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Exact variational representations for the
solution of the simple parabolic equation

R.S. Anderssen

By constructing a special set of A-orthonormal functions, it is

shown that, under'certain smoothness assumptions, the

variational and Fourier series representations for the solution

of first initial boundary value problems for the simple

parabolic differential equation coincide. This result is then

extended in order to construct a variational representation for

the solution of a very general first initial boundary value

problem for this equation.

1. Introduction

In this paper, we use the results of [J] to investigate the

construction of variational representations of the solutions of first

initial boundary value problems for the simple parabolic equation:

- K — + || = f(x, t) , f k £2(5(0, 1)) ,

(1)

u{x, 0) = w(0, t) = M ( 1 , t) = 0 ,

where K is a positive constant, 5(0, 1) = {(*,'*); 0 < x £ 1, t > 0}

and L2(S(°> l)) is the space of real square summable functions defined on

5(0, 1) with inner product denoted by ( , ) . It follows from [/, §2,

Example], that the solution of (l) can be sought as the function which

minimises the functional

(2) Fk{u) = (Aw, A M ) - 2(Au, /) ,

Received lU May 1971-
305

https://doi.org/10.1017/S0004972700047250 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047250


306 R.S. Anderssen

where we have i d e n t i f i e d A with t h e o p e r a t o r , defined by ( l ) , which maps

from t h e c l a s s i c a l s o l u t i o n s of ( l ) i n t o £2 (5 (0 , l ) ) •

We s t a r t by c o n s t r u c t i n g s p e c i a l systems of h-orthonormal funct ions

{<JK .} = {<JK . (x , t)} ii = 1 , 2 , . . . ; 3 = 0 , 1 , 2 , . . . ) (see Mikhl in 14;

§83] ) : f A<j>. . , A4>7 ) = 6.-6 . for a l l i , j , Z and m where 6 . . i s the

VQ Utr It, QTn tQ

Kronecker delta symbol. These functions are used to show that, under

certain smoothness assumptions, the Fourier series and the variational

representations of the solution of

(U) u(x, 0) = F(x) , u(0, t) = git) , u(l, t) = hit) ,

coincide, where we define a variational representation of the solution of

(3) and ik) by

00

(5) v = u(x, t) = I a. .<j>. . + u(x, t) ,

where u(x, t) is some function which satisfies the initial and boundary

00

conditions ik) and J a..$..= u is the variational representation of

the function which minimises (2), and hence, of the solution of (l), with

If Fix), git) and hit) of (U) are such that:

(a) F(0) = giO) , F(l) = Mo) ,

(b) lim git) = K^ , lim hit) = Kg ,

(c) g(t), hit) 6 ^ ( [ 0 , »)} and F(x) I C2([0, l ] ) , and

1 } ) f o r(d) (i-x) , x M , ,
3a;2

Y > 0 ,

then a suitable form for w is

(6) U = u(x, t) = U (x) + B(x, t) ,
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where U (x) = [K^-K )X + K denotes the steady state solution of (3) and

(It), and

B(x, t) = {l-x){g{t)-Kl} + x{h(t)-K2} + {F(x)-U-x)g(0)-xh(0))e~yt .

The corresponding form for f(x, t) is

(7) fix, t) = -[(l-*)ff + x || - L & + y{F{x)-(l-x)g(0)-xh(0)}\e-yt] .

Condition (a) ensures the initial and boundary conditions match at the

corners of 5(0, l) and will be referred to as the eormev condition;

while (b) ensures that the steady state solution of (l) is zero - a fact

required in proof of dense invertibility in [7]. That fix, t) exists

and is contained in L2{S{0t l)) follows from (c) and (d).

Finally, we note that it follows from Mikhlin [4, §83] and Petryshyn

[5, §2.1] that the a., in the above variational representation of u are
13

defined by

\ 1 aij(**ij' A < O = fr« A O 0" = 1 . 2 , ...; n = 0 , 1 , 2 , . . . ) ,
1,—L J — O

which becomes, on using the A-orthononnality of the <}>. .(x, t) ,

(8) a,. = [f, A* ] (i = 1, 2, ...; 3 = 0, 1, 2, ...) .

2. On the construction of A-orthonormal systems

Let the A-orthonormal system {<(>..} be chosen in the form

4.. = *..(x, t) = y^sin(iiTa;)*..(t) U = 1, 2, ... ; 3 = 0, 1, 2, ... )
it/ i-j '-J

with the ijJ. .(t) unknown functions of t which satisfy the boundary
i>3

conditions

(9) <J»-,-(0) = 0 , (i = 1, 2, ...; 3 = 0, 1, 2, ...) .

It follows from the definition of A-orthonormality that the {<(>..} are
13

A-orthonormal if the system
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(10) {A<J>. .} = |y^ici2Tr2sin(iTrx)i(/. . ( t )+^sin(iTra;) ip. .> ,
t<7 ^ I'd 13)

where the dot denotes differentiation vith respect to t , is orthonormal

in £2(5(0, 1 ) ; . Such a system is

(11) /*£sin(iira:) % i i e~atLA2at)\ ,
I J • 3 J

where the L . (w) are the Laguerre polynomials of order 3 . Equating the
0

right hand side of (10) with (11), we obtain

1

( 1 2 ) K%. + i K . = ^ - e~avL.{2<xt) (i = 1 , 2 , . . . ; j = 0 , 1 , 2 , . . . )

w i t h X = Ki 2 i r 2 , w h i c h w i t h ( 9 ) d e f i n e t h e <Ji. . ( * ) .
•£-</

A particular integral of (12) is

Jo °
Ce'Kt [ £.(2aM)e

U"a)"dM = A(tf, a, 3; t) ,

2
with C = {2a.)2/3 \ , which can be evaluated using the convolution theorem

f(u)g[t-u)du = r 1

where L and L denote the Laplace transform and i ts inverse, and

f{u) = £.(2ow) and ff(u) = e " ^ - a ) M .
J

Since, using [3, §§!*. 11(25), ̂ -5(1)11,

L(L.(2ow)} = (p-2a)V'7'"1 ,

where real{p/2a} > -1 , and

L[e-{K-a)u} = (p+JC_a)-l f

where realp > real(-A:+oi) and a t Ki2TT2 , we obtain, with a - K - a

and realp > -1 ,

)=Ce-at { (-l)^| (2a) V ^ V a ) ] " 1 ) .
k=0 W
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Again, from [3, §5.2(21)3, it is found that 

1=1 Hk+l-l)<.a > a l 

whence, 

(13) à{K, a, o; t) = i i - l ) k ^ ± f < l l - ^ - j 

k+l-l\ . e a t 1 
Hence, finally, the complete solution of (9) and (12) is 

-Kt (lit) %-At) = A(K, a, 3; t) - A U , a, 31 0)e 

with X = Ki27r2 , a = K - a and a * K . 

Note. The restriction a # Ki2ir2 , introduced earlier, can he 
removed. When a = Kqzvz (q an integer), say, one finds, on using [3, 
§5.2(16)], that 

V ( t ) - j 0 osnr- • 

3. Exact variational representations of the solution of (1) 

If fix, t) is defined hy (7), then the a . , of (8) become 

< v , - ^ { - A t ( - i ) 1 - j ] [ î î v » - ' ' - * * 

• If \y{P(x)-(l-x)g(0)-xh{0)} + K ^Isi^iuxJdB) 
U 0 L Sx 2 ] J 

where [3, §U.11(31)] has been used. 

EXAMPLE. Consider (3) and (1*) with 

Fix) = sin(rce) , git) = hit) = 0 . 

For this initial boundary value problem, 
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Uix) = 0 , B(x, t) = sin(irx)e yt , fix, t) = (y-\cn)sin(-nx)e~yt ,
8

and

^..1 aa (i = 1) ,

0 (i / 1) .

Hence, i> of (5) becomes,

00 -1

(16) M(x, t ) = sin(Trx)e~Yt + I (y-Kn2) ( y ~ a ) . . . al<b .(x, t) .

If either y = KIT2 or y = a > (l6) becomes, using (13) for the second

case,

u(x, t) = sin(irx)e ,

which is the Fourier series solution of this init ial boundary value

problem.

In fact, the Example is a special case of

THEOREM 1. Let H(x) be an odd periodic function, H(2+x) = H{x) ,

which vanishes at x = - 1 , 0 and 1 3 let its first derivative be

absolutely continuous and its second derivative be contained in

L 2 ( ( - l , l ) ] . Then, for the initial boundary value problem defined by (3)

and (U) with

(17) F ( x ) = H ( x ) , g { t ) = h i t ) = 0 , 0 5 x < l , t > 0

the variational representation (5) reduces to the Fourier series solution

of (3), (U) and (17) when y = « •

Proof. Here,

fix, t) = y*(x)e-^ + K ^
3x2

Hence,

2(Y-a)Jai f Hix)siniivx)dx + K [ ^Sls
J0 J0 3x2

Let
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f fl(ar)
J0

(18) b. = 2 H{x)sin{ii\x)dx ( i = 1 , 2 , . . . )
1r

denote the Fourier coefficients of H(x) . Using (l8) and the result of

Zygmund [7, Chapter 2, §2] on the differentiation of Fourier series, one

obtains for the variational representation (5) of the solution of this

problem

u(x, t) = H{x)e-^ + I I <T-«)Jg (Y-K;V)fc.*. .(*, t) .

Putting y = a in this last expression and using (13), we obtain

00 00 -2 2

(19) u(x, t) = H{x)e~at - I b .sin(i-nx)e~at + Y b .sin(ivx)e~K'L V t

since

(20)

As a consequence of the conditions imposed on H{x) in the theorem, the

Fourier series of H(x) converges uniformly to H(x) (see [7, Chapter 2]

or [6, §13.25]). Thus, the first two terms on the right hand side of (19)

cancel and we obtain the Fourier series solution of (3), (k) and (19);

which proves the theorem.

A more general result on the differentiation of Fourier series is

LEMMA. Let the function K{x) satisfy the following conditions:

(a) K(x) is an odd function,

(b) K(x) is periodic, K(2+x) = K{x) ,

(c) K(x) has discontinuities of the first kind (jumps) at x = 0

and x = 1 , such that K[O+) = Mx , K{6~) = -Mx ,

#(l+) = -M2 , x{l~) = M2 , and

(d) the first derivative of K{x) is absolutely continuous on the

intervals (-1, 0) and (0, 1) where K'(x) is completed by

continuity at x = -1, 0 and 1 .

Then,
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(21) S[*"(x)] = S"[K(x)] - 2 I {M2(-l)
i-M1}iTrs±n{i-nx) ,

i=l

where S[f{x)] denotes the Fourier series of fix) , S"[f(x)] its second

derivative and K"(x) = d2K(x)/dx2 .

The proof is straightforward. We only pause to note that, using

(21),

(22) f \y[K(x)-(l-x)Mi-xM2] + K ^ ^
Jo *• 3x2

[ M± . A^2"|

where

d. = #(x)sin(iTrx)da; (£ = 1, 2, ...) .
^ >-l

Using (22), the following generalization of Theorem 1 is proved.

THEOREM 2. Let H{x) be a function which satisfies the conditions

of the lemma and is such that H"(x) {which is defined except at -1,0

and 1} is contained in £2((-l> l)) • Then, the solution of the initial

boundary value problem defined by (3) and (h) with

(1) F{x) = H{x) , and

(2) g{t) and h{t) absolutely continuous and g{0) = M\ and

HO) = M2 ,

has the following representation

(23) u(x, t) = (l-x)g(t) + xHt) + I I W-\-j= [(-I)1" - {] *
i = l j=0 LJ t. i 7 r

v 7 . / • \ -tci2ir2t+ 2 fc.sin(tirx)e j
£=1 *

wfcere t^e fc. (£ = 1, 2, ...) are the coefficients of the Fourier series

of
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fix) = {Hix)-il-x)Mi-xM2} , (0 £ x 5 1) 3 fi-x) = fix) , f(x+2) = fix) .

Proof. Applying (22) to the variational representation (5) of the

solution of initial boundary value problem of (3) and (k) formulated in the

theorem, putting y = a and using (l8) and (20) as well as the facts that

and

we

oo

J
obtain

U m

(23).

2M.
+ 2

(-1) M2

^ • ^ •

sin(iTCc) = Hix) - (l-x)W - xM ,

At least when git) and M t ) are constant with respect to t , (23)

will be computationally more efficient than the corresponding solution

found in Carslaw and Jaeger [2, §37, equation (2)].
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