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Abstract

In this note the L2-angle between two concentric rings and between the ring and the exterior
of the disc in the complex plane are calculated. In the second part we prove that the L2-angles
between domains A and B and between AxC and BxC are equal. We give also some examples
of discontinuity of the L2-angle between domains.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 30 C 40, 32 H 10,
46 C 10, 46 E 20.

Introduction

The alternating projections and I?-angle in the theory of the Bergman func-
tion were introduced by M. Skwarczyriski [4, 5]. The application of this pro-
cedure leads in some cases to the explicit-analytic calculations of L2 -angle
between domains in C^ (see [2, 5]).

Let A and B be two domains in C*. and put D = AuB. Set F = L2H(D) :=
{/ e L2(D): f is holomorphic in D}. Denote by Ft, i = 1,2, the subspaces of
L2(D) consisting of functions holomorphic in A and B respectively. Assume
that m(A\B) > 0 and m(B\A) > 0 (here, as well as in the rest of the paper, m
denotes the Lebesgue measure in C^). The L2-angle y(A, B) e [0, f ] between
A and B is given by (see [5, Section 1 (1)])

(1)
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270 Piotr Jakobczak and Tomasz Mazur [2]

Under the additional assumption that L2H{A) ^ 0 or L2H(B) ^ 0, one can
prove (see [5]) that

(2) cos2 y(A,B) = sup ' f^° " "" : / € F, \{0}, / ± F,
{ WJWA + \\JUB\A

and / holomorphic in Int(5\^4) >.

(Here / is the Bergman projection of f\ B in B.)
In this note we calculate the L2-angle between two concentric rings on

the complex plane, and between the ring and the exterior of the disc. We
prove also a result on the I?-angle between cartesian products of domains.
Moreover, we give examples of discontinuity of the I?-angle.

1. The case of rings

Let A = {z € C: 0 < rt < \z\ < r2}, B = {z e C: Rt < \z\ < R2},
where r, < /?, < r2 < R2. Let Fi = {/ e L2{D): f e Hol{A)}, F2 = {/ €
L2(D):feHol(B)}.

THEOREM 1.

cos2 y(A B) - h(*i/'i)fa(JWn)
cos n^^ - l n ( i ? 2 / j R i ) l n ( r 2 / r i )

PROOF. Consider a function / such that / e Fi\{0},

(3) (/,S) = O for every g e L2H(D),

and / is holomorphic in Int(B\A). This function on A and B\A has power
series expansions

f\A{z) = 52anz", f\BXA{z) =
n€Z n&Z

Denote \\zn\\2
v = U(n). We calculate the expression in (2)

n€Z

n€Z

n€Z
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Denote by P the Bergman projection in D. Since / is orthogonal to L2H(D),
we have Pf = 0. Therefore, for every n e Z, 0 = (Pf, z") = (/, z") =
anA(n) + bn(B\A)(n), and so

(4) - - - A{n)

Hence

b" ~-a»(BSAWY

2 = V l f l |2 A2(")B^A kz wx")'
Similarly, if / = Z)nez c«r" i n B>then f o r every neZ, cnB(n) - {/, z")B -
(/I B, Z")B = an(A n B)(n) + bn(B\A)(n), and so

-Bin)
nez

by (4). Therefore the numerator and denominator in (2) are respectively

U\\A\B+ii/iii=E ifl»i21 l ( ^ n ^ ) r ^ ( w ) 5(n)+(^\5)(w) I
n € Z U *• ' J

and

n€Z (B\A)(n) (5\^)(n)L

Note that {{A n 5)(n) - ^(n))2 = (^(n) - (v4 n 5)(n))2 = ((A\B)(n))2. Now
we have

= sup

, , (A\B)(n)
_ B(n)

1 + = sup
(A\B)(n) (B\A)(n)

A(n) B{n) '

F o r n / - 1 ,

n) = \\zn\\\B= f T,
JO Jn
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Analogously,

fr1),
\n+l\

For n — - 1 ,

fRl 1 R\
= 2% I — ds = 2% In — ,

A, ^ r\

Setting a = r\, b = R2, c = r2, d = R\, we obtain

i*\ 2 IA DN^ (\n.{bla)\n(dlc) bm - am dm-cm\(5) coŝ  y(^, B) < sup ̂ ^ j l n ^ q j , ^ - ^ • ^ ^ - ^ j ,
m = n + 1 / 0.

On the other hand, if we define the functions fn by setting fn equal to zn

in A and to -A(n)/(B\A)(n)z" in 5\/l , then / , satisfy the conditions from
(2), and it is easy to check that supn€Z{(\\f\\2

A\B + \\f\\l)/(\\f«\\2
A + \\U2

B\A)}
is equal to the right-hand side of (5). Therefore we have the equality in (5).
It is easy to see that

b-ad-c bm -am dm - cm

—, ; > —. ; , m=l,2,....
d - b c - a ~ dm - bm cm - am

We want to show that
I / L / \ I / J / \ L J ln{b/a) \n(d/c)

ln(o/a) ln(d/c) b-ad-c -g^a d^c h J
ln(d/b)ln(c/a) >~d^b~c~^a~ ° r ^ 1 M > ' ° < < ° <

For b = c, the left-hand side is 1, so it suffices to show that the first factor on
the left is increasing with respect to b on the interval (a,c). Without loss of
generality we may assume that a = 1, and consider the expression

We shall show more: this expression is decreasing for b € (1, d). Substituting
b = ds, s e (0,1), it suffices to show that

(slnd)(ds- 1)
( ( 1 - j ) In </)/(</-</*)

is decreasing for s e (0,1), or equivalently that

s d-d5

T^sd* - 1
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is decreasing for s € (0,1). Assuming 0 < s < t < 1, we want to show that

5 d-ds t d-d1

\-sds - \ l-td'-l

of (after dividing both sides by s) that

s \-ds~x t \-d'~x

l - s d'-l 1 - t d> - 1 "

Without loss of generality we may assume that s = k/n, t = m/nare rational,
with n equal to some power of 2, and k, m even. Then I - s — (n/k)/n,
1 - t = (n- m)/n. Let p = dx>n > 1. We shall prove that for k < m,

k/n \-pk~n m/n 1 - p"1'"

(n-k)/n pk-\ (n-m)/n pm - 1 '

or equivalently that

k Pn~k-\ m m_kp
n-m-l

n - k pk - 1 n - m p"~k - 1'

Note that by dividing by /?(m-*)/2 we obtain the inequality

(6) k p - l 1 m
K ' n k p k \ p(m-k)/2 ' n-my

1 m (m-k)/2p"-m - 1
kpk-\ p(mk)/2 ' y "k 1'

It is known that

pm-\ 1 pm-l+pm-2+-+l
pk _ 1 p(m-k)/2 p(m+k)/2-\ ^ ^ p(m-k)/2

is increasing for p e (1, oo) and that

v =

pn-k_\ pn-k-l + . . . + \
is decreasing for p e (l,oo) [5]. Hence it suffices to verify (6) for p = 1, in
which case it reduces to

k m _ m n - m
n — k k n — m n — k'

which is obvious.

2. The case of ring and exterior of a disc

Let

A r = {zeC: r< \z\ < 1 } , BR = {z € C : R < \z\}, 0<r<R<l.
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THEOREM 2.

cos2 y{Ar,BR) =

PROOF. NOW the considered function / (see equation (2)) has power series
expansions

f\Ar{z) = £>z", f\BR\Ar(z) = £ dnz\
n<EZ n<-\

Similar calculations to those in part 1 (separately for n < - 1 , n — - 1 and
n > -1) lead to the following expression:

(R2)m-{r2)m

Put a = (R/r)2, p = (1/r)2. Then 1 < a < p and

2

s2

Since ( a - l ) / ( / ? - 1) > (am - l)/(0m - 1), m = 1,2,..., we have

It is easy to see that the first number on the right-hand side realizes the
maximum, which completes the proof.

Denote by Cr the disc with radius r and by DR the ring with radii 1 and
R, 1 < r < R. Since the mapping z —> 1/z transforms Cr\{0} and DR

biholomorphically onto B\/r and A\/R (where B\/r and Al/R have the same
meaning as in Theorem 2), and since L2//(Cr\{0}) = L2H(Cr) (more general
results of this type were obtained by J. Siciak in [3]), we have by Theorem 2
and by [2, Theorem 3], that

cos2y(CV,Z)«) = cos2 y(Al/R,Bl/r) =

If R —> oo, this expression tends to 1. On the other hand, if D = lim/?-^ DR

= \JR>1 DR = {z e C: \z\ > 1}, then by [2, page 658] and by [5, Theorem 3],
cos y(Cr,D) — 1/r. Therefore, the following holds:

THEOREM 3 (Discontinuity of the L2-angle).

lim cosy(Cr,DR) ^ cosy ( Cr, lim DR ) .
/?->oo \ R-KX> I

Note that in contrast to the above result, if we consider the domains Ar =
{z € C: r < \z\ < 1} and BR = {Z € C: R < \z\ < p}, 0 < r < R < 1 < p,
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and let p tend to infinity, then by Theorem 1,

cos2 y(AT,BRp) =

which is equal, by Theorem 2, to cos2 y(^4r,5/{). Hence in this case the
"continuity" of the L2-angle holds.

3. Higher dimension case

In this section we prove a result on the L2-angle between cartesian products
of domains. We give then some examples of "discontinuity" in a higher
dimension case. In order to make the presentation more concise, we use the
following notations: given domains A,B,C,... in C and G in Cm, we will
write Ac, BG, CG, . . . instead of A x G, B x G, C x G,

THEOREM 4. Let A and B be two domains in C" such that m{A\B) > 0
and m{B\A) > 0 and

(7) m((B\A)\lnt(B\A)) = O,

(where m denotes the Lebesgue measure in C"), and let G be a domain in Cm

such that L2H(G) / 0. Then the L2-angle between AG and BG is defined and
satisfies the equality

cosy(AG,BG) = cosy (A, B).

We need the following lemma:

LEMMA 5. Suppose that domains A, B c C" are such that

m((B\A)\lnt(B\A)) = 0,

and let G be a domain in Cm. Set D - A u B. Let h e L2(DG) be such that
h is holomorphic in AG and in \n\(BG\AG), and h is orthogonal to L2H(DG).
Then for every w e G, the function h(-,w) belongs to L2{D), is holomorphic
in A and in lnX(B\A), and is orthogonal to L2H(D).

PROOF. Since h is square-integrable and holomorphic in AG and
ln\(BG\AG), it is well known that for each w e G, the function h(-,w) is
holomorphic and square-integrable in A and \nX(B\A). Since

m((B\A)\lnt(B\A)) = 0

by assumption, we have also h(-,w) e L2(D). In order to prove that h(-,w)
is orthogonal to L2H(D) take arbitrary functions / and g from L2H(D) and
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L2H(G) respectively. Define the function hf on G by hf{w) = (h(-,w),f)D,
w e G. (This definition makes sense, because h(-, w) e L2(D)). Since, by the
Schwarz inequality,

\hf(w)\2 dm(w) <fG(fD \h(z, w)\ |7(i)| dm(z)j dm(w)

-

the function hf is in L2(G). Let {Dn}%L{ be an increasing sequence of com-
pact subsets of D such that (J^L, Ai = D. It is then well known that the
funtions (hf)n(w) = {h(-,w),f)Dii = fD^ h(z,w)f(z)dm(z) are holomorphic
in G, and by an estimate similar to that in (8) we see that they are also in
L2{G). Moreover, by the same manner as in (8), we obtain the inequality
IIV ~ (V)nll2 - ll/lll)Bll^llcD\z)n)c- Since the last expression tends to zero as
n-»oo, and since (hf)n are in L2H(G), which is a closed subspace of L2(G),
hf belongs to L2H(G). The function f(z)g(w) is in L2H{DG). Therefore,
by the assumption on h,

0 = (hj(z)g(w)) = J ^(Z )u))/(I)rfm(z)) gW)dm(w) = (hf,g)G.

This means that hf is orthogonal to L2H{G), and thus since hf is itself in
L2H(G), hf = 0. Hence, for every w e G, hf(w) = (h(-,w),f)D = 0. Since
/ G L2H(D) was taken arbitrary, we conclude that h(-,w) is orthogonal to
L2H(D).

PROOF OF THEOREM 4. We show first that cos y(A, B) < cos y(AG, BG). As
in the introduction, let F\ (respectively F2) denote the subspace of L2(D),
consisting of functions which are holomorphic in A (respectively in B). Sim-
ilarly, let G\ and G2 be the subspaces of those functions from L2(DG), which
are holomorphic respectively in AG and in BG. Take any ft € Fj\{0} with
ft ± L2H{D), i = 1,2. Let g be an arbitrary function from L2H(G)\{0}.
Then the functions fx(z)g(w) and f2(z)g(w) are in Gi\{0} and (^{O} re-
spectively. Moreover, since every function from L2H{DG) can be approxi-
mated in the L2-norm by functions of the form hi(z)g\(w)-i \-hn{z)gn(w)
with hi € L2H(D) and £1 € L2H(G), we conclude from the orthogonality
conditions on ft that fj(z)g(w) ± L2H(DG), i = 1,2. Hence,

(9)

\{fufi)D\\\g\\2
G _ \(Juh)p\
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Since cosy(A,B) is the supremum over all expressions occuring in the right-
hand side of (9) with f\ and fa as described above, we are done.

In order to prove the opposite inequality, suppose first that L2H(A) is
nontrivial. (The case when L2H(B) ^ 0 is treated analogously.) Then (see
[5, Theorem 2]) the formula

00, .

h€G1\{0},h±L2H(DG),

h is holomorphic in lnt(BG\AG) >

holds (here PBG denotes the Bergman projection in Be). By virtue of Lemma
5, for every w € G, the function f{-,w) belongs to F\, is holomorphic in
Int(fl\/1), and is orthogonal to L2H(D). Therefore, again by [5, Theorem 2],
for every w e C w e have the inequality

(with Pg the Bergman projection in B). Let KB, KG and KBG denote the
Bergman functions for domains B, G and BG respectively, and set S =
(B\A)\lnt(B\A). By Bremermann's theorem,

KBG{S, t; z, w) = KB(s, z)KG{t, w).

Moreover h(s, •) e L2H(G) for every 5 e B\S, and m(S) = 0. Therefore, we
have

PBGh{z,w)l= f KBG{S,t;z,w)h(s,t)dm(s)dm[t)
JBG

= f KB(s,z) ( f KG(t,w)h(s, t) dm(t)) dm{s)
JB\S \JG J

lJ^)h(s, w) dm(s) = (PBh(-, w)){z),
B\S

zeB,w eG. Thus

\\h\\2
DG fG\\h(;w)\\2

Ddm(w)

Because of (11), this last expression does not exceed cos2 y(A, B). Taking the
supremum of those expressions over all h as above, we obtain by (10), that
cos2 y(AG,BG) < cos2 y(A,B). At least, if L2H(A) = L2H(B) = {0}, then
also L2H(AG) = L2H{BG) = {0}, and thus, by [5, Theorem 1], cosy {A, B) =
cos y(AG, BG) = 0. This completes the proof.
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We give now some further examples of "discontinuity" of the L2-angle. Let
Cr and DR have the same meaning as in Theorem 3. Let G be any domain
of holomorphy in some Cm with L2H(G) ^ {0}. Then, by (the proof of)
Theorem 3, and by Theorem 4, we have lim/j-̂ oo cos y({Cr)a, {DR)c) = 1, and
similarly, if D = lim/^oo DR - {z e C: \z\ > 1}, then cosy((Cr)G,Z)G) = 1/r.
Thus the above example exhibits the discontinuity of the L1 -angle, as in
Theorem 3. Note that (Cr)c, (DR)G and Do are domains of holomorphy.

Another example of discontinuity of L2-angle is the following. Let FI+ =
{(z,!o)6C2: Rez > 1}, n_ = {(z,w)eC2: Rez < - 1 } . Set also

/4 = n _ U { R e z < l,(Imz)2 + M 2 < 1},

^ 0 = { - 2 < R e z < l,(Imz)2 + M 2 < 1},

B = n+u{-l <Rez,(Im2 + M 2 < 1}.

Since L2H(C) = {0}, then also L2H(U+) = L2H(U-) = {0}, and so L2H(A)
= L2H(B) = {0}. Also L2H{A U B) = {0}, Fi is orthogonal to F2, and so
cosy(A,B) = 0 by (1). On the other hand, consider the sequence {An}™=0

of bounded domain in C2, such that Ao c Ax c . . . , \j^L0An - A, and
AnC\B = AQr\B for every n = 0,1,2, . . . . Set F® = L2H(AtUB) - {0}, F^ =
{/ € L2(Aj U B): f is holomorphic in At}, and F2

(/) = {/ e L2(A( u B): f is
holomorphic in B}. Let ft be a function which is equal to one in At and to
zero in FI+ and let g, be equal to one in A\B and to zero in B. Since the
domains At are bounded, the supports of the functions ft and gt have finite
measure, and so we have f( e Fl'\{0} and gi e F2

(/)\{0}. Then

COSV(A. B) > 11/11 llAll

where m denotes the Lebesgue measure in C2. This last expression tends to
one as / tends to infinity.

Note that in contrast to the previous example, the cosine of the L2-angle
between limit domains in the present situation is equal to zero. In the last
example the considered domains are not domains of holomorphy.

REMARK. Note that in all the aforementioned examples of the disconti-
nuity of the I?-angle, the space L2H(A U B) is trivial. It would be inter-
esting to find some sufficient conditions, under which the continuity of the
L2-angle holds; for example it is not known to us whether the condition
L2H(A UB)jt {0} would be sufficient.
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