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WEAK TYPE ESTIMATES FOR RIESZ-LAGUERRE TRANSFORMS

EMANUELA SASSO

We prove that the first order Riesz transforms associated to the Laguerre semigroup
are weak-type (1,1). We also present a counterexample showing that for the Riesz
transforms of order three or higher the weak type (1,1) estimate fails.

l. INTRODUCTION

The aim of this paper is to study the weak type (1,1) boundedness of the Riesz trans-
form TZa naturally associated with the multidimensional Laguerre operator Ca, whenever
a = (a i , . . . , ad) is a multi-index with at ^ 0, i — 1, . . . , d (see Section 2 for all unex-
plained terminology and notation).

Riesz transforms and conjugate Poisson integrals for the Laguerre semigroup were
first studied by Muckenhoupt [6] in the one dimensional case. The V boundedness, with
1 < p < oo, was obtained by Nowak in multidimensional case [7]. By an analytic method
based on Littlewood-Paley-Stein theory, he extended the previous results of Gutierrez,
Incognito and Torrea [5], true only for a discrete set of half-integer multi-indices a.
Recently Graczyk, Loeb, Lopez, Nowak and Urbina [4] obtained the ZAboundedness of
the Riesz-Laguerre transforms for any order and the weak type (1,1) when the order is
equal to 2. The corresponding proof is based on the technique of transference from the
Hermite setting, and therefore only half-integer type multi-indices a are considered.

This paper complements the analysis of the first order Riesz-Laguerre transforms.
In particular, this paper is basically devoted to the proof of the following main result.

THEOREM 1 . 1 . Tie first order Riesz-Laguerre transforms Tla are of weak type
(1,1) with respect to the Laguerre measure, for each a € (0, oo)d.

Furthermore, we shall give a counterexample for the weak type (1,1) unboundedness
for order three and higher.

Observe that the natural range of a for the Laguerre setting is (-l,oo)d. The
restriction to a e (0, oo)d is imposed by methods used. Moreover transforms of order 2
are not treated, but we may conjecture the weak type (1,1) for these operators. In fact,
this result was proved recently in [4] for half-integer a.

Received 30th October, 2006

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 SA2.00+0.00.

397

https://doi.org/10.1017/S0004972700039320 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039320


398 E. Sasso [2]

As in [2] and [5], our starting point is the relationship between Laguerre and
Ornstein-Uhlenbeck semigroups. Indeed, it is well known that for half-integer values of
the parameter a, the Laguerre semigroup can be interpreted as the Ornstein-Uhlenbeck
one acting on polyradial functions. Thus we adapt to our case the strategy used in
[3, 8, 9] for the analysis of the Riesz transforms associated to the Ornstein-Uhlebeck
operator to obtain the desired results.

The paper is organised as follows. Section 2 contains basic facts and notation needed
in the sequel. In particular we determine the distributional kernel of the Riesz-Laguerre
transforms and we exploit the relationship with the Ornstein-Uhlenbeck case. The proof
of the weak-type (1,1) boundedness of the first order Riesz-Laguerre transform consists of
two parts, corresponding to the local and global parts of the operator, is found in Section
3. The analysis of the local part is based on comparison with the Calderon-Zygmund
singular integral theory. The reason for this is that "locally" the Laguerre measure
is essentially proportional to a polynomial measure; that is, a measure possessing the
doubling property. To prove the remaining, we control the global part of the operator by
the maximal operator associated to the Laguerre semigroup, which is of weak-type (1,1)
[2, 11]. Finally in Section 4, we present a counterexample, valid in arbitrary dimension,
to show that the Riesz-Laguerre transforms of order at least three are not of weak type
(1,1) with respect to the Laguerre measure.

2. THE FIRST ORDER RIESZ-LAGUERRE TRANSFORM

The Laguerre operator Ca is a self-adjoint "Laplacian" on L2(/xQ), where fia is the
d

Laguerre measure of type a on R+, that is d/xo(a;) = Yl(x°ie~Xi)/(T(ai + 1)) dx on
»=i

R+ = {x € Rd : Xi > 0, for each i = 1, . . . ,d}. It is well known that the spectral
resolution of Ca is

n=0

where V* is the orthogonal projection on the space spanned by Laguerre polynomials of
total degree n and type a in d variables (see, for instance, [13]). The operator Ca is the
infinitesimal generator of a "heat" semigroup, called the Laguerre semigroup, {e~tCa :
t ^ 0}, denned in the spectral sense as

n=0

It can be shown that for each t > 0, e~tCa is an integral operator, whose kernel with
respect to the Laguerre measure is

m m (T V) - (I - e~£T|a|~d / . - J - e - " W 1-e"' - » n [ | j
•/[-i.i]"
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where

d

(2) q±(x,y,s) = £ ( * i + y{± 2(xiyi)
1/2si),

n ia) - fe±il

and |a | = a i + • • • + a^. See, for instance, [2] and [13]. Indeed, the Laguerre heat
kernel is easily computed by means of a classical bilinear generating function for Laguerre
polynomials, and then (1) emerges from certain integral representations for the modified
Bessel functions of the first kind. The importance of the exact description of the kernel
mQit will be clarified in the following. Indeed, by spectral theory, the Riesz-Laguerre
transforms may be written in terms of the Laguerre semigroup.

The first order Riesz-Laguerre transform TZa = (flf , . . . , R°[) is formally defined by

where V a is the natural gradient associated to Ca, that is, VQ = (y/i~[dXl,..., y/x~ddXd),
and VQ1 denotes the orthogonal projection onto the orthogonal complement of the
eigenspace corresponding to the Laguerre eigenvalue 0. By spectral theory Ka can be
written by means of the Laguerre semigroup. Indeed, using the formula

S"=W)L e U*T'
with b, s > 0 we may define the powers of Ca on 7?ocJ"L2(/za) by the formula

r-bf~ 1 fO°Taftb—
a J — T V I . \ / t Jl j. '1 (0) Jo t

or equivalently

Now we shall deduce by (3) that, off the diagonal, the kernel of C~bVoL with respect to
the Laguerre measure agrees with the function Kb, defined by

Kb(x,y) = —TJT / (7n0,iog(i/r)(i,2/) - l K - l o g r ) 6 " 1 - ^ ,

in the sense that for all test functions / and g on R^., the following identity holds

(4) (CZbVgxf, 9)^=11 Kb{x, y)f(y)g(x) d/xa(x) d/ia(y),
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where (•, •)lta denotes the standard inner product in L2(/iQ). Indeed, it is not hard to
prove (see [3, Lemma 2.2] where this is proved in the Hermite setting) that the above
double integral converges absolutely and its absolute value is bounded byCH/HooHyHoo,
where C depends on the support of / and g. Moreover, by the spectral theorem we may
view £~*'P£X as the limit of (el + Ca)~

bV^L as e tends to 0+. Since the integral kernel
of

Jc,b(x,y) = j ^ y jT (mQ)logi(x,2/) - l ) ( -

we only need to show that

lim / / Je,bf(y)g{x)dfj,a(x)dna(y) = / / Kb(x,y)f{y)g{x)dtia(x)dfia{y)

for all test functions / and g, and this is immediate in view of the absolute convergence

of J f Kb(x, y)f(y)g(x) d»a(x) d/i«(y).

This allows us to see that the kernel of the Riesz-Laguerre transform 1ta coincides
with the gradient VQ of /fi/2, whenever x ^ y, where

VaK1/2(x,y) = (y/x~[dXlK1,2(x,y),...,y/x2dXdKl/2{x,y)).

As in [8, 9] the idea is to decompose %a into two operators, one given by a kernel
supported off the diagonal, and the other satisfying "standard" gradient estimates in a
suitable neighbourhood of the diagonal.

To exploit the aforementioned relationship with the Ornstein-Uhlenbeck case, it is
convenient to perform a change of coordinates in R+. If x = (x i , . . . ,xd) is a vector
in R £ , then x2 denotes the vector x2 = (x\,.. .,x%). Let * : R^. ->• R^ be denned
by \JJ(x) = x2 and let Jia = fia o * - 1 be the pull-back of measure fj.a. Then jla is the
probability measure

* _2ai+l -i?

TRTTy
on R^.. The map / -»• U<tf = / o $ is an isometry of Lq{na) onto L9(Jla) and of
^9lOO(A1a) onto Lq'°°(Jia), for every q in [l,oo]. So we may reduce the problem to the
study of the weak type (1,1) boundedness of the operator Ha = UyHaUy1 with respect
to the measure jia: Observe that TZa coincides, up to a multiplicative constant, with
V(£ o ) - 1 / 2 P 0

a I , with Ca = UaCaUy\ V^- = UyV^U^ and V is the gradient on Rd

with respect to the Lebesgue measure. In particular, off the diagonal, the operator
Ka = (7£a,i, • • •, fca,d) is given by the smooth kernel VATi/2(x

2, y2), that is,

(6) natif(x)= [ dXiK1/2(x
2,y2)f(y)dilQ(y),

JR*.

for each i = l,...,d and x ^ s u p t / .
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3. W E A K - T Y P E (1,1) BOUNDEDNESS

In this section we shall prove the weak type (1,1) boundedness of TZa with respect
to the measure Jla. Fix i € { 1 , . . . ,d}. For the sequel it is convenient to express the
kernel of ftQ,i with respect to the polynomial measure ma on R+, defined by

(7) dma(x) = eW2 dMx).

So we obtain that, for x £ supt / ,

naf{x)= f !C(x,y)f(y)dma(y),

with K{x,y) = VA"i/2(x
2, y2)ely'J. In particular /Cj(x, y) = I tCi(x,y,s)Ua(s)ds

J[-i,i]'
with

Observe that the whole reasoning contained therein goes roughly along lines of the proof
of the main theorem in [12].

In order to define the "local" region, we consider the extra variable s in [—l,l]d.
This artifice is suggested by the description of the local region in polar coordinates in the
Ornstein-Uhlenbeck case, and by the form of the kernel K. So the local region NT is the
set

ii «) C R d -x T?d x f-1 1ld • a (r2 ii2 <?W2 < ( 8 a + 8 ) T 1

Indeed, for half-integer value of the multi-index a, AfT is equivalent to polyradial expres-

sion of the local region introduced for the Ornstein-Uhlenbeck semigroup in [8, 9].

Now we shall decompose TZati into a "global" and "local" parts. Let <p be a cut-off

function on R/J. x R^. x [ -1 , l ]d such that 0 < tp ̂  1,

f l , {x,y,a)eNu
<p(x,y,s)= <

^0, {x,y,s)<£N2,

and

(8) \VMx,y,s)\ + \Vycp(x,y,s)\ < q_{x2j
C

y2

Define

nfobf(x) = f f Ki(x, y, s) (1 - <p(x, y, a)) dsf(y) dma(y),

on bounded measurable functions / . The boundedness of these operators implies the

weak type (1,1) of Ha. First we study Uf*.
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PROPOSITION 3 . 1 . The operator ft?'0* is of weak type (1,1) with respect to
the measure Jia.

PROOF: Since ((1 - r)/log(l/r)) is bounded for r € (0,1), after the change of
variables t = 1 - r, we can control ftf°\ by the operator

f f K.'(x,y,s)na(s)dsf(y)dma(y),

with

K>{x, y, s) = / r M-i (9-((1f'yV)) V ^ ^ N , , y
\ i /O ^/ l — i

We now proceed with the estimate of the kernel K'(x, y, s) in terms of K(x, y, s), defined
by

K.(x, y, s)

The proof is a simple modification to our case of the arguments used in the proof of
Proposition 2.2 in [9] and we omit the details. Now by an adaptation of [8, Proposition
2.1] and by [11, Theorem 4.3, Remark 4.6], the weak type (1,1) boundedness of ftf °°
follows from these estimates. D

REMARK 3.2. Since the operator

K(x, y, s)Ua{s) dsf(y) dma{y)

is bounded on L2(y.a) (see [12, Proposition 3]), we may deduce that 'R.fob is bounded on
L2(jia). In the following, we need the L2(/Io)-boundeness of ft?'"6 to study ft'00.

Now to prove our main result, it is enough to get the weak type (1,1) estimate for
ft(oc. Observe that the operator ft'0' is a singular integral operator. Moreover, outside
the diagonal, its kernel

ICT(x,y,s)

Jo
satisfies suitable gradient estimates.

LEMMA 3 . 3 . There exists a constant C such that

r(x,y, 5)| ^ Cq.{x\ y\

whenever (x, y, s) € Nt, for each t € R+.
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PROOF: We split the kernel ICloc(x, y, s) into two integrals

M/2 /-I
K%*{x,V,s)= / • • • d r + /

JO Jl/
... d r + I - d r .

1/2

Since

n-r

for (x, y, s) € Nt and 0 < r < 1

\frXj - yjSj I -(q_(rx',y',»))/(l-r) ^ £g-(«-(*!V.*))/(c(l-r))

a-r

where the last inequality is a consequence of the following estimate true in NT

g.(rx2, y2, s) > <z_(x2,y2, s) - 2C(1 - r1 '2)

(see [12, (2.6)]) . Now it is easy to see t h a t t h e i n t e g r a l / • • • d r ^ C . O n t h e o ther
L~_J Jo

/ (1 - r )- l«Me-<«-( l *••'M/W1-')) dr
Jl/2

hand

•dr^C
1/2 Jl/2

*- « (~3 . ,2 _\—IQI—^

as required. To complete the proof, it remains to prove the gradient estimates. We have
that, for each j — 1 , . . . , d

\fCi(x,y,s)dXj<fi(x,y,s)\

+6tjC

Using (8) and arguing as in the first part of this proof, it is a simple matter to verify that

these integrals are controlled by Cq-(x2,y2,s)~^~d~1/2. Similarly, the same estimates

hold for \dyj!C
loc(x,y,s)\ and this concludes the proof. D

However, (R^.,pitt) is not a space of homogeneous type in the sense of [1], because
the measure Jla is not a doubling measure. Therefore we cannot apply directly the
Calderon-Zygmund theory to the operator H1™, to prove that it is bounded from L 1 ^ )
to Ll-
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Nevertheless, we shall see that the problem may be reduced to studying the operator
on Ll(ma), where ma is the measure defined in (7). Indeed, R+ with the measure ma

and the Euclidean distance is a space of homogeneous type. To pass from (R+,/xa) to
(R+,mQ), we need to observe that there exists a collection of balls {BJ} J 6 N, covering
R+, such that the collection {5Bj}j€u has bounded overlap for each S > 1 and on Bj

the measure Jla is equivalent to the measure ma (see [10, Lemma 4]), that is, there exist
Co, Ci > 0, such that for every measurable subset E of Bj

REMARK 3.4. Let T be an operator mapping bounded measurable functions with com-
pact support to locally integrable functions. For each 5 > 1 fixed, define

i
for each bounded measurable function / . We have that if T extends to a bounded
operator on V{Jia) or on Lp(ma) for some p 6 [l,oo), then 7/ extends to a bounded
operator on LP^a) and on L?{ma). The //-operator norm of Tt with respect to both
measures, is bounded by a constant times the I^-operator norm of T. Moreover the same
result holds for the weak type estimates {p,p), with p € [1, oo) (see [10, Lemma 5]).

Now we can prove the weak type (1,1) boundeness of TZa.

THEOREM 3 . 5 . The first order Riesz-Laguerre transforms TZOti are of weak type
(1,1) with respect to the measure Jla.

PROOF: By Proposition 3.1, ftf°* is of weak type (1,1). Thus by (9), it is enough
to analyse the operator ft'oc. Let {BJ} J € N be the family of balls defined above. We shall
fix S > 1 later. We may write U1^ as

n<rf = nT(fXlBi) + nT((i - xsBi)f).
By multiplying by XB, and adding over j , we get

:= \Tllrf\ + \Rf\.

By [7] and Remark 3.2, Ua and nf* are bounded on L2(/iQ). It follows that H1^ is
bounded on L2(p,a). So by Remark 3.4, H1?* is bounded on L2 with respect to both
measures, ma and Jia. We know that R is bounded both on V^a) and on W{ma), for
1 ^ p ^ oo (see Proposition 6(19) of [10]). Thus the operator 7 '̂°° is a singular integral

operator, whose kernel is / £(z , y, s)ip{x, y, s)IIa(s) ds, outside the diagonal. By the
•/[-I,!]'

claim, TV™ is bounded on L2(ma). Moreover, by (8) and Lemma 3.3

\v{x,y)[lC(x,y,s)<p(x,y,s)]\ ^ Cq^x\y\s)-^-d-ll\

https://doi.org/10.1017/S0004972700039320 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039320


[9] Weak type estimates 405

for each (x, y, s) 6 N2 and x ^ y. Hence by an extension of the classical Calderon-
Zygmund theory for a singular operator on (R+ ,m a ) (see for the one-dimensional case
[10, Proposition 9]), ftj00 is of weak type (1,1) with respect to the measure ma. By
Remark 3.4, H1™ is of weak type (1,1) with respect to the measure Jia and

as desired. D

REMARK 3.6. Now Theorem 1.1 follows easily by the weak type (1,1) of 7la with
respect to the measure Jla, proved in Theorem 3.5.

4. A COUNTEREXAMPLE FOR OPERATORS OF ORDER AT LEAST THREE

In this section, we present a counterexample to show that the Riesz transform of
order at least three are not of weak type (1,1) with respect the Laguerre measure. For
any multi-index a e R+, let 7£° be the Riesz-Laguerre transform of order a, defined by

1J« — T7<> r-W/2-poJ.
"'a ~ VQA-Q M) •

As in Section 3, we may reduce the problem to the analysis of TZ% = U^TZ^U^1. By (4),
it is quite simple to see that d*CZ VQ^ is given by a singular integral operator and,
off the diagonal, its kernel with respect to the measure ma is

fCa(x,y)=C f £a(x,y,s)no(s)ds,
J[-i,i]'

with

r r H (

where Hai is the Hermite polynomial of degree Oj.

THEOREM 4 . 1 . Let |a | ^ 3. Then the operator ^Ca^^V^ is not of weak type

(1,1) with respect to the measure Jia.

P R O O F : For i j € R ' fixed, wi th 77, = \r}\/\/d for each i — l,...,d and \r]\ sufficiently
large, we wan t t o e s t ima te t h e kernel K.a(x, rj), whenever x is in J = {£(T])/\T)\ + V:V±

T), \v\ < 1,177I/2 < £ < (3/4) |77|) . We cla im t h a t for these choices of x and 77 t h e r e exists
a cons t an t C such t h a t ,

(11) K,a{x,n) > Cr)M-2lal-d-1e?-'>2.
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Assuming this claim for the moment, we find a counterexample for the (1,1) boundedness

of the Riesz-Laguerre transform of order al least 3. Indeed, let / > 0 in Ll{Jj,a) be a
close approximation of a point mass at 77, with ||/||i,i(£,) = 1. Then
will be close to e^/C^z,/?). By (11) if x € J, we get that e"lCa{x,T))

Now we suppose that 9°£a'°'/2'P£J- is of weak type (1,1) with respect to the measure Jla,
then there exists a constant C such that

Ha{Jx} < Ma{* e R+ : FC-^V^ix) > A} < C\

with A = CTjN^iaii-d-igfo/a)^ SinCe Xi ^ c\rj\ for each i = l , . . . , d and jia{J}

^ Ce~(r?/2)2rj2|Q|+d~1, letting 77 tend to infinity, we find a contradiction whenever \a\ > 2.

Now in order to show the claim (11), we split the kernel in three parts, corresponding

to the decomposition of [—1, l]d in /1U/2U/3, with

h = (hui2)
c,

that is, ICa(x,y) - ki(x,y) + k2{x,y) + k3(x,y) where kt(x,y) = / lCa(x,y,s)Ua{s) ds,
Jii

with i — 1,2,3. In particular, we estimate /Co(x, 77) whenever x € J by the estimates of
ki(x, 77), k2(x,rj) (from below) and k3(x, 77) (from above).

Observe that if s e h U J2,

/i—-

then

So the integrand /Ca(x, 77, s) is positive for x 6 J, s e I\ U 72 and 0 < r < 1. Moreover, if
x € J we have that

d

9_(rx2,772,s) = r|x|2 + H 2 - 2y/r^2xir]i8i
t=i

^ (r - 1)(^2 - |?7|2) + (^ - v^'l'?!)2 + c s e h,

In particular, for 1/16 < r < 9/16

'" " cM s G 72.
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Moreover it is quite simple to see that

/

h
9/16

/lie
Jh

/

So the previous estimates imply that for x € J

(12)

Now we want to control k3(x,r)), whenever x 6 J. To that end we use that over the

global region, each of the kernels K.a(x, y, s) is pointwise controlled by the function

*2, v\ s)q-(x\ y2, -))1/4 j ^ j L + i)K(«, y, -).

These estimates follow by a simple adaptation to our case of the corresponding estimates

in [3]. Now let Q± = q±(x2,rf,s) and cos# = I J^XifjiSi I /(\x\ \r)\), whenever (x,s)

€ J x 73. It is quite simple to verify that there exists a constant C such that |77|2sin20
^ Cij. Thus, since Q-Q+ ^ 4|TJ|4 and Q_ ^ |x|2sin2^, we obtain that (x, t], s) is in the
global region and

and so

(13)

By (12) and (13), we may estimate from above K.a{x, i)). Indeed we have that

ICa(x, 77) ^ ki[x, 77) + A;2(x, 77) - \k3(x, rj)\

for [-77! sufficiently large. This concludes the proof of the claim and of the Theorem. D
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