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We report a laboratory study on the scattering, energy dissipation and mean flow induced
by internal gravity waves incident upon slopes with varying surface roughness. The
experiment was performed in a rectangular box filled with thermally stratified water. The
roughness of the slope surface, λ, defined as the height of a roughness element over its
base width, and the off-criticality γ = (α − β)/β, with α and β being the angles of the
incident wave and the slope, are used as two control parameters. The distribution of energy
dissipation in the direction normal to the slope is found to be more uniform in the rough
surface cases. Counter-intuitively, both the maximum value in the dissipation profile and
the total energy dissipation near the slope are reduced by surface roughness under most
circumstances. The measured peak width (the full width at half-maximum of the peaks) of
the dissipation profile is found to be broadened significantly in the rough surface cases. We
also observed that there exists a non-zero optimal off-criticality (γ = 0.17 for the present
measurement resolution) for the normalized average dissipation and total dissipation,
which may be due to the strongest wave energy near the slope at this γ . Unlike surface
roughness, the off-criticality has a small effect on the distribution of energy dissipation.
Moreover, surface roughness is also found to change the structure of the scattering-induced
mean flow and enhance its strength. The present study provides new perspectives on how
the surface roughness on topographic features influences energy dissipation.
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1. Introduction

Oceanic internal gravity waves, which are generated mainly by winds near the ocean
surface or tidal flow over bottom topographies, are thought to provide a large amount
of energy to sustain the ocean mixing when they break and dissipate (see e.g. Munk &
Wunsch 1998; St. Laurent & Garrett 2002; Kunze & Llewellyn Smith 2004; Wunsch &
Ferrari 2004; Lamb 2014; Sarkar & Scotti 2017). Ocean observations have shown that
although some of the waves are trapped in their generation sites and hence dissipate locally
(Aucan et al. 2006; Carter & Gregg 2006; Lee et al. 2006; Levine & Boyd 2006; Klymak,
Pinkel & Rainville 2008; Johnston et al. 2011; Nikurashin & Legg 2011), the majority
of them can radiate to far away places (Ray & Mitchum 1996; Alford 2003; Alford &
Zhao 2007; Nash et al. 2007; Kunze et al. 2012). These radiated waves will be largely
dissipated when interacting with different kinds of ocean features such as continental
slopes and seamounts (Eriksen 1982; Nash et al. 2004; Klymak et al. 2006; Zhao, Alford &
Mackinnon 2010; Alford et al. 2011; Martini et al. 2011). To better understand the internal
wave dissipation and its effects on the ocean mixing, many studies have been performed
to simulate and determine quantitatively the wave–topography interactions, and one of
the most studied cases is the reflection or scattering of incident internal waves upon the
sloping topography.

When an internal wave beam propagates in a uniformly stratified fluid, the angle of its
group velocity vector with respect to the horizontal, α, depends only on the wave frequency
ω, if the effect of the Earth’s rotation is neglected. The relation between α, ω and the
buoyancy frequency N is given by (Sutherland 2010)

tan α =
√

ω2

N2 − ω2 . (1.1)

Owing to such a property, an internal wave maintains its angle after scattering or reflection
upon a slope, which can lead to much higher wavenumber and energy density, causing the
instabilities and dissipation. Moreover, the overlap between the incident and reflected wave
near the topography can also enhance significantly the nonlinear effects, which results
in mean flow and harmonics. These physical phenomena can be influenced by several
parameters, for example, the criticality (usually defined as the ratio of the topography slope
to wave characteristic slope), the properties of the incident wave such as its amplitude,
the shape or relative height of the topography, and the stratification of ambient fluid.
Previous studies have explored thoroughly how the wave scattering depends on these
control parameters (see e.g. Cacchione & Wunsch 1974; Thorpe & Haines 1987; Gilbert
& Garrett 1989; Ivey & Nokes 1989; Taylor 1993; Ivey, Winters & De Silva 2000; Müller
& Liu 2000a,b; Legg & Adcroft 2003; Gostiaux et al. 2006; Scotti 2011; Rodenborn et al.
2011; Chalamalla et al. 2013; Hall, Huthnance & Williams 2013; Legg 2014; Arthur,
Koseff & Fringer 2017; Nazarian & Legg 2017a,b; Sarkar & Scotti 2017). However, the
impact from another significant property, the roughness of the slope surface, has not been
investigated systematically.

There are a number of previous studies that examine the role of surface roughness on
wave scattering; all of them are theoretical. The first was by Longuet-Higgins (1969), who
found that quite small-scale irregularities can completely alter the reflecting properties
of a surface, and he also elucidated the impacts of different kinds of periodic surface
roughnesses on wave transmission. A more quantitative study was shown by Mied &
Dugan (1976), and they calculated the energy redistribution of the wave scattered by a
sinusoidally corrugated surface. Thorpe (2001) was the first to use a configuration with
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Internal gravity waves incident upon rough slopes

superimposed roughness elements on a sloping topography, and studied the scattering of
an incident internal wave on such a topography. This work was further improved by Legg
(2004), who incorporated the Coriolis effect. Later findings by Nakamura & Awaji (2009)
indicate that the surface roughness can also change the frequency of the incident wave
under some conditions. The above theoretical models have shed some light on the effects
of surface roughness on wave scattering. However, there still exist some aspects that need
to be explored, one of which is that the viscous effect was not incorporated in these models,
and hence a major puzzle remains, i.e. how is the dissipation of wave energy affected by
the surface roughness? The main purpose of the present work is to answer such a question
through a laboratory study.

In this paper, we perform a laboratory experiment to investigate the scattering, energy
dissipation and mean flow induced by the internal gravity wave incident upon slopes with
different surface roughness. For completeness, we examine the role of criticality, while
the impact from the amplitude of the incident wave is also illustrated. The remainder of
this paper is organized as follows. The experimental apparatus with a novel design, the
measurement techniques and the parameter space are introduced in § 2. The main results
and discussions are shown in § 3, which is divided into four subsections. The structure
of the generated wave in our system is presented in § 3.1. The fields of kinetic energy
and wave dissipation near the topography are shown in § 3.2. The profiles of the averaged
dissipation rate and kinetic energy are presented in § 3.3. The mean flow field induced by
the nonlinear effect is shown in § 3.4. We summarize our findings and conclude in § 4.

2. Experimental apparatus and methods

As shown in figure 1, the experiments were performed in a box of rectangular shape with
length L, width W, and height H equal to 80 × 20 × 20 (cm), respectively. The working
fluid that fills the box is deionized and degassed water. The top and bottom plates of the
box are made of copper, with their surfaces electroplated with nickel and then chromium,
while the side wall of the box is constructed by four transparent Plexiglas plates of
thickness 2 cm. The top plate is heated by eight embedded heaters, and the heating power
is controlled by a high-stability power supply; the bottom plate is cooled by a regulated
refrigerated recirculator. For more details on the design of these plates, we refer to Xia,
Sun & Zhou (2003).

In this experiment, the top and bottom temperatures of the box were fixed at 32.5 ◦C
and 11.5 ◦C, respectively, thus the working fluid is stably stratified, with the strength
of stratification being controlled by the temperature difference across the box. The
surrounding temperature, controlled by two high-performance air conditioners, was set
equal to the mean temperature of the box, i.e. 22.0 ◦C. Comparing with the traditional
approach, in which saline water is used to make a stably stratified fluid layer by the
two-tank method (Fortuin 1960), our method has three main advantages. First, the
generated stratification may be closer to that in the ocean, since the temperature, rather
than salinity, has the greatest effect on density change in the ocean (Webb 2019). Second,
once the stable stratification is established, we can perform wave field measurements at
any time without the need to reproduce the stratification. Third, as the stratification is
determined solely by the temperature distribution, it can be measured easily by scanning
the temperature profile with a thermistor attached to a movable rod. In this experiment,
we scan the vertical temperature profile with a step size 5 mm. The equation that is used
to convert the temperature of water T at different vertical positions to its density ρ is
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Wave absorber

Cold plate

Hot plate

Acrylic rod 

Linear motor

Oscillating cylinder

d
h

  Roughness element

 Acrylic plate with surface roughness

D

Figure 1. Schematic drawing of the experimental apparatus.

the Kell (1975) formulation

ρ = a1 + a2T − a3 × 10−3T2 − a4 × 10−6T3 + a5 × 10−9T4 − a6 × 10−12T5

1 + a7 × 10−3T
, (2.1)

where a1 = 999.83952, a2 = 16.945176, a3 = 7.9870401, a4 = 46.170461,
a5 = 105.56302, a6 = 280.54253 and a7 = 16.897850. The local buoyancy frequency is
then obtained as

N(z) =
√

− g
ρ(z)

dρ(z)
dz

, (2.2)

where g is the gravitational acceleration, and z is the height relative to the bottom plate.
The quasi-two-dimensional internal gravity waves were generated by a smooth cylinder

(19 cm in length and 5 cm in diameter), connected to a linear motor (model: P01-37 ×
120/20 × 100-C, LinMot) that was set to oscillate periodically. The motion of the cylinder,
which determines the dynamics of the generated internal wave, can be described by

Z(t) = A cos(ωt) + Z0 − A, (2.3)

where Z and Z0 represent the vertical displacement and the initial vertical position of the
generator relative to the bottom plate, while A and ω are the oscillating amplitude and
frequency, respectively. A set of slopes was used in the experiment to model the sloping
topographies in the oceans. Each of the slopes consists of a thin acrylic plate (19 cm in
length, 19 cm in width, and 0.3 cm in thickness) with certain surface roughness, and two
cylindrical acrylic rods (9.5 cm in height and 1 cm in diameter) that were used to support
one end of the acrylic plate, with the other end resting on the bottom plate of the box. Such
a design can minimize the influence of the added topographies on thermal stratification.

In the present study, the excited internal waves can propagate towards four directions.
For simplicity, only the lower left wave beam, which interacts with the slope, is marked in
figure 1 by two green wavy lines. The other three wave beams, undergoing one or several
reflections at the top or bottom plates, will be absorbed by two foam filters (indicated by
black rectangles in figure 1) with thickness 2 cm, which were placed at the left and right
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ends of the tank. There is a vertical slit at the middle of the right foam filter so that the
laser sheet can pass through.

The internal wave fields were measured by the particle image velocimetry (PIV)
technique (Adrian 1991). The polyamide spheres (20 μm in diameter and 1.03 g cm−3

in density) were selected as seeding particles. A continuous laser source (PSU-H-LED,
MGL-H-532-400 mW) as well as some optics were used to produce a laser sheet to
illuminate the seeding particles, and the flow field was recorded by a charge-coupled
device (CCD) with 2048 × 2048 (pixel) resolution. The sampling rate was 2 Hz or 4 Hz,
depending on the wave velocity, and the recording time is more than 40 wave periods for
each measurement. The recorded raw images were processed by PIV calculation software
(DPIV-2010) to obtain two-dimensional velocity maps. For most of the measurements
(except for that used to examine the generated wave structure), the number of grid points
(the calculated vectors) within the region in which we are interested is about 120 × 60,
and the spatial resolution of the PIV measurement, i.e. the distance between the adjacent
grids, is 1.7 mm. As the density of the seeding particles is slightly larger than that of the
water (see figure 3a), it is necessary to test the impact from the sink of the particles on
the measured flow field. We took a PIV measurement before the wave generator began to
vibrate. The calculated velocities within the measuring window are almost zero, suggesting
that this sedimentation effect can be neglected.

In this experiment, the buoyancy frequency within the measuring region is
approximately 0.42 rad s−1. The angle of each sloping topography with respect to the
horizontal β is fixed at 30◦, while the oscillating frequency ω, the oscillating amplitude
A, and the wavelength of surface roughness, or simply surface roughness, λ on a slope,
are variables. Here, λ is defined as the ratio of the height of the roughness element h to
the width of its base d (λ = h/d, see figure 1), and h is fixed at 1 cm while d is varied,
resulting in λ varying from 0.25 to 1.5. For comparison, we also conducted measurements
using a slope with a smooth surface (λ = 0). The rough surface designed in this study is
significantly different from that in a classical theoretical study mentioned above (Thorpe
2001). One of the main differences is that in Thorpe’s case, the steepness of roughness
relative to the slope, S, is supposed to be a small value (S � 1). Here, S = 0.5hk, with
k being the wavenumber of the roughness element (k = 2π/d). In the current study, the
calculated S varies from 0.79 to 4.71, which is close to or larger than 1. Such a difference
makes the study in Thorpe (2001) less relevant to our experiment. The wave frequency
ω in the present study is varied from 0.21 to 0.32 rad s−1, so the angle of the generated
incident waves with respect to the horizontal, α, which is calculated by (1.1), varied from
30◦ to 50◦. In this study, there are two kinds of criticality. One of them is the criticality of
large slope, which is usually defined as tan(β)/ tan(α). To highlight the deviation from α

to β, a new control parameter γ , the off-criticality, is introduced, defined as (α − β)/β,
and varies from 0 to 0.67 (such a definition is close to that in Chalamalla et al. 2013).
Note that γ = 0 corresponds to a critical slope, and all non-zero positive values of γ

correspond to subcritical slopes. We now turn to another kind of criticality, which is the
criticality of a roughness element. Figure 2 shows a geometrical sketch of the internal
waves incident on a roughness element. Here, we denote the angle between the right
side of the roughness element and the horizontal as β2, which equals ϕ + β, where ϕ

is the angle between the right side of the roughness element and the slope surface. The
criticality of the roughness elements is usually defined as tan(β2)/ tan(α), which then
equals tan(α + β)/ tan(α). Note that ϕ = arctan(2λ) (where λ is the surface roughness
and equals h/d) and α = γβ + β. The criticality of a roughness element can be expressed
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β

β

ϕ

α

h

d

Figure 2. Illustration of internal waves incident on a roughness element. The green arrows represent the
incident waves, and the solid black lines constitute a roughness element superimposed on a slope. Here, ϕ

is the angle between the right side of the roughness element and the slope surface, α is the angle of the incident
waves with respect to the horizontal, and β is the angle of the slope with respect to the horizontal. The width
and height of the roughness element are denoted d and h, respectively. For simplicity, we plot only one of the
roughness elements.

as tan(arctan(2λ) + β)/ tan(γβ + β). Since β is fixed at 30◦, we see that the criticality of
a roughness element can be determined by λ and γ , and hence is not a new independent
control parameter for our system. In Appendix C, we will show that the criticality of a
roughness element is not a good choice as control parameter.

The amplitude A is set from 1.5 to 6 mm. Therefore, A/D varied from 0.03 to 0.12, where
D is the diameter of the oscillating cylinder as indicated in figure 1. As the role of the
wave amplitude in wave–topography interaction is not the main focus of this study, details
of dependence of the scattered wave properties on the amplitude A will be illustrated in
Appendix B.

3. Results and discussion

3.1. The generated wave beam in the absence of topographies
To begin with, we check the vertical density profile measured in the system, which is
shown in figure 3(a). Here, the inset shows the measured temperature profile, which is
used to calculate the density profile by (2.1). The buoyancy frequency N (calculated by
(2.2)) is shown in figure 3(b), where there are four data sets that were measured over a
period of one month. The overlap of these four data sets shows excellent stability of the
established stratification. The buoyancy frequency is not uniform in the vertical direction.
However, within the measuring region, indicated by the two dashed lines in figure 3(b),
the buoyancy frequency is nearly constant, with mean value 0.42. As indicated by (1.1),
the value of N determines the upper limit of the frequency of the generated wave.

We now examine the structure of the generated wave in our system in the absence of
topographies. An example of the vector maps of the measured internal wave field is plotted
in figure 4(a). Here, A/D = 0.03 and ω/N = 0.21. Also, T is the length of the wave period,
and t = T/4 is the time when the cylinder reaches the equilibrium position and moves
downwards.

Assuming that the boundary condition at the surface of the wave generator is free-slip,
and that the variation of the excited internal wave in the across-beam direction is much
larger than that in the along-beam direction, Hurley & Keady (1997) proposed a viscous
linear theory to describe the internal waves generated by a vibrating elliptic cylinder in
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Figure 3. (a) The density profile from data set 1, which is calculated by the measured temperature profile
(inset). (b) The profiles of buoyancy frequency from four data sets measured over a period of one month. The
dashed lines indicate the vertical range of the measuring window.
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Figure 4. Vector maps of internal wave velocity with magnitude
√

u2 + v2 cm s−1 coded in both colour
and arrow length at A/D = 0.03, ω/N = 0.21 and t = T/4: (a) experimental measurement; (b) theoretical
prediction. The black solid line and red dashed line indicate, respectively, the perpendicular and parallel
directions of the energy propagation of the waves.

stratified fluid of constant buoyancy frequency. Such a theory (referred to as HK theory
hereafter) has been used to compare with previous experiments (Sutherland et al. 1999;
Zhang, King & Swinney 2007). In figure 4(b), we plot the wave field predicted by the
HK theory with the same values of the parameters as in the experiment. One sees that the
experimentally measured wave field shows good correspondence with that predicted by
theory.

To make a more quantitative comparison, we plot the profiles of along-beam velocity
(velocity in the direction of wave propagation) Va in figure 5, which are taken across the
black lines shown in figure 4. Here, b represents the relative distance of the points on the
black line to the centre of the line, and the minus or plus sign of b means the point is located
below or above the midpoint on the black line. From figures 5(a) and 5(c), we see that the
experimental results can be described very well by the HK theory. In figures 5(b) and 5(d),
where the wave frequency becomes larger, it can be seen that HK theory under-predicts the
wave amplitude when b is positive. The increase of the deviations between the experiments
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Figure 5. The profiles of along-beam velocity when t = T/4: (a) A/D = 0.03, ω/N = 0.21; (b) A/D = 0.03,
ω/N = 0.30; (c) A/D = 0.09, ω/N = 0.21; (d) A/D = 0.09, ω/N = 0.30.

and the HK theory when ω increases was also found in Sutherland et al. (1999). This will
not be discussed further as it is not the main focus in the present study.

Figure 6 shows the variation of the wave amplitude in the direction of the group velocity
from our measurement and the prediction from the linear HK theory in a semi-logarithmic
plot. One can see clearly that neither the experimental data nor the model predication
follows the exponential decay described by the classical wave attenuation equation for a
monochromatic wave (Lighthill 1978). The figure also shows some differences between the
experimental data and linear model prediction; the difference is about 10 % in the largest
case. Such a deviation is also found in some previous works. For example, in Zhang et al.
(2007), the difference between the theory and experimental data can be as large as 50 %
(figure 6(d) in their paper).

3.2. Wave field near the rough slope
We now place the topography into the box and study the wave fields near the slopes with
different surface roughness. The scattering of the incident internal waves can be seen
clearly in figure 7, where we show the contour maps for the fields of time-averaged kinetic
energy:

E = 1
t2 − t1

∫ t2

t1
(u2/2 + w2/2) dt. (3.1)

Here, u and w are the horizontal and vertical velocities, respectively, t1 is a time when
the flow reaches steady state, and t2 is chosen such that t2 − t1 is larger than at least
30 oscillating periods. For simplicity, we show only the results when A/D = 0.03 and
γ = 0.50. Figures 7(a) to 7(e) show that the internal waves are modulated by the
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Figure 6. The variation of wave amplitude in the direction of the group velocity. The data are taken at the
positions indicated by the red dashed lines in figure 4. q is the coordinate along the direction of the group
velocity of the waves. The origin of q is the cross point of black solid lines and red dashed lines in figure 4.
Note that the vertical scale in this figure is logarithmic.

surface roughness of the slope: The wave patterns exhibit light and dark stripes in the
whole flow field. This is because of the constructive/destructive interference between
the incident waves and the reflected waves. This effect becomes increasingly prominent as
the roughness parameter λ is increased from 0 to 0.5. As λ becomes larger than 0.5, and the
wavelength of the roughness becomes small, this kind of modulation is weakened. When
λ = 1.5, the wave field is very close to that in smooth surface case. One may also find that
high-intensity regions of the wave are around the peak positions of the roughness elements,
which is due to the energy concentration during the wave reflection. Low-intensity regions
correspond to the valley positions of the roughness elements, because part of the wave is
trapped near the valley and hence becomes stagnant. Moreover, figure 7 shows that the
kinetic energy of an internal wave is the largest in the region very close to the surface of
the topography. Surprisingly, this maximum value shows no significant dependence on λ.

In figure 8, we show the fields of time-averaged dissipation rate:

ε = 1
t2 − t1

∫ t2

t1
ε dt, (3.2)

where ε is the instantaneous dissipation rate of kinetic energy in two-dimensional flow
(Pope 2000):

ε = ν

[
2

(
∂u
∂x

)2

+ 2
(

∂w
∂z

)2

+
(

∂u
∂z

+ ∂w
∂x

)2
]

. (3.3)

Here, ν is the kinematic viscosity of water. To measure the dissipation rate accurately, the
Kolmogorov length scale should be resolved in the PIV measurement. However, the spatial
resolution should not be too high, otherwise the measurement error increases (Tokgoz
et al. 2012). In this experiment, it is difficult to realize fully the above requirements at
each grid point because of the spatial inhomogeneity, i.e. the resolution is a bit too low for
some high-dissipation region, but may be a little too high for some low-dissipation region.
Hence a direct comparison between the measured dissipation field in the rough surface
cases and that in the smooth surface case can be only qualitative.

Figures 8(a) to 8(e) show the modulation of the surface roughness on the energy
dissipation of internal waves. For all cases, the energy dissipation is the largest near the
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Figure 7. Contour maps for the fields of time-averaged kinetic energy at different λ when A/D = 0.03 and
γ = 0.50: (a) λ = 0, (b) λ = 0.25, (c) λ = 0.5, (d) λ = 0.75, (e) λ = 1.5. The units are cm2 s−2.

slope, and the maximum energy dissipation in the smooth surface case is even larger than
that in the rough surface case. On the other hand, in the roughness case, the region of
intense dissipation seems to be less localized and is extended beyond the vicinity of the
surface. This results in the distribution of dissipation rate in the rough cases being more
uniform in space. Again, the dissipation field at λ = 1.5 is found to be close to that in the
smooth surface case.

3.3. Profiles of dissipation rate and kinetic energy
To analyse quantitatively the effect of roughness on internal wave field, we plot and then
examine the profiles of the averaged dissipation rate along the direction normal to the
slope. We first introduce a new coordinate system shown in figure 8(b): the origin is set at
halfway along the slope surface. Two variables, s and σ , represent the coordinates parallel
and perpendicular to the slope surface, respectively. We then take the average of ε in the s
direction:

〈ε〉(σ ) = 1
Δ

∫ s2

s1

ε(σ, s) ds, (3.4)
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where s1 and s2 are equal or close to −l/2 and l/2, respectively, in the region near the slope,
l being the length of the rough surface of the slope (l = 16 cm). Also, Δ = (s2 − s1)ξ ,
where ξ is the ratio of the number of the grid points outside the roughness elements to the
total number of grid points at a certain σ . In the region far away from the slope, the length
of the average region, i.e. s2 − s1, would be smaller than l due to the finite size of the
measuring window, which may partly reduce the accuracy of 〈ε〉. However, as most of the
energy is dissipated near the slope, such a finite size effect is negligibly small in the final
results. Although the measured energy dissipation may be less than accurate at some grid
points, as mentioned before, we have verified that the obtained profiles of 〈ε〉 are accurate
and reliable (for details about the verification, please refer to Appendix A). For simplicity,
we will show only the dissipation profiles that were measured with A/D = 0.03.

In figures 9(a,b), we plot the normalized average dissipation rate 〈ε〉/ε0 versus the
normalized distance normal to the slope, σ/h. Here, ε0 = A2ω3, and h is the height of
the roughness element, as we said before. These figures show that the surface roughness
reduces the maximum value in the dissipation profile. It is also seen that the peak width
of the profiles in the rough cases is larger than that in the smooth surface case. This is
consistent with the observation from figure 8 that the energy dissipation becomes less

942 A26-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.371


Y.-H. He, B.-Y.-C. Cheng and K.-Q. Xia

10–1

10–2

10–3

10–4

10–5

10–1

100

10–2

10–3

10–4

60

50

40

30

20

10

0

200

150

100

50

0

0 1 3 4 5 6 72

σ/h
0 1 3 4 5 62

0 1 3 4 5 6 72 0 1 3 4 5 62

σ/h

λ = 0

λ = 0.25

λ = 0.50

λ = 0.75

λ = 1.50

〈ε〉
/ε

0
ε T

/ε
T0

(a) (b)

(c) (d)

Figure 9. Profiles of (a,b) the along-slope and time-averaged dissipation rates, and (c,d) the accumulated
dissipation rate. For (a,c) γ = 0.5, and for (b,d) γ = 0.17. Different symbols represent different roughnesses
as shown in (a).

localized and is spatially more uniform when the slope surface is rough. Another feature
shown in these figures is that when λ � 0.50, the energy dissipation is very weak when
σ is very close to the valley of the roughness (σ ≈ 0). A possible reason is that part of
the incident wave is trapped near the valley of the roughness elements and hence become
stagnant, as we said before. The results are the same for other values of γ . In figures
9(c,d), we plot the profiles of the normalized accumulated dissipation rate, εT/εT0. Here,
εT is defined as

εT(σ ) = ρW0l
s2 − s1

∫ σ

0

∫ s2

s1

ε(σ, s) ds dσ , (3.5)

where ρ0 is the density of water, and W0 is the width of the slope. Also, l/(s2 − s1) is the
normalization factor, which is used to make the integral length in the s direction remain the
same at different σ , and thus can reduce the impact from the finite size of the measuring
window. As (3.5) shows, εT(σ ) reflects the total amount of energy dissipation in the region
below a certain σ . We have εT0 = ρ0l03A2ω3, where l0 is the unit length (1 cm). Both
figures 9(c) and 9(d) show that the surface roughness can also reduce the total amount of
the energy dissipation, and this roughness-induced reduction shows a clear dependence on
λ. When comparing figures 9(c) with 9(d), we see that the roughness-induced reduction is
much more prominent at γ = 0.17, suggesting that such a reduction is also highly related
to the off-criticality.

In figure 10, we examine the influence of the off-criticality on the energy dissipation,
where the profiles of the averaged and accumulated dissipation rates are both shown
for various values of γ . It is found that there exists a non-zero optimal off-criticality
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(γoptimal = 0.17) for energy dissipation in both the smooth and rough surface cases.
Surprisingly, unlike surface roughness, the off-criticality is found to apparently have no
effect on the peak width of the dissipation profile, but affects its shape only far from the
slope. This suggests a weak dependence of the spatial distribution of the dissipation on
off-criticality, which is confirmed further in figure 11.

In figure 11, we plot the normalized full width at half-maximum (FWHM) of the peaks
in the profiles of the averaged dissipation rate versus λ at different γ . It is seen that
the peak width of the dissipation profile indeed depends weakly on off-criticality, as the
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values of FWHM/h at different γ are close. Rather, FWHM/h of the dissipation profiles
is determined mainly by the surface roughness. The peak width in rough surface cases
can be much larger than that in the smooth surface case, as figure 9 shows. Moreover,
the peak width increases monotonically when λ decreases from 1.50 to 0.25. Figure 11
demonstrates quantitatively that the region of intense dissipation is broadened due to the
effect of surface roughness.

From both figures 9 and 10, we see that the energy dissipation accumulates rapidly
in the region near the slope (except for the regions where σ is very close to 0 in
some rough surface cases, i.e. near the valley of the roughness elements), and then
accumulates very slowly in the region far from the slope. We introduce a quantity called the
displacement boundary layer (DBL), which is used to separate the rapid accumulation and
slow accumulation regions. The method to determine the thickness of the DBL is shown
in figure 12(a). We extrapolate the linear parts of the accumulated dissipation profile both
near the slope and far from the slope, and the distance from the slope at which these two
extrapolating lines cross corresponds to the thickness of the DBL. We plot the thickness of
the DBL (δ) versus the off-criticality γ at different surface roughnesses λ in figure 12(b),
which shows that δ has a weak dependence on γ , and the data scatter may be due to the
errors in determining the DBL thickness. The figures also show that the DBL thickness
for the smooth surface is much smaller than for the rough cases. The differences between
the DBL thicknesses in the smooth and rough surface cases are close to the height of
the roughness element. This suggests that such differences are determined mainly by the
height of the roughness element.

To examine the effects of roughness on energy dissipation more completely, we plot in
figure 13(a) the maximum value of the averaged dissipation 〈ε〉max in the profiles measured
at all γ , versus the surface roughness λ. It is seen that for each γ , 〈ε〉max first decreases
and then increases with increasing λ. Except for the case with γ = 0, 〈ε〉max reaches
a minimum at λ = 0.5, where the modulation effect is most pronounced, as shown in
figure 7. The ratio of 〈ε〉max at λ = 0 (smooth surface case) to that at λ = 0.5 can be as
large as ∼10. We also plot the total dissipation rate at σ = 2δ, namely εT |σ=2δ , versus
λ in figure 13(c). When σ reaches 2δ, the dissipation has decayed significantly and the
accumulated dissipation εT increases very slowly with the distance σ , hence εT |σ=2δ can
be used as a measure of the total energy dissipation. Although the relation between εT |σ=2δ

and λ is somewhat complex, a broad feature is that the surface roughness reduces εT |σ=2δ

under most circumstances. Figure 13(c) also shows that the total energy dissipation has
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Figure 13. Maximum value in the averaged dissipation profile 〈ε〉max/ε0 versus (a) roughness λ, and
(b) off-criticality γ . Accumulated dissipation rate at σ = 2δ, εT |σ=2δ/εT0, versus (c) roughness λ, and (d)
off-criticality γ . The symbols represent different off-criticality in (a,c), and different surface roughnesses in
(b,d).

less dependence on λ when compared with the maximum value in the dissipation profile.
The reason is that although the surface roughness reduces the maximum value of the
dissipation rate, it broadens the region of intense dissipation. The combination of these
two effects reduces the dependence of the total accumulated dissipation on the surface
roughness. In figures 13(b) and 13(d), we plot 〈ε〉max and εT |σ=2δ versus off-criticality γ ,
respectively. It is clear that there exist an optimal off-criticality at which both 〈ε〉max and
εT |σ=2δ reach their respective maximums. This optimum off-criticality remains invariant
for different surface roughnesses, and equals 0.17. It should be noted that because of the
sparsity of the data, this number serves to provide only a rough measure of the true optimal
value. Another feature seen from figure 13(d) is that the value of εT |σ=2δ for γ = 0, i.e.
waves with critical incidence, is the same for surfaces with different roughnesses, even for
a smooth surface, which is somewhat unexpected. It would be interesting to explore the
relation between the criticality of the slopes of the roughness elements (the definition of
the criticality is shown in § 1) and the energy dissipation of waves. However, as already
mentioned (see Appendix C for details), this criticality is not a good choice as a control
parameter.

It is known that stronger flow strength usually leads to stronger energy dissipation. Thus
we also investigate the relationship of wave energy to surface roughness and off-criticality.
In figure 14, we plot the profiles of the normalized average kinetic energy 〈E〉/E0. Here,
the method to obtain the time- and space-averaged kinetic energy 〈E〉 is the same as
that used to obtain 〈ε〉 in (3.4), and E0 used for the normalization equals A2w2. From
figures 14(a) and 14(b), we see that the surface roughness has little effect on the strength
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of the internal wave near the slope except that it shifts the peak position position by a
distance roughly equal to the height h of the roughness elements (1 cm). Figures 14(c)
and 14(d) show that the wave energy near the slope can be affected by off-criticality. The
more quantitative examination is shown in figure 15, where we plot the maximum value in
the profile of averaged wave energy 〈E〉max/E0 versus surface roughness λ in (figure 15a)
and vs off-criticality λ in (figure 15b). Indeed, the wave energy near the slope has no
significant dependence on surface roughness, but is dependent only on the off-criticality.
The optimum γ equals 0.17 and is the same as that found in figures 13(b) and 13(d).
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In some of the previous studies, critical reflection (γ = 0) has attracted most of the
attention as it can result in the strongest wave energy near the slope according to the
linear inviscid theory. However, the present study suggests that the strongest wave energy
exists at off-criticality 0.17, not 0. In our understanding, the optimum off-criticality
should be determined by two effects: the energy concentration effect, which enhances
the wave energy near the slope, and the effect induced by the bottom drag, which
reduces the wave energy. When the off-criticality decreases to zero, both of these
effects are enhanced continuously, and their combination leads to a non-zero optimum
off-criticality. In the classical theory, the viscous effect is not incorporated, hence the
optimum off-criticality should be zero. The existence of non-zero optimal off-criticality
is also found in other studies; e.g. Chalamalla et al. (2013) reported that the turbulent
kinetic energy can be higher for somewhat off-critical reflection compared to exactly
critical reflection under certain conditions. A weakly nonlinear model (Kataoka & Akylas
2020) also shows that in some conditions, the viscous effect can be important during the
wave reflection from a slope, which leads to the deviation of the optimal off-criticality
from zero.

3.4. Mean flow
As mentioned in § 1, the mean flow field induced by the interaction between incident wave
and topography can reflect the strength of the nonlinear effect. The previous theoretical
and experimental studies have elucidated clearly the two-dimensional mean flow field near
slopes with smooth surface (Thorpe & Haines 1987; Grisouard 2010). In this subsection,
we focus on the influence of surface roughness on the mean flow field. The vector map
of the mean flow velocity Uex + Wez for the smooth surface and rough surface cases are
shown in figures 16(a) and 16(b), respectively. Here, U and W are long-time-averaged
horizontal and vertical velocities, while ex and ez are the rightward and upward unit
vectors, respectively. A comparison between these two figures clearly shows that the
surface roughness changed the structure of the mean flow field: a series of vortices, of size
roughly the same as the separation between the tips of roughness elements, are formed
near the slope surface. In the case of a smooth surface, the direction of the mean flow is
mainly parallel to the slope. However, in the rough surface case, the formation of vortices
is accompanied by the enhancement of mean flow in the direction perpendicular to the
slope, which is further confirmed in figures 16(c) and 16(d), where we show the contour
plots of mean flow velocity in the direction perpendicular to slope surface Vσ . It is found
that Vσ in the rough surface case is much stronger than that in the smooth surface case
(notice the difference in the scale bar). For comparison, we also plot the fields of the mean
flow velocity in the direction parallel to slope Vs in figures 16(e) and 16( f ). Although the
roughness elements would induce additional bottom drag force as we mentioned before, it
is found that the strength of Vs in the rough surface case is even slightly larger than that in
the smooth surface case.

The normalized maximum values of mean flow velocity in the direction normal to slope
(Vσ /V0)max versus surface roughness λ and off-criticality γ are plotted in figures 17(a)
and 17(b), respectively. Here, V0 = Aω is used for normalization. It can be seen that
(Vσ /V0)max first increases and then decreases as λ increases continuously. Interestingly,
the maximum value of (Vσ /V0)max, which represents the strongest nonlinear effect,
corresponds to the position λ = 0.5, at which the scattering effect becomes strongest, as
shown in figure 7, and 〈ε〉max reaches a minimum. From figure 17(b), it is found that
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(c,d) Colour-coded contour plots of mean flow velocity in the direction parallel to slope Vs. (e, f ) Colour-coded
contour plots of the mean flow velocity perpendicular to slope Vσ . In (a,c,e) λ = 0; in (b,d, f ) λ = 0.5. Here,
A/D = 0.09, γ = 0.50, and the units are cm s−1.
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Figure 17. Normalized maximum value of the mean flow velocity perpendicular to slope, (Vσ /V0)max, versus
(a) roughness λ, and (b) off-criticality (α − β)/β.

there also exists an optimal off-criticality (γ = 0.17) for (Vσ /V0)max. The existence of an
optimal off-criticality for mean flow is not difficult to understand, as the wave energy near
the slope is largest at that off-criticality, as shown in figure 15(b).
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4. Conclusion

In this paper, we have investigated experimentally the scattering, energy dissipation and
mean flow when the incident internal waves are scattered by sloping topographies with
rough surfaces in a stably stratified fluid maintained by a constant temperature gradient.
The surface roughness λ (the ratio of the height of the roughness element to the width of
its base) and the off-criticality γ (which relates directly to the wave frequency) are chosen
as two main variables of the experiment, while the wave amplitude A is fixed in most cases.

As a validity check of the design of our system, the quality of the generated internal
wave, and the measurement techniques, we first examine the generated wave beams in
the absence of the topographies in the fluid. When comparing the obtained results with
a viscous linear theory developed by Hurley & Keady (1997), which is a widely used
linear model, it is found that the structure of the internal wave in our system can be well
described by this theory. The scattering of incident wave by the surface roughness is shown
in both the time-averaged kinetic energy field and the energy dissipation field. The effect of
scattering enhances as λ increases from 0 to 0.5, and then weakens as λ increase from 0.5
to 1.5. Moreover, the distribution of energy dissipation is found to be more uniform in the
direction perpendicular to the slope when the slope surface is rough. Counter-intuitively,
although the roughness elements should enhance the drag force on the surface of the slope,
both the maximum value in the profile of space- and time-averaged energy dissipation,
〈ε〉max, and the total energy dissipation, εT |σ=2δ , are reduced by the surface roughness
under most circumstances. Nevertheless, the peak width of the dissipation profile is found
to be broadened significantly in the rough surface cases, which demonstrates that the
intense dissipation region can be extended by the surface roughness. The peak width is
found to increase monotonically when λ decreases from 1.50 to 0.25. Interestingly, the
roughness is also found to affect strongly the mean flow field induced by wave–topography
interaction. The structure of mean flow has been changed drastically by roughness: a series
of vortices, of size roughly the same as the separation between the tips of roughness
elements, are formed near the slope. Contrary to its role in energy dissipation, the surface
roughness greatly enhances the mean flow in the direction perpendicular to the slope
surface. The normalized maximum value of mean flow velocity in the direction normal to
the slope, (Vσ /V0)max, reaches its maximum at λ = 0.5, at which the scattering becomes
strongest and 〈ε〉max reaches minimum.

The role played by off-criticality γ is examined systematically. It is observed that there
exists an optimal γ (= 0.17 for the present measurement resolution) for the normalized
〈ε〉max and εT |σ=2δ , which may be attributed to the strongest kinetic energy near the slope
at that γ . The combination of energy concentration effect and the effect induced by bottom
drag force should be responsible for the existence of this non-zero optimal off-criticality,
which is different from the prediction of linear inviscid theory. Not surprisingly, the same
optimal off-criticality is found in the measured mean flow field when λ is varied. Unlike
surface roughness, the off-criticality has only a small effect on the distribution of energy
dissipation.

Our study suggests, under the present conditions, that the surface roughness of
topography can reduce both the maximum energy dissipation and total energy dissipation.
Furthermore, the surface roughness is found to broaden the region of intense dissipation.
The wave-induced mean flow is also enhanced by the surface roughness. Moreover, there
exists a non-zero optimal off-criticality at which the dissipation near the topography
reaches maximum. In the oceans, topographies with rough surfaces are thought to
be the regions where energy dissipates strongly (see e.g. Ledwell et al. 2000). The
present study therefore provides a new perspective on how the surface roughness on
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Figure 18. The profiles of time and along-slope averaged dissipation rate 〈ε〉 measured at different resolutions
when λ = 0.25 and γ = 0.5: (a) A/D = 0.03, (b) A/D = 0.06, (c) A/D = 0.09, and (d) A/D = 0.12. Different
symbols represent different resolutions, the values of which are listed to the right of (b) with the unit mm. The
values and errors of 〈ε〉 at σ = h are also given.

topographic features influences energy dissipation. Finally, we remark that further studies
are needed to examine whether the present laboratory findings can be extended to the
oceans.
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Appendix A. Test the reliability of the calculated dissipation profile

Here, we test the accuracy and reliability of the profile of the time and along-slope
averaged energy dissipation 〈ε〉 measured using the current spatial resolution. Figure 18
shows the profiles of the averaged dissipation measured at different resolutions (from
0.39 to 3.1 mm). For simplicity, λ is fixed at 0.25, while γ is fixed at 0.5. Note that to
achieve high spatial resolution, the PIV measuring window in this test is limited to a small
region near the slope, hence the measured dissipation profiles would be a little different
from that shown in figure 9. From figures 18(a–d), it is found that all the profiles with
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Figure 19. Plot of 〈ε〉 at σ = h versus A2 when λ = 0.25 and γ = 0.5.
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Figure 20. The maximum mean flow velocity in the direction parallel to the slope Vs(max) versus A2 when
λ = 0.

their measuring resolutions within the range from 1.5 mm to 3 1 mm can collapse nicely
onto a single curve, which means that the resolutions within this range are appropriate
for measuring the dissipation profiles. The chosen spatial resolution in the present PIV
measurement is 1.7 mm, thus the profiles of 〈ε〉 in this study are reliable. The values and
the errors of 〈ε〉 at σ = h, which are the mean and standard deviation of 〈ε〉 at these
appropriate resolutions, are given in figure 18, and the errors are small when compared
with the ratio of dissipation in the rough surface case to that in the rough surface case.

Appendix B. Dependence on the forcing amplitude

Here, we analyse the role played by the amplitude of the incident wave in energy
dissipation and mean flow. In figure 19, we plot 〈ε〉 at σ = h versus A2, and the data are
from figure 18. It is clear that 〈ε〉|σ=h is proportional to the square of the wave amplitude.
In figure 20, we plot the maximum mean flow velocity in the direction parallel to slope
Vs(max) versus A2 at different γ . For simplicity, λ is fixed at 0. Again, it is found that
Vs(max) is proportional to A2.
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Figure 21. Maximum value in the averaged dissipation profile 〈ε〉max/ε0 versus the criticality of the slopes of
the roughness element. The data are taken from figure 13(a). The data in the smooth surface case are not used
as there are no roughness elements.

Appendix C. Dependence on the criticality of the slopes of the roughness element

Figure 21 shows the maximum value in the averaged dissipation profile versus the
criticality of the slopes of the roughness elements. The criticality is defined as
tan(β2)/ tan(α), where β2 is the angle between the right side of the roughness element
and the horizontal, and α is the angle of the incident waves. One may see that the data
points in the figure are very scattered, which means that the criticality of the slopes of the
roughness elements seems not to be a good choice as a control parameter in this study.
We would also like to emphasize that this criticality is not a independent variable as it is
determined when the values of λ and γ are given.
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