containsAll(e , pat) every channel end in [ê] does (not) contain data

matching pat

notcontainsAll(e , pat)

4.1.5. Node connection As defined in Table 3, the connect and disconnect operations

performed on a channel end e atomically connect and disconnect all channel ends that

coincide on ê to their respective component instances. Only source and sink nodes (not

mixed nodes) can be connected to component instances. Thus, a connect fails if the node

of its argument channel end is a mixed node.

When a node is disconnected from a component instance, all read, take and write

operations pending on that node are pre-empted and retracted; as far as these operations

are concerned, it is as if the node were not connected to the component instance in the

first place when those operations were attempted.

The only way in Reo to connect a node N to a component instance C is through (an act-

ive entity inside) C performing a connect operation on N . There are three ways in Reo in

which a node N connected to a component instance C can be disconnected:

(1) an active entity inside C performs an explicit disconnect operation on N ;

(2) an active entity inside C performs a join operation that relinquishes its connection

to N (Section 4.1.7); and

(3) the node N becomes eligible for the implicit disconnect rule (Section 4.1.10).

4.1.6. Node conditions The nconds in wait is a boolean combination of primitive node

conditions, which are the counterparts of the primitive channel end conditions of wait

in Table 1. For every primitive condition xxx(e) on a channel end e, Reo defines two

corresponding primitive conditions on its node ê: xxx(e) and xxxAll(e). A primitive

node condition without the All suffix is true for a node ê when its corresponding channel

end condition is true for some channel end x ∈ [ê]. Analogously, a primitive node

condition that ends with the suffix All, is true for a node ê if its corresponding channel

end condition is true for all channel ends x ∈ [ê]. Table 4 summarises the node conditions

corresponding to the channel end conditions of Table 1.

Note the precedence of not, which is applicable at the channel end level, over All,

which applies at the node level: the condition notemptyAll(e), for instance, is true if

all channel ends that coincide on the node ê are non-empty. The situation where not

all channel ends coincident on a node ê are empty can be expressed as the condition
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Table 5. p performs join(e1, e2) while at least one of the nodes ê1, ê2 is connected to p.

Types of ê1 and ê2 Connection of the other node Connection status of the result

connected to p not connected

different not connected not connected

connected to q �= p join fails

connected to p connected to p

same not connected not connected

connected to q �= p connected to q

notempty(e), which holds if there exists at least one channel end coincident on ê that is

non-empty.

A wait operation thus translates its node condition expression into a channel end con-

dition expression, and uses it to perform a wait operation. Observe that the above syntax

rules for deriving node condition names from channel-end condition names yield node

condition names connected(e) and connectedAll(e) from the channel-end condition

name connected(e), and node conditions notconnected(e) and notconnectedAll(e)
from the channel-end condition notconnected(e). On the other hand, the semantics

of the connect operation guarantees that connected(e) =⇒ connectedAll(e) and

notconnected(e) =⇒ notconnectedAll(e), respectively, making each a synonym for

the other.

4.1.7. Node composition The composition operation join(e1, e2) succeeds only if at

least one of the two nodes ê1 and ê2 is connected to the component instance, p, containing

the active entity that performs this operation. The effect of join is the merge of the two

nodes ê1 and ê2 into a new common node, N ; that is, for all channel ends x ∈ [ê1] ∪ [ê2],

we have x̂ = N .

Table 5 summarises the rules for node composition when an active entity inside a

component instance p performs a join(e1, e2). This operation can succeed only if at

least one of the two nodes ê1 and ê2 is connected to p. The other node may be connected

to p, not connected to any component instance, or connected to another component

instance, q , distinct from p. Depending on the connection status of the other node, and

whether or not the two nodes are of the same type, the join operation may fail or

succeed, and the resulting node may or may not remain connected to p. Observe that

join never affects the connectivity of a component instance other than p with any node.

If the two nodes are of different types, the resulting merged node would be a mixed node,

which cannot be connected to any component instance. Table 5 shows that this constraint

is preserved because in this case either p relinquishes its connection, or the join operation

fails, when this is not enough.

The rationale for having connection to a node as a prerequisite for the join operation is

to ensure a simple, deterministic, local contention resolution scheme in distributed systems.

If two component instances attempt composition operations at the same time, conflicts
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and/or race conditions may arise. If at least one of the two nodes in a composition

is connected to the component instance that attempts the composition, the conflict can

be resolved by requiring it to relinquish its (exclusive) connection. The rationale for not

requiring both nodes to be connected to the component instance that attempts the join

is to avoid crippling the conduct of exogenous coordination. If ê2 is connected to a

component instance q , assuming that it is not a hidden node (see Section 4.1.9), an active

entity in another component instance, p, should be able to modify the topology of ê2,

for example, by merging it with ê1, without the involvement or the knowledge of q . This

would not be possible if to perform join, p were required to be connected to both nodes.

When a component instance p loses its previous connection with any of the nodes ê1

and ê2, all read, take and write operations pending on that node are retracted; that

is, they fail as if their respective nodes were not connected to the component instance in

the first place. Otherwise, all operations pending on ê1 and ê2 remain pending on their

common heir, N . Specifically, observe that if, for example, ê1 is connected to p and ê2 is

connected to another component instance, q , then a join(e1, e2) performed by an active

entity inside p does not disrupt any operation (issued by an active entity inside q) that

may be pending on ê2. See Section 8 for the semantics of mixed nodes and the semantics

of I/O operations on other nodes.

4.1.8. Node splitting A split operation performed on a node N = ê produces a new

node N ′ and divides the set of channel ends [N ] between the two nodes N and N ′. The

split operation does not require its node argument, ê , to be connected to the component

instance (that contains the active entity) that performs it. Furthermore, strictly speaking,

it does not directly affect the connection of ê to any component instance that it may be

connected to. However, the node ê may become eligible for the implicit disconnect rule

after the split operation (see Section 4.1.10). The newly created node, N ′, initially shares

the same connection status as that of ê before the split. However, it too can become

eligible for the implicit disconnect rule after the split operation. Consequently, any I/O

operation that may be pending on ê before the split, remains unaffected and pending on

either N or N ′ after the split.

Different versions of the split operation, with different signatures, allow different

methods of specifying how the channel ends in [N ] are to be split between N and N ′. One

way or the other, the ends of the channels that form the ‘exterior angle’ at the splitting

node constitute the quoin of the split operation, and they are the ones that are moved to

the new node.

In split(e, S), the parameter S is a set of channel ends and every channel end

x ∈ [ê]∩S is moved to the new node, N ′. The operation split(e) moves all sink channel

ends x ∈ Snk (ê) to the new node N ′, leaving only source channel ends to coincide on N .

The quoin of the split in split(e1, e2) is defined through the set Q of channels with

one end on each of the two nodes ê1 and ê2: the ends of the channels in Q that are in

[ê1] are moved to N ′.

Figure 3 shows a few examples of join and split operations. By joining the sink and

the source ends of the two channels in Figure 3.a, we obtain the connector in Figure 3.b. A

split performed on the mixed node in Figure 3.b inverses the join operation and produces
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(a)

(g)(d) 

(c)(b) 

(f)(e)

Fig. 3. Examples of join and split.

the two independent channels of Figure 3.a. Joining the source and the sink nodes of the

connector in Figure 3.b, produces the connector in Figure 3.c. Similarly, the connector

in Figure 3.b can be obtained by splitting one of the mixed nodes of the connector in

Figure 3.c. Analogously, the pairs of Figures 3.d and e and f and g show connectors that

are related to each other through one-node join and split operations, respectively.

4.1.9. Hiding nodes The hide(e) operation is an important abstraction mechanism in

Reo: hiding a node N = ê ensures that the topology of N can no longer be modified in

any other operation (by any active entity in any component instance). Any operation that

may entail a change to x̂ for any x ∈ [N ] fails after this hide operation. This guarantees

that the topology of channels coincident on N can no longer be modified by anyone.

Observe that hidden nodes can still be used in Reo operations (for example, for I/O) that

do not modify nodes.

4.1.10. Implicit disconnection The implicit disconnection rule in Reo states that a com-

ponent instance C cannot remain connected to a node N if no active entity in C knows

a channel end e ∈ [N ]. If N is not connected to C and no active entity in C knows any

channel end in [N ], then N cannot become connected to C because, clearly, no connect

operation can be performed to connect N to C . However, there are situations when C
loses its reference to (that is, its knowledge of) a node N to which it is already connected.

The implicit disconnection rule ensures that in such cases N is disconnected from C ,

because otherwise N would remain connected for good to a component instance that has

no way to refer to it, while other component instances may be waiting to connect to and

use this node.

A simple case of the application of this rule is when (an active entity inside) C performs

a forget on a node N that it is already connected to. After the forget operation, there

is no way for any entity inside C to refer to N . Losing its last reference to (channel ends

in) N triggers an implicit disconnect operation on behalf of C on this node.

A more subtle case of the application of the implicit disconnection rule is when a

split operation performed on a connected node produces a connected node none of

whose coincident channel ends is known to the component instance it is connected to. For

example, suppose a component instance, C , is connected to a node N where [N ] = {a , b, c}
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out of which C knows only the channel end a . If a split operation (perhaps performed

by a third party) splits N into N1 and N2 such that [N1] = {a} and [N2] = {b, c}, C
cannot remain connected to N2 because it has no reference to this node.

5. Patterns

Reo uses patterns to regulate channel input/output operations. A pattern is an expression

that matches a data item when it is written to, read from, or simply flows through

a channel. The operations take and read can specify patterns that must match the

items they read. Furthermore, some channel types may require patterns as their creation

parameters that influence their behaviour.

We write d � p to denote that the data item d matches with the pattern p, and d �� p
to denote otherwise. The precise syntax of patterns is not important in this paper. We

illustrate the utility of patterns with some examples.

The atomic patterns are type identifiers (for example, int, real, string, number, and

so on) that match with any one of their instances, plus the wild-card pattern (*). A specific

value is a pattern that matches only itself. Patterns can be composed into tuple structures

using angular brackets (< and >). Thus, <int, string> is a pattern that matches any

pair that consists of an integer and a string. Matched patterns can bind free variables,

which in turn can be used to enforce additional constraints. For instance, <int*x, 2.4,

x> matches any triplet consisting of the same integer as its first and third element, with

the real value 2.4 as its second.

A pattern can be augmented with additional constraints in square brackets. For instance,

<int*x, *, int*y>[x > y] matches with any triplet with two integers as its first and

third elements, as long as the first element is numerically greater than the third. The

pattern <int*x, string[a+b*c], real*y> [y >= 3*x] matches triplets consisting of

an integer, a string, and a real number, where the real number is greater than or equal to

3 times the integer, and the string consists of one or more occurrences of ‘a’ followed by

zero or more occurrences of ‘b’ with a single ‘c’ at its end.

6. Channel types

Reo assumes the availability of an arbitrary set of channel types, each with its well-defined

behaviour. A channel is called synchronous if it delays the success of the appropriate pairs

of operations on its two ends such that they can succeed only simultaneously; otherwise,

it is called asynchronous. An asynchronous channel may have a bounded or an unbounded

buffer (to hold the data items it has already consumed through its source, but not yet

dispensed through its sink) and may or may not impose a certain order on the delivery

of its contents. A lossy channel may deliver only some of the data items that it receives,

and lose the rest.

Although every channel in Reo has exactly two ends, they may or may not be of

different types. Thus, a channel may have a source and a sink end, two source ends,

or two sink ends. The behaviour of a channel may depend on such parameters as its
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Table 6. Examples of synchronous channel types.

Type Description

Sync has a source and a sink. The pair of I/O operations on its two ends can succeed

only simultaneously.

Filter(pat) has a source and a sink. Writing a data item that does not match with the

specified pattern pat always succeeds immediately and the data item is lost. For

data items that match the pattern pat this channel behaves the same way as a

Sync channel.

SyncDrain has two source ends. The pair of I/O operations on its two ends can succeed

only simultaneously. All data items written to this channel are lost.

SyncSpout(pat) has two sink ends. The pair of I/O operations on its two ends can succeed

only simultaneously. Each sink of this channel acts as an unbounded source

of data items that match with the pattern pat. Data items are produced in

a non-deterministic order. The data items taken out of the two sinks of this

channel are not related to each other.

LossySync has a source and a sink. The source end always accepts all data items. If there

is no matching I/O operation on the sink end of the channel at the time that a

data item is accepted, then the data item is lost; otherwise, the channel transfers

the data item exactly the same as a Sync channel, and the I/O operation at

the sink end succeeds.

synchronising properties, the number of its source and sink ends, the size of its buffer, its

ordering scheme, its loss policy, and so on.

While Reo assumes no particular fixed set of channel types, it is reasonable to expect that

a certain number of commonly used channel types will be available in all implementations

and applications of Reo. Tables 6 and 7 show a non-exhaustive set of interesting channel

types and their properties. A larger set of channel types are described in Arbab (2002).

Most of these channel types are indicative examples only. The few that appear in Tables 6

and 7 are those that are used further in this paper as the building blocks for more complex

connectors to demonstrate the expressiveness of Reo.

6.1. Channel type Sync

The Sync channel type represents the typical synchronous channels. A read(t , yc , v , p) on

the sink yc of a channel c of this type succeeds only if there is a write(t ′, xc , d ) operation

pending on the source xc of this channel and the data item d matches the read-pattern

p. In this case, d is copied into the read-variable v , the read operation succeeds, but the

write remains pending.

A write(t ′, xc , d ) operation succeeds only if there is a take(t , yc , v , p) operation

pending on the sink yc of the channel c, and the data item d matches the take-pattern p.

In that case, d is copied into the read-variable v , and the take operation also succeeds

simultaneously.
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Table 7. Examples of asynchronous channel types.

Type Description

FIFO has a source and a sink, and an unbounded buffer. The source end always

accepts all data items. The accepted data items are kept in the internal FIFO

buffer of the channel. The appropriate operations on the sink end of the

channel obtain the contents of the buffer in the FIFO order.

FIFOn is the bounded version of FIFO with the channel buffer capacity of n data

items.

AsyncDrain has two source ends. The channel guarantees that two operations on its two

ends never succeed simultaneously. The channel is fair by alternating between

its two ends and giving each a chance to dispose of a data item. All data

items written to this channel are lost.

AsyncSpout(pat) has two sink ends. The channel guarantees that two operations on its two

ends never succeed simultaneously. The channel is fair by alternating between

its two ends and giving each a chance to obtain a data item from the channel.

The values obtained from the two ends of the channel are not related to each

other, but match with the specified pattern pat .

ShiftFIFOn is the lossy version of FIFOn , where the arrival of a data item when the

channel buffer is full, triggers the loss of the oldest data item in the buffer,

to make room for the new arrival.

LossyFIFOn is the lossy version of FIFOn , where all newly arrived data items when the

channel buffer is full, are lost.

6.2. Channel type Filter(pat)

A Filter(pat) channel type is a special lossy synchronous channel. It transfers only

those data items that match with its specified filter pattern pat and loses the rest. A

read(t , yc , v , p) on the sink yc of a channel c of this type succeeds only if there is a

write(t ′, xc , d ) operation pending on the source xc of this channel and the data item d
matches both with the filter pattern pat as well as the read-pattern p. In this case, d is

copied into the read-variable v , the read operation succeeds, but the write remains

pending.

A write(t ′, xc , d ) operation succeeds only if either:

(1) d does not match with the filter pattern pat; or

(2) there is a take(t , yc , v , p) operation pending on the sink yc of the channel c, and the

data item d matches both with the filter pattern pat as well as the take-pattern p.

In the former case, the data item d is lost. In the latter case, d is copied into the

read-variable v , and the take operation also succeeds simultaneously.

6.3. Channel type SyncDrain

A SyncDrain is a lossy channel that allows pairs of write operations pending on its op-

posite ends to succeed simultaneously, thus, synchronising them. All written values are lost.
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6.4. Channel type SyncSpout

A SyncSpout(pat) channel is an unbounded source of data items that match with its

specified pattern, pat , and can be taken from its opposite ends only simultaneously in

some non-deterministic order. While the pair of take operations performed on the

opposite ends of a SyncSpout(pat) are synchronised by the channel, the two data

items taken by these operations are independent of each other. For example, <x, y> =

create(SyncSpout(int*x[0 <= x, x <= 10])) creates a SyncSpout channel each of

whose two sink ends x and y produces an unbounded sequence of integers between 0 and

10 in some non-deterministic order. Read operations on x and y succeed immediately and

are independent of each other, and successive read operations on the same end, of course,

produce the same integer (read is non-destructive). However, a take operation on one end

can succeed only simultaneously with another take operation at the other end.

6.5. Channel types FIFO and FIFOn

The FIFO, and FIFOn channel types, where n is an integer greater than zero, represent the

typical unbounded asynchronous and bounded asynchronous FIFO channels. A write

to a FIFO channel always succeeds, and a write to a FIFOn channel succeeds only if the

number of data items in its buffer is less than its bounded capacity, n . A read or take

from a FIFO or FIFOn channel suspends until the first (that is, oldest) data item in the

channel buffer matches with the read or take pattern, in which case, it is (destructively)

obtained and the operation succeeds.

6.6. Channel types AsyncDrain and AsyncSpout

AsyncDrain and AsyncSpout(pat) are analogous to SyncDrain and SyncSpout(pat),
respectively, except that they guarantee that, respectively, the pairs of write and the

pairs of take operations on their opposite ends never succeed simultaneously†. These

channel types are important basic synchronisation building blocks for the construction of

more complex connectors.

6.7. Lossy channels

An important class of channel types is the so-called lossy channels. These are the channels

that do not necessarily deliver through their sinks every data item that they consume

through their sources. For instance, SyncDrain and AsyncDrain channels are lossy

channels that lose every data item written to them. Filter(pat) is a lossy channel that

passes only those data items that match its specified pattern pat and loses the rest.

† Excluding the possibility of simultaneous success of the operations at the two ends of these channels may

seem more rigid than the usual connotation of the term ‘asynchronous’ implies. However, observe that there

is nothing sacrosanct about these or any other channel names or definitions in Reo, and users can (re)define

their own sets of channels as they please. These specific channels, as defined here, simply turn out to be

useful, for example, in the connector of Figure 5.f.
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A channel can be lossy because when its bounded capacity becomes full, it follows a

policy to, for example, drop the new arrivals (overflow policy) or the oldest arrivals (shift

policy). ShiftFIFOn is a bounded capacity FIFO channel that loses the oldest data item

in its buffer when its capacity is full and a new data item is to be written to the channel.

Thus, (up to) the last n arrived data items are kept in its channel buffer. A LossyFIFOn
channel, on the other hand, loses the newly arrived data items when its capacity is full.

An asynchronous channel may be lossy because it requires an expiration date for every

data item it consumes, and loses any data item that remains in its buffer beyond its

expiration date. Other channels may be lossy because they implement other policies to

drop some of the data items they consume.

A LossySync channel behaves the same as a Sync channel, except that a write operation

on its source always succeeds immediately. If a compatible read or take operation is

already pending on the sink of a LossySync channel, the written data item is transferred

to the pending operation and both succeed. Otherwise, the write operation succeeds and

the data item is lost.

7. Channel behaviour

The channel types described in Section 6 are indicative of the richness and the diversity

of the behaviour of channels allowed in Reo. However, Reo is not directly aware of

the behaviour of any particular channel. Reo expects every channel type to be able to

provide a ‘reasonable implementation’ of the operations in Table 1. We state ‘reasonable

implementation’ rather than imposing a rigid semantics here, because we do not wish to

preclude such reasonable possibilities as, for instance, a ‘read-only’ channel type for which

take becomes a synonym for read.

The set of operations in Table 1, thus, describes the common behaviour of all channels

in Reo. However, the operations in Table 1 are not sufficient to describe the full behaviour

of different channel types. As far as Reo is concerned, the generic behaviour of a channel

c, whose source and sink are xc and yc , respectively, is defined indirectly through the

following (state-dependent) functions†:

— offers(yc , p) is the multi-set of pairs 〈yc , d〉 for each d in the multi-set of values that

may be assigned to a variable v in a take(0, yc , v , p).

— accepts(xc , d ) is true for a data item d if the state of c allows write(0, xc , d ) to

succeed.

For completeness, we define offers(xc , p) = �, for all patterns p, and accepts(yc , d ) =

false , for all data items d .

In addition to its common and generic behaviour, each channel type also has a

specific behaviour. The specific behaviour of a channel type is the precise semantics that

relates its generic behaviour, its common behaviour, and its internal state. Although the

† The simplified versions of these functions and Equations 1, 2, and 3 presented here suffice for our illustrative

purposes in this paper. These functions become more complicated to accommodate topologies that include

closed loops of synchronous channels, and so on.
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specific behaviour of a channel is important wherever it is used, the Reo operations are

semantically independent of the specific behaviour of channels. Reo and its operations

depend only on the returned results of the functions offers(), and accepts(), which

under Reo’s interpretation, above, comprise the generic behaviour of channels. The actual

definitions of these functions, which relate them to the internal states and other specific

details of various channels, constitute their specific behaviour.

8. Dataflow through nodes

The (active entities inside) component instances can write data values to source nodes and

read/take them from sink nodes, using the node operations defined in Table 3. Generally,

everything flows in Reo from source nodes through channels and mixed nodes down to

sink nodes. Some data items get lost in the flow, and some settle as sediments in certain

channels for a while before they flow through, if ever. It is the composition of channels into

connectors, together with the node operations read, take and write, that yield this intuitive

behaviour in Reo. In this section, we informally describe the operational semantics of

mixed nodes and the read, take and write operations on nodes. Our exposition is intended

to show the fundamentals of a truly distributed implementation of Reo. We ignore certain

aspects of timing and all locking issues here to simplify our presentation.

We use the predicate Π(O) to designate whether or not the operation O is pending (on

its respective node). From the point of view of an entity that is about to write a data

item d to a node it may be useful to know if the write operation will suspend or succeed

immediately. For a node N and a data item d , we define

accepts(N , d ) =

{ ∧
p : Π(take(t ,N ,v ,p)) d � p if N is a sink node∧
x∈Src(N ) accepts(x , d ) otherwise.

(1)

Equation 1 states that if N is a sink node, it accepts a data item d only if d matches with

the read-patterns p of all take operations currently pending on N (observe that in this

case, there are no source channel ends in [N ]). Otherwise, N accepts d only if all source

channel ends in [N ] accept d .

The semantics of writeing a data item d to a node N with a time-out of 0 � t � ∞
can now be defined as follows.

Definition 1. A write operation write(t ,N , d ) remains pending on the node N until

either:

(1) its time-out t expires, in which case the write operation fails; or

(2) the predicate accepts(N , d ) is true, and the set of operations { write(∞, x , d ) | x ∈
Src(N )} atomically succeeds, in which case the write operation succeeds.

Observe that a write operation in Definition 1 is performed only if accepts(x , d ) is

true for all channel ends x ∈ Src(N ). Channels’ compliance with Reo’s interpretation of

the accepts predicate (Section 7) implies that every such write operation immediately

succeeds.

From the point of view of an entity that is about to take a data item from a node it

may be useful to know the multi-set of data items available through that node. For a
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node N and a pattern p, we define

offers(N , p) =

{ ⊎
d : Π(write(t ,N ,d)){〈ε, d〉 | d � p} if N is a source node⊎
x∈Snk (N ) offers(x , p) otherwise.

(2)

Analogous to the offers function for the channel ends (Section 7), this function too

returns a multi-set of pairs each containing a data item that matches with the pattern p,

together with its producing channel end. The special symbol ε represents ‘no channel end’

and marks the data items obtained directly from the write operations pending on the

node.

According to this definition, a source node offers only the multi-set of values proposed

by the write operations pending on that node that match the specified pattern p. If N
is not a source node, it is either a mixed node or a sink node. A mixed node cannot be

involved in any write operation in Reo. Therefore, Equation 2 defines the multi-set of the

values offered by a mixed or a sink node to be the (multi-set) union of all values offered

by all of its coincident sinks.

The semantics of takeing a value that matches with a pattern p from a node N into a

variable v before the time-out 0 � t � ∞, can now be defined as follows.

Definition 2. A take operation take(t ,N , v , p) remains pending on the node N , until

either:

(1) its time-out t expires, in which case the take operation fails; or

(2) ∃〈y , d〉 ∈ offers(N , p) and the operation take(∞, x , v , d ) succeeds on a non-

deterministically (but fairly) selected channel end x ∈ [N ] such that 〈y , d〉 ∈
offers(x , p), in which case the take operation succeeds.

Observe that a take operation is performed in Definition 2 only on a channel end x for

which offers(x , p) contains an appropriately matching data item. Compliance with Reo’s

interpretation of the offers predicate (Section 7) implies that such a take operation

succeeds in finite time.

Semantically, a read(t ,N , v , p) operation is similar to take(t ,N , v , p), but we skip its

details in this paper.

Because mixed nodes cannot be connected to components, the possibility of having a

mixed node involved in a read, take, or write operation is precluded. A mixed node

automatically transfers all eligible data items from its coincident sinks to its coincident

sources. The multi-set τ(N ) of the pairs representing the data items that are eligible for

transfer at a mixed node N is defined as

τ(N ) = {〈y , d〉 | 〈y , d〉 ∈ offers(N , ∗) ∧ accepts(N , d )}. (3)

Definition 3. The semantics of a mixed node N in Reo is defined as the execution of

the infinite loop in Table 8 by an independent process dedicated to N . The actions in

each iteration of the for-loop on line 3, starting with the selection of a 〈y , d〉 ∈ τ(N ), are

performed atomically.

Observe that the contents of τ(N ) may change between the two lines 2 and 3, and,

of course, from one iteration of the for-loop on line 3 to the next. However, once a
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Table 8. Semantics of a mixed node.

1 while (true) do

2 suspend until τ(N ) is non-empty

3 for each 〈y , d〉 ∈ τ(N ) do

4 take(∞, y , v , d)

5 for each x ∈ Src(N ) do

6 write(∞, x , d)

7 done

8 done

9 done

〈y , d〉 ∈ τ(N ) is selected on line 3, all operations in the iteration of the loop (up to line 8)

are performed atomically. This means that the channels whose ends coincide on N are

properly locked for the duration of each iteration to ensure that their states do not change

by any action other than those in that iteration.

Furthermore, note that the take on line 4 specifies the pre-selected data item d as its

take-pattern, which can match only with d . Observe that d is selected on line 3 such that

〈y , d〉 ∈ offers(y , ∗), which guarantees that:

(1) the take operation on line 4 succeeds in finite time; and

(2) the take operation on line 4 indeed takes the value d out of the channel y (and

assigns it to the take-variable v ).

Moreover, because accepts(x , d ) is true, the write(∞, x , d ) operation on line 6 succeeds

in finite time.

When a mixed node is created by a join or split operation, a new dedicated process

is created to reify its semantics. Analogously, when a mixed node is destroyed by a join

or split operation, its corresponding dedicated process is destroyed.

The behaviour of a source node N is analogous to that of a mixed node represented

by the loop in Table 8, except that instead of the take operation on line 4, it releases

a write(t ,N , d ) operation pending on N to succeed. The behaviour of a sink node N is

also described by the same loop as in Table 8, except that the lines 5–7 are replaced by a

loop that releases all take(t ,N , v , p) operations pending on N to succeed.

9. Generic behaviour of channels

It is instructive to consider a few common channel types as examples to see how their

generic behaviour in Reo can be defined in terms of their specific behaviour. In this

section, we describe the behaviour of some of the channels in Tables 6 and 7.

9.1. Generic behaviour of asynchronous channels

The existence of buffers in asynchronous channels means that the behaviour of one end

of an asynchronous channel is decoupled from that of its other end and, instead, depends

on its buffer. This makes the behaviour of asynchronous channels simpler to describe. For
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instance, the behaviour of some of the channels presented in Table 7 is described in the

rest of this section.

9.1.1. Generic behaviour of FIFO Consider a FIFO channel c (as described in Table 7)

and let xc and yc be its source and sink ends, respectively. Let the sequence B (c) =

〈Bk ,Bk−1, ...B2,B1〉 represent the buffer of the channel c, where B1 is its oldest element.

The generic behaviour of c is defined by the following two functions:

offers(yc , p) =

{
{〈yc ,B1〉} if B (c) �= 〈〉 ∧ B1 � p
� otherwise

(4)

accepts(xc , d ) = true . (5)

This states that what the sink end of c offers (for reading or taking) is the empty set if

the buffer of c is empty, and a singleton (containing the first data element to be taken),

otherwise. Observe that if the first element in the buffer does not match the specified

pattern, the sink of a FIFO channel offers no value.

9.1.2. Generic behaviour of FIFOn The behaviour of a FIFOn channel is identical to that

of a FIFO, except that its bounded capacity may prevent it from accepting values when

its bounded capacity is full. Let c be a FIFOn channel with B (c) = 〈Bk ,Bk−1, ...B2,B1〉
representing its buffer, as in Section 9.1.1. Clearly, the constraint |B (c)| � n must be

maintained by this channel, where |α| represents the length of the sequence α. The generic

behaviour of c is defined by the following two functions:

offers(yc , p) =

{
{〈yc ,B1〉} if B (c) �= 〈〉 ∧ B1 � p
� otherwise

(6)

accepts(xc , d ) = |B (c)| < n . (7)

This states that accepts(xc , d ) succeeds as long as the number of data items in the

(bounded) buffer of c is less than its capacity, n .

9.1.3. Generic behaviour of ShiftFIFOn and LossyFIFOn The generic behaviour of

channel types ShiftFIFOn and LossyFIFOn is identical to that of a FIFO channel:

the fact that they may lose their contents when their capacity is full, and the different

policies they use to determine which data item to lose, are all part of the details of

their specific behaviour. As far as the Reo operations are concerned, these channel types

behave as if they were FIFO channels.

9.2. Generic behaviour of synchronous channels

The generic behaviour of synchronous channels can be defined in terms of the properties

of the nodes on which their ends coincide. For instance, we define the behaviour of some

of the channels presented in Table 6.
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Fig. 4. Examples of channel composition and connectors.

9.2.1. Generic behaviour of Sync The generic behaviour of a Sync channel c whose

source and sink ends are xc and yc , respectively, is defined by the following two functions:

accepts(xc , d ) = accepts(ŷc , d ) (8)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p)}. (9)

9.2.2. Generic behaviour of Filter(pat) The generic behaviour of a Filter(pat) chan-

nel c whose source and the sink ends are xc and yc , respectively, is defined by the following

two functions:

accepts(xc , d ) = d �� pat ∨ accepts(ŷc , d ) (10)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p) ∧ d � pat}. (11)

9.2.3. Generic behaviour of LossySync The generic behaviour of a LossySync c whose

source and sink ends are xc and yc , respectively, is defined by the following two functions:

accepts(xc , d ) = true (12)

offers(yc , p) = {〈yc , d〉 | 〈z , d〉 ∈ offers(x̂c , p)}. (13)

This reflects the fact that the state of a LossySync channel allows it to consume a data

item regardless of whether or not a matching I/O operation is pending on its opposite

end, and either transfers or loses the data item.

10. Channel composition

The utility of channel composition in Reo can be demonstrated through a number of

simple examples. For convenience, we represent a channel by the pair of its source and

sink ends, that is, ab represents the channel whose source and sink ends are, respectively,

a, and b. Two channels, ab and cd can be joined in one of the three configurations shown

in Figures 4.a–c. For instance, the connectors in Figures 4.a–c can be created as follows.

We can create two channels of types t1 and t2 by <a, b> = create(t1) and <c, d> =

create(t2). The connectors in Figures 4.a–c are constructed out of two such channels
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by performing the operations join(b, c), join(b, d), and join(a, c), respectively.

Observe that the channel ends a, b, c and d used in these join operations (or any other

operation that expects a node rather than a channel end) are merely shorthand for the

nodes â, b̂, ĉ and d̂, respectively.

10.1. Flow-through connectors

In this section we show how the informal semantics of Reo supports our intuitive

expectation of the behaviour of the connector in Figure 4.a: that it simply allows data

items to flow through the junction node, from the channel ab to the channel cd. Let

N = b̂ = ĉ. (14)

Because N is not a source node and Snk (N ) = {b}, from Equation 2 we have

offers(N , ∗) = offers(b, ∗). (15)

Similarly, because N is not a sink node and Src(N ) = {c}, Equation 1 gives

accepts(N , d ) = accepts(c, d ). (16)

Equations 15 and 16 together simplify Equation 3 into

τ(N ) = {〈y , d〉 | 〈y , d〉 ∈ offers(b, ∗) ∧ accepts(c, d )}. (17)

Consider the semantics of the mixed node N as presented in Table 8. The behaviour of

the channels defined in Section 7 shows that offers(b, ∗) can contain only pairs of the

form 〈b, z 〉. Thus, 〈y , d〉 on line 3 can match only if y = b.

By Equation 17, the take operation on line 4 in Table 8 removes every data item d for

which 〈b, d〉 ∈ offers(b, ∗) and accepts(c, d ) holds. This removes every data item d from

the channel ab for which accepts(c, d ) is true. Because Src(ĉ) = {c}, the only value that

the variable x can assume on line 5 is x = c, which means the write operation on line 6

executes only once for this value of x . Because accepts(c, d ) is true, the write(∞, c, d )

operation on line 6 succeeds in finite time to write the data item d into the channel cd.

10.2. Merger

The configuration of channels in Figure 4.b allows write operations on a and c, and read

or take operations on b and d; the channel ends b and d can be used interchangeably,

because they both stand for their common node. A read or take from this common node

delivers a value out of ab or cd, chosen non-deterministically, if both are non-empty.

Thus, assuming the channels are not lossy, this connector produces through the common

node of b and d, a non-deterministic merge of the values that arrive on a and b.

10.3. Replicator

The configuration of channels in Figure 4.c allows write operations on a and c, in which

the two channel ends are interchangeable, and read or take operations on b and d. A
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write on (the common node of) a (and c) succeeds only if both channels are capable of

consuming a copy of the written data (see the definition of write in Table 3). If they are

both of type FIFO, of course, all writes succeed. However, if even one is not prepared to

consume the data, the write suspends.

10.4. Take-cue regulator

The significance of the ‘replication on write’ property in Reo can be seen in the composition

of the three channels ab, cd, and ef in the configuration of Figure 4.d. Assume ab and

cd are of type FIFO and ef is of type Sync. The configuration in Figure 4.d, then, shows

one of the most basic forms of exogenous coordination: the number of data items that

flow from ab to cd is the same as the number of take operations that succeeds on f.

Compared with the configuration in Figure 4.a, what we have in Figure 4.d is a connector

where an entity can count and regulate the flow of data between the two channels ab and

cd by the number of take operations it performs on f. The entity that regulates and/or

counts the number of data items through f need not know anything about the entities

that write to a and/or take from d, and the latter two entities need not know anything

about the fact that they are communicating with each other, or the fact that the volume

of their communication is regulated and/or measured.

10.5. Write-cue regulator

The composition of channels in Figure 4.e is identical to the one in Figure 4.d, except

that now ef is of type SyncDrain. The functionality of this configuration of channels is

identical to that of the one in Figure 4.d, except that now write operations on f regulate

the flow, instead of takes.

10.6. Barrier synchronisers

We can use this fact to construct a barrier synchronisation connector, as in Figure 4.f.

Here, the SyncDrain channel ef ensures that a data item passes from ab to cd only

simultaneously with the passing of a data item from gh to ij (and vice versa). If the

four channels ab, cd, gh and ij are all of type Sync, our connector directly synchronises

write/take pairs on the pairs of channels a and d, and g and j. This simple barrier

synchronisation connector can be trivially extended to any number of pairs, as shown in

Figure 4.g.

10.7. Encapsulation and abstraction

Figure 4.h shows the same configuration as in Figure 4.e. The enclosing box in Figure 4.h

introduces our graphical notation for presenting the encapsulation abstraction effect of the

hide operation in Reo. The box conveys that a hide operation has been performed on all

nodes inside the box (in this case, just the one that corresponds to the common node of the

channel ends b, c, and e in Figure 4.e). As such, the topology inside the box is immutable,
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Table 9. Reo code for a generic Write-Cue Regulator connector.

1 WCRegulator(n)

2 〈a, x1〉 = create(Sync)

3 〈x2, b〉 = create(Sync)

4 〈x, y〉 = create(SyncDrain)

5 connect(x1)

6 connect(x2)

7 join(x, x1)

8 join(x1, x2)

9 hide(x)

10 c = 〈〉
11 for i = 1 to n do

12 〈u, w〉 = create(Sync)

13 c = c ◦ 〈u〉
14 connect(w)

15 join(y, w)

16 done

17 hide(y)

18 return 〈a, b, c〉

and can be abstracted away: the whole box can be used as a ‘connector component’

that provides only the connection points on its boundary. In this case, assuming that the

channels connected to a and b are of type Sync, the function of the connector can be

described as ‘every write to c enables the transfer of a data item from a to b’.

Through parameterisation, the configuration and the functionality of such connector

components can be adjusted to fit the occasion. For instance, Figure 4.i shows a variant

of the connector in Figure 4.h, where a write to either c or d enables the transfer of a

data item from a to b. The Reo code that instantiates a generic connector of this type

is shown in Table 9. The parameter n specifies the number of desired regulator points.

The return value of a call to this function is a triple that contains the identities of the

connector’s primary input and output nodes, followed by a sequence of the identifiers for

its n regulator nodes. A WCRegulator(1) call produces (a slightly modified version of)

the connector shown in Figure 4.h. A WCRegulator(2) call produces the connector shown

in Figure 4.i.

10.8. Ordering

The connector in Figure 5.a consists of three channels: ab, ac and bc. The channels ab and

ac are SyncDrain and Sync, respectively. The channel bc is of type FIFO1. Let us consider

the behaviour of this connector, assuming a number of eager producers and consumers are

to perform write and take operations on the three nodes in this connector. Observe that

it is irrelevant whether the producers and consumers in question are component instances

that perform write and take operations, or, alternatively, other channels with available

data items and available channel capacities. However, to simplify our presentation, we

assume the nodes of our connector are connected to appropriate component instances

that are prepared to perform suitable write and take operations on them.
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Fig. 5. Connectors for more complex coordination.

The nodes a and b can be used (successfully) in write operations only; and the node c

can be used (successfully) only in take operations. A write on either a or b will remain

pending at least until there is a write on both of these nodes; it is only then that both of

these operations can succeed simultaneously (because of the SyncDrain between a and b).

For a write on a to succeed, there must be a matching take pending on c, at which time

the value written to a is transferred and consumed by the take on c. Simultaneously, the

value written to b is transferred into the FIFO1 channel bc (which is initially empty, and

thus can consume and hold one data item). As long as this data item remains in bc, no

other write operations can succeed on a or b; the only possible transition is for another

take on c to consume the contents of the bc channel. Once this happens, we return to

the initial state and the cycle can repeat itself.

The behaviour of this connector can be seen as imposing an order on the flow of the

data items written to a and b, through c: the data items obtained by successive take

operations on c consist of the first data item written to a, followed by the first data

item written to b, followed by the second data item written to a, followed by the second

data item written to b, and so on. We can summarise the behaviour of our connector
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as c = (ab)∗, meaning the sequence of values that appear through c consist of zero or

more repetitions of the pairs of values written to a and b, in that order. Observe that the

a and the b in the expression (ab)∗ do not represent specific values; rather, they refer

to the write operations performed on their respective nodes, irrespective of the actual

data items that they write. In other words, we may consider the expression (ab)∗ not as a

regular expression over values, but rather as a meta-level regular expression over the I/O

operations that produce (isomorphic) sequences or streams of values on their respective

nodes.

11. Expressiveness

The producers and consumers connected to the nodes a, b and c of the connector in

Figure 5.a are completely unaware of the fact that this connector coordinates them

through their innocent take and write operations to impose a specific ordering on them.

This interesting coordination protocol emerges due to the composition of the specific

channels that comprise this connector in Reo. It is natural at this point to wonder

about the expressiveness of the composition paradigm of Reo, that is, given a (small) set

of primitive channel types, what coordination patterns can be implemented in Reo by

composition of such channel types?

In this section we demonstrate, by examples, that Reo connectors composed out of

only five simple basic channel types can (exogenously) impose coordination patterns that

can be expressed as regular expressions over I/O operations on their nodes. These five

channel types consist of Sync, SyncDrain, LossySync, AsyncDrain and an asynchronous

channel with the bounded capacity of 1 (for example, FIFO1)†.

11.1. Sequencer

Consider the connector in Figure 5.b. As before, the enclosing box represents the fact that

the details of this connector are abstracted away and it provides only the four nodes a,

b, c and d for other entities (connectors and/or component instances) to (in this case)

take from. Inside this connector, we have four Sync and four FIFO1 channels connected

together. The first (leftmost) FIFO1 channel is initialised to have a data item in its buffer,

as indicated by the presence of the symbol ‘o’ in the box representing its buffer. The

actual value of this data item is irrelevant. The take operations on the nodes a, b, c and

d can succeed only in the strict left to right order. This connector implements a generic

sequencing protocol: we can parameterise this connector to have as many nodes as we

want simply by inserting more (or fewer) Sync and FIFO1 channel pairs, as required.

What we have here is a generic sequencer connector.

Figure 5.c shows a simple example of the utility of our sequencer. The connector in this

figure consists of a two-node sequencer, plus a pair of Sync channels and a SyncDrain

channel connecting each of the nodes of the sequencer to the nodes a and c, and b and c,

† Observe that with capacity of 1, the (FIFO or any other) ordering becomes irrelevant. Our specific choice of

FIFO1 here is merely due to the fact that it is the only capacity 1 channel mentioned in this paper.
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respectively. The connector in Figure 5.c is another connector for the coordination pattern

expressed as c = (ab)∗. However, there is a subtle difference between the connectors in

Figures 5.a and c: the one in Figure 5.a never allows a write to a to succeed without a

matching write to b, whereas the one in Figure 5.c allows a write to a to succeed (if ‘its

turn has come’) regardless of the availability of a value on b.

It takes little effort to see that the connector in Figure 5.d corresponds to the meta-

regular expression c = (aab)∗. Figures 5.c and d show how easily we can construct

connectors that correspond to the Kleene-closure of any ‘meta-word’ using a sequencer

of the appropriate size. To have the expressive power of regular expressions, we need the

‘or’ as well.

11.2. Inhibitor

The connector in Figure 5.e is an inhibitor: values written to d flow freely through to c,

until some value is written to i, after which the flow stops for good.

11.3. Or selector

Our ‘or’ selector can now be constructed out of two inhibitors and two LossySync

channels, plus some other connector for non-deterministic choice. The connector in

Figure 5.f is a particular instance of such an ‘or’ connector. The channel connecting the

nodes a and b in this connector is an AsyncDrain. It implements a non-deterministic

choice between a and b if both have a value to offer, otherwise it selects whichever one

arrives first. Each of the nodes a and b is connected to the inhibitor node of the inhibitor

connector that regulates the flow of the values from the other node to c. Thus, if a value

arrives on a before any value arrives on b, this connector blocks the flow from b to c

for good and we have c = a∗. Symmetrically, we have c = b∗, and we can thus write, in

general, c = a ∗ |b∗.

Observe that the simultaneity-preventing semantics of AsyncDrain excludes the possib-

ility of both inhibitors blocking, even if the two initial data items arrive simultaneously

at a and b.

12. Formal semantics

The informal description of the operational semantics of Reo presented in this paper

hints at its implementation on a distributed platform. It is, of course, possible to formalise

this operational semantics, for example, in terms of transition systems. An interesting

alternative to such a formal semantics is Rutten’s work on a coalgebraic semantics for

Reo (Arbab and Rutten 2003). This work currently covers the core of Reo and we

present an overview of its essential features in this section to give a flavour of the types

of reasoning that is possible in Reo’s coinductive calculus of connectors. In Rutten’s

model, Reo connectors are relations on timed data streams, which consist of twin pairs

of separate data and time streams. Coinduction is the main reasoning principle used to

prove properties such as connector equivalence.
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A stream (over A) is an infinite sequence of elements of some set A. Streams over sets of

(uninterpreted) data items are called data streams and are typically denoted by α, β, γ, . . . .

Zero-based indices are used to denote the individual elements of a stream, for example,

α(0), α(1), α(2), . . . denote the first, second, third, . . . , elements of the stream α. Following

the conventions of stream calculus (Rutten 2001), the well-known operations of head and

tail on streams are called initial value and derivative: the initial value of a stream α (that

is, its head) is α(0), and its (first) derivative (that is, its tail) is denoted by α′. Relational

operators on streams apply pairwise to their respective elements, for example, α � β

means α(0) � β(0), α(1) � β(1), α(2) � β(2), . . . . Time streams are constrained streams over

(positive) real numbers, representing moments in time, and are typically denoted by a , b,

c, . . . . To qualify as a time stream, a stream of real numbers must be strictly increasing,

that is, if a is a time stream, then the constraint a < a ′ holds.

A timed data stream is a pair, 〈α, a〉, of time (a) and data (α) streams with the

interpretation that ∀i � 0, the data item α(i ) appears at its corresponding time moment

a(i ). Timed data streams are used to model the flows of data through channel ends. A

channel itself is just a (binary) relation between the two timed data streams associated

with its two ends. A more complex connector is simply an n-ary relation among n timed

data streams, each representing the flow of data through one of the (non-hidden) n nodes

of the connector.

The simplest channel, Sync, is formally defined as the relation

〈α, a〉 Sync 〈β, b〉 ≡ α = β ∧ a = b. (18)

The equation α = β states that every data item that goes into a Sync channel comes out

in exactly the same order. The equation a = b states that the arrival and the departure

times of each data item are the same: there is no buffer in the channel for a data item to

linger on for any length of time.

A FIFO channel is defined as the relation

〈α, a〉 FIFO 〈β, b〉 ≡ α = β ∧ a < b. (19)

As in a synchronous channel, every data item that goes in, comes out of a FIFO channel

in exactly the same order (α = β). However, the departure time of each data item is

necessarily after its arrival time (a < b): every data item must necessarily spend some

non-zero length of time in the buffer of a FIFO channel.

A FIFO1 channel is very similar to a FIFO:

〈α, a〉 FIFO1 〈β, b〉 ≡ α = β ∧ a < b < a ′. (20)

Not only the departure time of every data item, α(i ) = β(i ), is necessarily after its arrival

time (a(i ) < b(i )), but since the channel can contain no more than 1 element, the arrival

time a(i + 1) of the next data item, α(i + 1), must be after the departure time b(i ) of its

preceding element (b < a ′).

A SyncDrain channel merely relates the timing of the operations on its two ends:

〈α, a〉 SyncDrain 〈β, b〉 ≡ a = b. (21)
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The replication that takes place at Reo nodes can be defined in terms of the ternary

relation R:

R(〈α, a〉;〈β, b〉, 〈γ, c〉) ≡ α = β = γ ∧ a = b = c. (22)

The semicolon delimiter separates ‘input’ and ‘output’ arguments of the relation. The

relation R represents the replication of the single ‘input’ timed data stream 〈α, a〉 into two

‘output’ timed data streams 〈β, b〉 and 〈γ, c〉.
The non-deterministic merge that happens at Reo nodes is defined in terms of the

ternary relation M :

M (〈α, a〉, 〈β, b〉;〈γ, c〉) ≡

a(0) �= b(0) ∧
{
α(0) = γ(0) ∧ a(0) = c(0) ∧ M (〈α′, a ′〉, 〈β, b〉;〈γ′, c′〉) if a(0) < b(0)

β(0) = γ(0) ∧ b(0) = c(0) ∧ M (〈α, a〉, 〈β′, b ′〉;〈γ′, c′〉) otherwise.
(23)

The notion of ‘dense time’ represented by real numbers, is more abstract than ‘discrete

time’ represented by natural numbers (H. Barringer et al. 1986). In our formal model

of Reo, time is strictly local and as such the actual numeric values in time streams do

not matter; only their relations are significant. The equality of time moments does not

necessarily imply simultaneity, but merely denotes atomicity. This means that if for some

〈α, a〉 and 〈β, b〉, we have a(i ) = b(j ), then α(i ) and β(j ) must appear atomically, but one

may follow the other; they may actually appear in any order, as well as simultaneously,

so long as their appearance is not interleaved with the appearance of an unrelated data

item. This relaxed interpretation of time enables us to break strict simultaneity, whenever

necessary, by shifting the numeric values in selected time streams, as long as atomicity

is preserved. For instance, the a(0) �= b(0) required by our merger, above, can easily be

satisfied by non-deterministically shifting one of the two time streams a and b.

Such a simple set of concepts is sufficient to derive formally the properties of the

non-trivial connectors presented in this paper (Arbab and Rutten 2003). For instance, the

properties of the regulators of Figures 4.d and e, the barrier synchroniser connector of Fig-

ure 4.f, the ordering imposed by the connector in Figure 5.a, the sequencing property of the

connector in Figure 5.b, and so on, can all be formally derived in this coalgebraic model.

Furthermore, this formalism enables us to prove interesting results such as ‘the pipeline

composition of k individual FIFO1 channels is equivalent to a single FIFOk channel’, and

so on. The reader is encouraged to refer to Arbab and Rutten (2002) for details.

13. Conclusion

Reo is an exogenous coordination model in which complex coordinators, called connectors,

are constructed by composing simpler ones. The simplest connectors correspond to a set

of channels supplied to Reo. As long as these channels comply with a non-restrictive set of

requirements defined by Reo, the semantics of Reo operations, specifically its composition,

is independent of the specific behaviour of channels. These requirements define the generic

aspects of the behaviour of channels that Reo cares about, ignoring the details of their

specific behaviour.

The semantics of the composition of connectors in Reo and their resulting coordin-

ation protocols can be explained and understood intuitively because of their strong
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correspondence to a metaphor of the physical flow of data through channels. This

metaphor naturally lends itself to an intuitive graphical representation of connectors

and their composition that strongly resembles (asynchronous) electronic circuit diagrams.

Reo connector diagrams can be used as the ‘glue code’ that supports and coordinates

inter-component communication in a component based system. As such, drawing Reo

connector diagrams constitutes a visual programming paradigm for coordination and

component composition.

The topology of connectors in Reo is inherently dynamic, and it accommodates mobility.

Moreover, Reo supports a very liberal notion of channels. As such, Reo is more general

than dataflow models, Kahn-networks and Petri-nets, all of which can be viewed as

specialised channel-based models that incorporate certain specific primitive coordination

constructs. Broy’s work on timed dataflow channels (Broy and Stefanescu 2001; Broy

and Stolen 2001) is perhaps closest to Reo. Nevertheless, Reo’s more general notion of

channels, its inherent dynamic topology, and the fundamental notion of channel/connector

composition distinguish it from this model as well.

Connector composition in Reo is very flexible and powerful. Our examples in this

paper demonstrate that exogenous coordination protocols that can be expressed as regular

expressions over I/O operations correspond to Reo connectors composed of a small set

of only five primitive channel types.

The on-going work on Reo in our group includes the formalisation of its semantics

based on the coalgebraic methodology, which has been developed as a general behavioural

theory for dynamical systems. Moreover, we are working on an implementation of Reo to

support composition of component based software systems in Java, and the development

of logics for reasoning about connectors.
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