For practical workings with the formula (8) a useful variant is obtained by employing not standard deviations but "variances" V defined by

$$
n \sigma^{2}=c^{2} V,
$$

where c is the "class interval." We then have

$$
\begin{aligned}
n_{1} \sigma_{1 x}^{2} & =c_{1 x}^{2} V_{1 x}, \text { etc., } \\
n_{1} r_{1} \sigma_{1 x} \sigma_{1 y} & =r_{1} c_{1 x} c_{1 y} \sqrt{ }\left(V_{1 x} V_{1 y}\right)
\end{aligned}
$$

The reader may be left to make the substitution, which takes a specially useful form when, as is normally the case, the class intervals for both groups in x, as well as in y, are the same.

The Probability Distribution of a Bridge Hand

By J. B. Marshall.

The probability distribution of a bridge hand affords a good example of drawings without replacement from a limited stock.

Let n drawings be made from such a stock. Let $p_{r s}$ and $q_{r s}$ be the probabilities of success and failure after there have been r drawings with s successes, and let the probabilities in successive drawings be connected by the relation

$$
\begin{equation*}
p_{r s} q_{r+1, s+1}=q_{r \delta} p_{r+1, s} \tag{1}
\end{equation*}
$$

[This relation is easily seen to hold in the case of a bridge hand. For if b is the number of cards left in the pack after r drawings, and if a is the number which will give a successful result, then

$$
p_{r s}=a / b, \quad p_{r+1, s}=a /(b-1), \quad p_{r+1,8+1}=(a-1) /(b-1)
$$

whence

$$
\begin{aligned}
p_{r s} q_{r+1, s+1} & =\frac{a}{b} \times \frac{(b-1)-(a-1)}{b-1} \\
& =\frac{b-a}{b} \times \frac{a}{b-1} \\
& \left.=q_{r s} p_{r+1, s .}\right]
\end{aligned}
$$

Let us, in the usual manner, construct a generating function (G.F.) by introducing a variable t, the powers of which will enumerate
the successes, the coefficient being the associated probability. Then for the first drawing the G.F. is

$$
p_{00} t+q_{00} .
$$

For the first two drawings the G.F. is

$$
\begin{aligned}
& p_{00} t\left(p_{11} t+q_{11}\right)+q_{00}\left(p_{10} t+q_{10}\right) \\
= & p_{00} p_{11} t^{2}+2 p_{00} q_{11} t+q_{00} q_{10}, \quad \text { by (1). }
\end{aligned}
$$

For three drawings the G.F. is

$$
p_{00} p_{11} t^{2}\left(p_{22} t+q_{22}\right)+2 p_{00} q_{11} t\left(p_{21} t+q_{21}\right)+q_{00} q_{10}\left(p_{20} t+q_{20}\right)
$$

$$
=p_{00} p_{11} p_{22} t^{3}+3 p_{00} p_{11} q_{22} t^{2}+3 p_{00} q_{11} q_{21} t+q_{00} q_{10} q_{20}, \quad \text { by }(1)
$$

The form of the general result now begins to appear, and we can in fact show, by an induction from n to $n+1$ based on (1), that the G.F. for n drawings is

$$
\begin{gathered}
p_{00} p_{11} \cdots p_{n-1, n-1} t^{n}+n p_{00} p_{11} \ldots p_{n-2, n-2} q_{n-1, n-1} t^{n-1} \\
+\binom{n}{2} p_{00} p_{11} \cdots p_{n-3, n-3} q_{n-2, n-2} q_{n-1, n-2} t^{n-2}+\ldots+q_{00} q_{10} \cdots q_{n-1,0}
\end{gathered}
$$

The " moment" G.F. is obtained, as usual, by putting $t=e^{\alpha}$ in the above and expanding in powers of α. The first or constant term in this expansion will be

$$
p_{00} p_{11} \ldots p_{n-1, n-1}+n p_{00} p_{11} \ldots p_{n-2, n-2} q_{n-1, n-1}+\ldots
$$

which from the meaning of a moment G.F. must equal unity, as can also be proved by means of relation (1). The coefficient of a is

$$
n p_{00}\left[p_{11} \ldots p_{n-1, n-1}+(n-1) p_{11} \ldots p_{n-2, n-2} q_{n-1, n-1}+\ldots\right] .
$$

The part within the bracket here is of exactly the same form as the expression given above for the first term, with an initial probability of p_{11} instead of p_{00}, and correspondingly $n-1$ for n. Hence it also must equal unity, and so the mean of the distribution under view is $n p_{00}$.

The coefficient of $a^{2} / 2!$, which gives the second moment or mean square, is

$$
\begin{aligned}
& n p_{00}\left[n p_{11} \ldots p_{n-1, n-1}+(n-1)^{2} p_{11} \ldots p_{n-2, n-2} q_{n-1, n-1}\right. \\
+ & \binom{n-1}{2}(n-2) p_{11} \ldots p_{n-3, n-3} q_{n-2, n-2} q_{n-1, n-2}+(n-1) 2 p_{11} q_{22} \ldots q_{n-1,2} \\
+ & \left.q_{11} \ldots q_{n-1,1}\right] .
\end{aligned}
$$

xviii
The part within the bracket may be written

$$
\begin{aligned}
& \{1+(n-1) \quad\} p_{11} p_{22} \ldots p_{n-1, n-1} \\
& +\{(n-1)+(n-1)(n-2)\} p_{11} \ldots p_{n-2, n-2} q_{n-1, n-1} \\
& +\left\{\binom{n-1}{2}+(n-1)\binom{n-2}{2}\right\} p_{11} \ldots p_{n-3, n-3} q_{n-2, n-2} q_{n-1, n-2} \\
& +\{(n-1)+(n-1)\} p_{11} q_{22} \ldots q_{n-1,2} \\
& +\{1 \quad+\quad 0\} q_{11} \ldots q_{n-1,1} \text {. }
\end{aligned}
$$

Adding vertically we get two expressions, exactly similar to the first term, the second expression being multiplied by $(n-1) p_{11}$. Hence the part within the brackets is equal to $1+(n-1) p_{11}$, and so the coefficient of $a^{2} / 2$! in the moment G.F. is

$$
n p_{00}\left[1+(n-1) p_{11}\right]
$$

Transferring to the mean as origin by subtracting $\left(n p_{00}\right)^{2}$, we derive the second moment μ_{2} about the mean, or squared standard deviation σ^{2}, as

$$
\sigma^{2}=n p_{00} q_{00}-n(n-1) p_{00}\left(p_{00}-p_{11}\right)
$$

Thus the mean and standard deviation of this particular distribution are given in simple terms.

Example. For the distribution of one suit in a bridge hand, we have

$$
\begin{aligned}
& p_{00}=\frac{1}{4}, q_{00}=\frac{3}{4}, n=13, \quad p_{11}=\frac{12}{51}=\frac{4}{17} \\
& \text { Hence } \quad \begin{aligned}
\mu_{2}=\sigma^{2} & =\frac{39}{16}-\frac{39}{68} \\
& =\frac{507}{272}=1 \cdot 86 . \\
\text { and so } & \sigma=1 \cdot 36 .
\end{aligned}
\end{aligned}
$$

A Problem in Combinations

By A. C. Aitken.

1. If there are n individuals $A_{1}, A_{2}, \ldots, A_{n}$, in how many ways can they be put into groups? .For example, if there are three individuals A, B, C, they may be grouped as
$A+B+C ; \quad A+(B+C), B+(C+A), C+(A+B) ; \quad(A+B+C)$,
