TRANSFORMATION GROUPS OF STRONG CHARACTERISTIC 0

Saber Elaydi

Abstract

It is shown that a transformation group (X, T, π) is of strong characteristic 0 if and only if it is of P-strong characteristic 0 for some replete semigroup P in the phase group, provided that all orbit closures are compact. It is shown also that, under certain conditions, (X, T, π) is of P-strong characteristic 0 if and only if $(X \times X, T, \pi \times \pi)$ is Liapunov stable.

By a transformation group we mean a triple (X, T, π), where X is a locally compact Hausdorff space and T is a generative group [5] acting on X by π; that is $\pi: X \times T \rightarrow X$ is a continuous map satisfying
(1) $\pi(x, 0)=x$ for every $x \in X$, where 0 denotes the identity of T, and
(2) $\pi(\pi(x, s), t)=\pi(x, s+t)$ for $x \in X$ and $s, t \in T$. For brevity $\pi(x, t)$ is denoted by $x t$.

In 1970 Ahmad [1] introduced the notion of characteristic 0^{+}in continuous flows using prolongation sets. In the same year Hajek [6] extended the notions of prolongation to transformation groups. Using Hajek's ideas, Knight [7] was able to define and study transformation groups of characteristic 0 . This study was later pursued by Elaydi and Kaul [4], [3]. In an attempt to generalize the unilateral versions of prolongations the author [2] introduced the P-prolongations, where P is

Received 16 November 1982.
a replete semigroup in T [5]. Then the property of characteristic 0^{+} is generalized to that of P-characteristic 0 [2]. Following these ideas Elaydi and Kaul [3] studied the property of strong characteristic 0 , a stronger version of characteristic 0 .

In this paper we define the property of P-strong characteristic 0 in a way similar to that of P-characteristic 0 .

For the convenience of the reader we give the definitions of the basic notions used. For $x \in X$ and a replete semigroup P in T, we have the following definitions:
(1) the P-limit set of x,

$$
L^{P}(x)=n\{\overline{x t P} \mid t \in P\} ;
$$

(2) the P-prolongation set of x,

$$
\bar{L}^{P}(x)=\cap\{\overline{V P} \mid V \text { is a neighborhood of } x\}
$$

We remark here that $L^{P}(x)$ is always closed and invariant. The set $D^{P}(x)$ is closed and P-invariant; that is $D^{P}(x) t \subset D^{P}(x)$ for each $t \in P$. Furthermore, $y \in D^{P}(x)$ if and only if there are nets $\left\{x_{i}\right\}$ in X and $\left\{p_{i}\right\}$ in P with $x_{i} \rightarrow x$ and $x_{i} p_{i} \rightarrow y$ [2].

Let $X^{*}=X \cup\{\infty\}$ be the one point compactification of X. Then (X, T, π) can be extended to $\left(X^{*}, T, \pi^{*}\right)$, where $\pi^{*}(x, t)=\pi(x, t)$ for $x \in X$ and $t \in T$ and $\pi^{*}(\infty, t)=\infty$ for $t \in T$. The P-limit set and the P-prolongation set of $x \in X^{*}$ in (X^{*}, T, π^{*}) are denoted by $L_{\star}^{P}(x)$ and $D_{\star}^{P}(x)$, respectively. The closure of a set A in X^{*} is denoted by \bar{A}^{*}.

A point $x \in X$ is said to be of P-strong characteristic 0 if whenever there are nets $\left\{x_{i}\right\}$ in X and $\left\{p_{i}\right\}$ in P with $x_{i}+x$ and $x_{i} p_{i} \rightarrow y$, then $x p_{i} \rightarrow y$. If in the above definition P is replaced by T, then x is said to be of strong characteristic 0 [3]. As in [2], x is said to be of $\{P$-characteristic 0$\}\{$ characteristic 0$\}$ if $\left\{D^{P}(x)=\overline{x P}\right\}\{D(x)=\overline{x T}\} . \quad(X, T, \pi) \quad$ is said to have the property if every point in X possesses that property. It is clear that if x is of
P-strong characteristic 0 , then it is of P-characteristic 0 .
THEOREM 1. A transformation group (X, T, π) is of strong characteristic 0 if and only if it is of $p_{-s t r o n g ~ c h a r a c t e r i s t i c ~} 0$, for some replete semigroup P in T, provided that $\overline{x T}$ is compact for each $x \in X$.

Proof. The necessity is clear.
The proof of the sufficiency consists of three steps.
(i) We first show that the squared flow ($X \times X, T, \tilde{\pi}$), where $\tilde{\pi}((x, y), t)=(\pi(x, t), \pi(y, t))$, is of P-characteristic 0.

Let $(x, y) \in X \times X$ and let $(a, b) \in D^{P}(x, y)$. Then there are nets $\left\{\left(x_{i}, y_{i}\right)\right\}$ in $X \times X$ and $\left\{p_{i}\right\}$ in P such that $\left(x_{i}, y_{i}\right) \rightarrow(x, y)$, $\left(x_{i}, y_{i}\right) p_{i} \rightarrow(a, b)$. This implies that $x_{i} \rightarrow x, y_{i} \rightarrow y, x_{i} p_{i} \rightarrow a$ and $y_{i} p_{i} \rightarrow b$. It follows that $x p_{i} \rightarrow a$ and $y p_{i} \rightarrow b$ and consequently $(x, y) p_{i} \rightarrow(a, b)$. Thus $(a, b) \in \overline{(x, y) P}$. Hence $D^{P}(x, y) \subset \overline{(x, y) P}$. Since it is always true that $\overline{(x, y) P} \subset D^{P}(x, y), \overline{(x, y) P}=D^{P}(x, y)$. Therefore (x, y) is of P-characteristic 0 . In fact we have shown that (x, y) is of P-strong characteristic 0 .
(ii) In this step we show that $(X \times X, T, \tilde{\pi})$ is of charactistic 0 .

We first show that $\overline{(x, y) T}$ is minimal for each $(x, y) \in X \times X$. Since $\overline{(x, y) T} \subset \overline{x T} \times \overline{y T}$ is compact, $L^{P^{-1}}(x, y) \neq \emptyset$, where $P^{-1}=\left\{p^{-1} \in T \mid p \in P\right\}$. Let $(c, d) \in L^{P^{-1}}(x, y)$. Then $(c, d) \in \overline{(c, d) T} \subset L^{P^{-1}}(x, y) \subset D^{p^{-1}}(x, y)$. Thus

$$
(x, y) \in D^{P}(c, d)=\overline{(c, d) P}
$$

This implies that

$$
\overline{(x, y) T} \subset \overline{(c, d) T} \subset L^{P^{-1}}(x, y)
$$

Let $(e, f) \in \overline{(x, y) T}$. Then $(e, f) \in L^{P^{-1}}(x, y)$. Therefore, as above,
$\overline{(x, y) T} \subset \overline{(e, f) T}$ and consequently, $\overline{(x, y) T}$ is minimal. Since $L^{P}(x, y) \neq \emptyset$, it follows that

$$
\overline{(x, y) T}=\overline{(x, y) P}=L^{P}(x, y)
$$

Let $(g, h) \in D(x, y)$. Then there are nets $\left\{\left(g_{i}, h_{i}\right)\right\}$ in $X \times X$ and $\left\{t_{i}\right\}$ in T such that $\left(g_{i}, h_{i}\right) \rightarrow(x, y)$ and $\left(g_{i}, h_{i}\right) t_{i} \rightarrow(g, h)$. For each i,

$$
\left(g_{i}, h_{i}\right) t_{i} \in \overline{\left(g_{i}, h_{i}\right) T}=\overline{\left(g_{i}, h_{i} \backslash P\right.}=D^{P}\left(g_{i}, h_{i}\right)
$$

It follows from [2] that $(g, h) \in D^{P}(x, y)=\overline{(x, y) P}=\overline{(x, y) T}$. Thus $D(x, y) \subset \overline{(x, y) T}$. Hence $D(x, y)=\overline{(x, y) T}$. This shows that $(X \times X, T, \tilde{\pi})$ is of characteristic 0 .
(iii) We now show that (X, T, π) is of strong characteristic 0 . Assume there is a point $x \in X$ which is not of strong characteristic 0 . Then there are nets $\left\{x_{i}\right\}$ in X and $\left\{t_{i}\right\}$ in T such that $x_{i} \rightarrow x$, $x_{i} t_{i} \rightarrow u \in X$ and $x t_{i} \nrightarrow \psi$. Since $\overline{x T}$ is compact, we may assume that $x t_{i} \rightarrow z \in X$. Now $\left(x_{i}, x\right\} \rightarrow(x, x)$ and $\left(x_{i}, x\right) t_{i} \rightarrow(y, z)$ implies that $(y, z) \in D(x, x)$. From (2) it follows that $(y, z) \in \overline{(x, x) T}$. Consequently, $y=z$ and we thus have a contradiction.

The proof of the theorem is now complete.
We say that a subset M of X is Liapunov stable if for each neighborhood U of M there exists a neighborhood V of M such that $V T \subset U$. A transformation group (X, T, π) is Liapunov stable if $\overline{x T}$ is Liapunov stable for each $x \in X$.

THEOREM 2. If a transformation group (X, T, π) is of P-strong characteristic, then the squared transformation group $(X \times X, T, \tilde{\pi})$ is Liapunov stable, provided that either X is locally connected or $\overline{(x, y) T}$ is connected for each $(x, y) \in X \times X$. The converse holds whenever $\overline{x T}$ is compact for each $x \in X$.

Proof. (i) Assume that X is locally connected and suppose that for some $(x, y) \in X \times X, \overline{(x, y) T}$ is not Liapunov stable. Since $\overline{(x, y) T}$ is minimal (Theorem 1), it follows that $V T \supset \overline{(x, y) T}$ for every
neighborhood V of (x, y). There exists a neighborhood U of $\overline{(x, y) T}$ and a neighborhood filter $\left\{V_{i}\right\}$ of connected open neighborhoods of (x, y) and a net $\left\{t_{i}\right\}$ in T with $V_{i} t_{i} \notin U$ for each i. Since $V_{i} t_{i}$ is also connected, there exists $\left(x_{i}, y_{i}\right) \in V_{i}$ such that $\left(x_{i}, y_{i}\right) t_{i} \in \partial U$ (the boundary of U). Since ∂U is compact, we may assume that $\left(x_{i}, y_{i}\right) t_{i} \rightarrow(c, d) \in \partial U$. It follows that $(c, d) \in D(x, y)$. This implies by Theorem 1 that $(c, d) \in \overline{(x, y) T} \subset U$ and we thus have a condiction. This shows that $(X \times X, T, \tilde{\pi})$ is Liapunov stable.
(ii) Assume that $\overline{(x, y) T}$ is connected for each $(x, y) \in X \times X$. If $\overline{(x, y) T}$ is not Liapunov stable for some $(x, y) \in X \times X$, then there is a neighborhood U of (x, y) and there exist nets $\left\{\left(x_{i}, y_{i}\right)\right\}$ in U and $\left\{t_{i}\right\}$ in T such that $\left(x_{i}, y_{i}\right) \rightarrow(x, y)$ and $\left(x_{i}, y_{i}\right) t_{i} k U$ for each i. Since $\overline{\left(x_{i}, y_{i}\right)^{T}}$ is connected, $\overline{\left(x_{i}, y_{i}\right)^{T}} \cap \partial U \neq \emptyset$ for each i. Let $\left(a_{i}, b_{i}\right) \in D\left(x_{i}, y_{i}\right) \cap \partial U$ for each i. Without loss of generality, we may assume that $\left(a_{i}, b_{i}\right) \rightarrow(a, b) \in \partial U$. Hence $(a, b) \in D(x, y)[4,1.6]$. It follows from Theorem 1 that $(a, b) \in \overline{(x, y) T}$ and we thus have a contradiction. Hence $(X \times X, T, \tilde{\pi})$ is Liapunov stable.

To prove the converse under the assumption that $\overline{x T}$ is compact for each $x \in X$ we show first that $X \times X$ is of characteristic 0 . If for some $(x, y) \in X \times X, D(x, y) \neq \overline{(x, y) T}$, then let $(a, b) \in D(x, y)-\overline{(x, y) T}$. There exists a neighborhood U of $\overline{(x, y) T}$ such that $(a, b) k \bar{U}$. Since $\overline{(x, y) T}$ is Liapunov stable, there exists a neighborhood V of $\overline{(x, y) T}$ with $V T \subset U$. Thus $(a, b) \in D(x, y) \subset \overline{V T} \subset \bar{U}$ and we thus have a contradiction. Consequently, $X \times X$ is of characteristic 0 . Assume that there exists a point $z \in X$ which is not of P-strong characteristic 0 . Then there are nets $\left\{z_{i}\right\}$ in X and $\left\{p_{i}\right\}$ in P such that $z_{i} \rightarrow z, z_{i} p_{i} \rightarrow d$ and $z p_{i} \rightarrow d$. Since $\overline{z P}$ is compact, we may assume that $z p_{i} \rightarrow c$. Thus $(c, d) \in D(z, z)=\overline{(z, z) P}$. Thus $c=d$ and we then have a contradiction. This completes the proof of the theorem.

References

[1] Shair Ahmad, "Dynamical systems of characteristic 0^{+}", Pacific J. Math. 32 (1970), 561-574.
[2] Saber Elaydi, "P-recursion and transformation groups of characteristic 0 ", J. Univ. Kuwait Sci. 9 (1982), 1-10.
[3] S. Elaydi and S.K. Kaul, "Flows of almost strong characteristic 0 with generative phase groups", Nonlinear Anal. 6 (1982), 807-815.
[4] S. Elaydi and S.K. Kaul, "On characteristic 0 and locally weakly almost periodic flows", Math. Japon. 27 (1982), 613-624.
[5] Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics (American Mathematical Society Colloquium Publications, 36. American Mathematical Society, Providence, Rhode Island, 1955).
[6] Otomar Hajek, "Prolongations in topological dynamics", Seminar on differential equations and dynamical systems, II, 79-89 (Lecture Notes in Mathematics, 144. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[7] Ronald A. Knight, "Prolongationally stable transformation groups", Math. Z. 161 (1978), 189-194.

Department of Mathematics,
Kuwait University,
PO Box 5969,
Kuwait.

