NEW INFINITE FAMILIES OF CONGRUENCES MODULO 4 AND 8 FOR 1-SHELL TOTALLY SYMMETRIC PLANE PARTITIONS
 OLIVIA X. M. YAO

(Received 8 September 2013; accepted 10 December 2013; first published online 2 April 2014)

Abstract

In 2012, Blecher ['Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main diagonal', Util. Math. 88 (2012), 223-235] introduced a special class of totally symmetric plane partitions, called 1 -shell totally symmetric plane partitions. Let $f(n)$ denote the number of 1 -shell totally symmetric plane partitions of weight n. More recently, Hirschhorn and Sellers ['Arithmetic properties of 1 -shell totally symmetric plane partitions', Bull. Aust. Math. Soc. to appear. Published online 27 September 2013] discovered a number of arithmetic properties satisfied by $f(n)$. In this paper, employing some results due to Cui and Gu ['Arithmetic properties of l-regular partitions', Adv. Appl. Math. $\mathbf{5 1}$ (2013), 507-523], and Hirschhorn and Sellers, we prove several new infinite families of congruences modulo 4 and 8 for 1 -shell totally symmetric plane partitions. For example, we find that, for $n \geq 0$ and $\alpha \geq 1$, $$
f\left(8 \times 5^{2 \alpha} n+39 \times 5^{2 \alpha-1}\right) \equiv 0(\bmod 8) .
$$

2010 Mathematics subject classification: primary 11P83; secondary 05A17.
Keywords and phrases: congruence, 1 -shell totally symmetric plane partition, TSPP.

1. Introduction

The aim of this paper is to establish some new infinite families of congruences modulo 4 and 8 for 1 -shell totally symmetric plane partitions by using some results due to Cui and Gu [4] and Hirschhorn and Sellers [5].

Recall that a plane partition is a two-dimensional array of integers $\pi_{i, j}$ that are weakly decreasing and that add up to a given number n. In other words, $\pi_{i, j} \geq \pi_{i+1, j}$, $\pi_{i, j} \geq \pi_{i, j+1}$ and $\sum \pi_{i, j}=n$. Plane partitions invariant under any permutations of the three axes are called totally symmetric plane partitions (TSPPs). (For more details about TSPPs, see, for example, Andrews et al. [1] and Stembridge [6]). Blecher [3] gave a definition of a special class of TSPPs, called 1 -shell TSPPs. As defined by Blecher, a TSPP is called a 1 -shell TSPP if this partition has a self-conjugate first

[^0]row/column (as an ordinary partition) and all other entries are 1. For example, the following is a 1 -shell TSPP:

4	4	2	2
4	1	1	1
2	1		
2	1		

Let $f(n)$ denote the number of 1 -shell TSPPs of weight n; this means that the parts of the TSPP sum to n. Blecher [3] found the generating function of $f(n)$. He proved that

$$
\sum_{n=0}^{\infty} f(n) q^{n}=1+\sum_{n=1}^{\infty} q^{3 n-2} \prod_{i=0}^{n-2}\left(1+q^{6 i+3}\right)
$$

Recently, Hirschhorn and Sellers [5] proved a number of arithmetic properties satisfied by $f(n)$ by employing elementary generating function manipulations and some well-known results due to Ramanujan and Watson. They proved that, for $n \geq 1$,

$$
\begin{align*}
f(3 n) & =f(3 n-1)=0, \tag{1.1}\\
f(n) & \equiv \begin{cases}1(\bmod 2) & \text { if } 3 \nmid n \text { and } n=k^{2} \text { for some integer } k, \\
0(\bmod 2) & \text { otherwise }\end{cases}
\end{align*}
$$

and

$$
\begin{equation*}
f(10 n-5) \equiv 0(\bmod 5) . \tag{1.2}
\end{equation*}
$$

At the end of their paper [5], Hirschhorn and Sellers said: 'it appears that $f(n)$ satisfies congruences in arithmetic progression modulo 4 and 8 based on the computational evidence available. It would be desirable to see proofs of these results'. The objective of this paper is to prove some new congruences modulo 4 and 8 satisfied by $f(n)$ by employing some results given by Cui and Gu [4] and Hirschhorn and Sellers [5]. Our main results can be stated as follows.

Theorem 1.1. For all $n \geq 0$,

$$
\begin{equation*}
f(8 n+3) \equiv 0(\bmod 4) . \tag{1.3}
\end{equation*}
$$

Theorem 1.2. For any prime $p \equiv-1(\bmod 6), \alpha \geq 1, i=1,2, \ldots, p-1$ and $n \geq 0$,

$$
\begin{align*}
& f\left(8 p^{2 \alpha} n+(24 i+7 p) p^{2 \alpha-1}\right) \equiv 0(\bmod 4) \tag{1.4}\\
& f\left(8 p^{2 \alpha} n+(24 i+5 p) p^{2 \alpha-1}\right) \equiv 0(\bmod 4) \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
f\left(8 p^{2 \alpha} n+(24 i+3 p) p^{2 \alpha-1}\right) \equiv 0(\bmod 8) \tag{1.6}
\end{equation*}
$$

Example 1.3. Setting $p=5$ and $i=1$ in (1.6), we find that, for $n \geq 0$ and $\alpha \geq 1$,

$$
f\left(8 \times 5^{2 \alpha} n+39 \times 5^{2 \alpha-1}\right) \equiv 0(\bmod 8)
$$

This paper is organised as follows. In Section 2 we recall some notation and terminology on q-series and three dissection formulas due to Ramanujan [2] and Cui and Gu [4]. In Section 3 we give a proof of Theorem 1.1 by using a 2-dissection formula given by Ramanujan [2]. In Section 4, employing p-dissection formulas of Ramanujan's theta functions $\psi(q)$ and f_{1} established by Cui and Gu [4], we present a proof of Theorem 1.2.

2. Preliminary results

To prove Theorems 1.1 and 1.2 , we need three dissection formulas due to Ramanujan [2] and Cui and Gu [4]. Let us begin with some notation and terminology on q-series. In this paper, we adopt the common notation

$$
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right)
$$

where $|q|<1$. Recall that the Ramanujan theta function $f(a, b)$ is defined by

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} \tag{2.1}
\end{equation*}
$$

where $|a b|<1$. Two special cases of (2.1) are

$$
\begin{equation*}
\psi(q):=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}} \tag{2.2}
\end{equation*}
$$

and

$$
f(-q)=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty} .
$$

For any positive integer k, we use f_{k} to denote $f\left(-q^{k}\right)$, that is,

$$
f_{k}=\left(q^{k} ; q^{k}\right)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n k}\right) .
$$

The following relation is a consequence of dissection formulas of Ramanujan collected in Entry 25 in Berndt's book [2, page 40].

Theorem 2.1. The following identity holds:

$$
\begin{equation*}
\frac{1}{f_{1}^{2}}=\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}} \tag{2.3}
\end{equation*}
$$

Recently, Cui and Gu [4] established p-dissection formulas for $\psi(q)$ and f_{1}. They proved the following two theorems.

Theorem 2.2. For any odd prime p,

$$
\psi(q)=\sum_{k=0}^{(p-3) / 2} q^{\left(k^{2}+k\right) / 2} f\left(q^{\left(p^{2}+(2 k+1) p\right) / 2}, q^{\left(p^{2}-(2 k+1) p\right) / 2}\right)+q^{\left(p^{2}-1\right) / 8} \psi\left(q^{p^{2}}\right)
$$

Theorem 2.3. For any prime $p \geq 5$,

$$
\begin{aligned}
f_{1}= & \sum_{\substack{k=(1-p) / 2, k \neq(\pm p-1) / 6}}^{(p-1) / 2}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2} f\left(-q^{\left(3 p^{2}+(6 k+1) p\right) / 2},-q^{\left(3 p^{2}-(6 k+1) p\right) / 2}\right) \\
& \quad+(-1)^{(\pm p-1) / 6} q^{\left(p^{2}-1\right) / 24} f_{p^{2}}
\end{aligned}
$$

where

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6} & \text { if } p \equiv 1(\bmod 6) \\ \frac{-p-1}{6} & \text { if } p \equiv-1(\bmod 6)\end{cases}
$$

3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1.
To prove (1.2), Hirschhorn and Sellers [5] proved that, for $n \geq 1$,

$$
\begin{equation*}
f(3 n-2)=h(n) \tag{3.1}
\end{equation*}
$$

where $h(n)$ is defined by

$$
\sum_{n=1}^{\infty} h(n) q^{n}=\sum_{n=1}^{\infty} q^{n} \prod_{i=0}^{n-2}\left(1+q^{2 i+1}\right)
$$

Employing some well-known results of Ramanujan and Watson, they proved that

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(2 n+1) q^{n}=\prod_{n=1}^{\infty}\left(1+q^{n}\right)^{3}\left(1-q^{n}\right) \tag{3.2}
\end{equation*}
$$

Using the notation f_{k}, we can rewrite (3.2) as

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(2 n+1) q^{n}=\frac{f_{2}^{3}}{f_{1}^{2}} \tag{3.3}
\end{equation*}
$$

By Theorem 2.1 and (3.3), we are led to generating functions of $h(8 n+1)$, $h(8 n+3), h(8 n+5)$ and $h(8 n+7)$.

Lemma 3.1. We have

$$
\begin{gather*}
\sum_{n=0}^{\infty} h(8 n+1) q^{n}=\frac{f_{2}^{5} f_{4}^{3}}{f_{1}^{5} f_{8}^{2}} \\
\sum_{n=0}^{\infty} h(8 n+3) q^{n}=2 \frac{f_{4}^{7}}{f_{1}^{3} f_{2} f_{8}^{2}}, \tag{3.4}\\
\sum_{n=0}^{\infty} h(8 n+5) q^{n}=2 \frac{f_{2}^{7} f_{8}^{2}}{f_{1}^{5} f_{4}^{3}} \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(8 n+7) q^{n}=4 \frac{f_{2} f_{4} f_{8}^{2}}{f_{1}^{3}} \tag{3.6}
\end{equation*}
$$

Proof. Substituting (2.3) into (3.3),

$$
\sum_{n=0}^{\infty} h(2 n+1) q^{n}=f_{2}^{3}\left(\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}}\right)=\frac{f_{8}^{5}}{f_{2}^{2} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{2} f_{8}}
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(4 n+1) q^{n}=\frac{f_{4}^{5}}{f_{1}^{2} f_{8}^{2}} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(4 n+3) q^{n}=2 \frac{f_{2}^{2} f_{8}^{2}}{f_{1}^{2} f_{4}} \tag{3.8}
\end{equation*}
$$

Substituting (2.3) into (3.7) and (3.8),

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(4 n+1) q^{n}=\frac{f_{4}^{5}}{f_{8}^{2}}\left(\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}}\right)=\frac{f_{4}^{5} f_{8}^{3}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{7} f_{16}^{2}}{f_{2}^{5} f_{8}^{3}} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} h(4 n+3) q^{n}=2 \frac{f_{2}^{2} f_{8}^{2}}{f_{4}}\left(\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}}\right)=2 \frac{f_{8}^{7}}{f_{2}^{3} f_{4} f_{16}^{2}}+4 q \frac{f_{4} f_{8} f_{16}^{2}}{f_{2}^{3}} \tag{3.10}
\end{equation*}
$$

Lemma 3.1 follows from (3.9) and (3.10). This completes the proof.
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Thanks to (3.6), for $n \geq 0$,

$$
\begin{equation*}
h(8 n+7) \equiv 0(\bmod 4) \tag{3.11}
\end{equation*}
$$

Replacing n by $8 n+7$ in (3.1) and using (3.11), for $n \geq 0$,

$$
\begin{equation*}
f(24 n+19) \equiv 0(\bmod 4) \tag{3.12}
\end{equation*}
$$

From (1.1),

$$
\begin{equation*}
f(24 n+3)=f(24 n+11)=0 \tag{3.13}
\end{equation*}
$$

Congruence (1.3) follows from (3.12) and (3.13). The proof is complete.

4. Proof of Theorem 1.2

By the binomial theorem, it is easy to see that, for all positive integers k and m,

$$
\begin{equation*}
f_{m}^{2 k} \equiv f_{2 m}^{k}(\bmod 2) \tag{4.1}
\end{equation*}
$$

By (4.1),

$$
\begin{equation*}
\frac{f_{4}^{7}}{f_{1}^{3} f_{2} f_{8}^{2}} \equiv \frac{f_{8}}{f_{1}}(\bmod 2) \tag{4.2}
\end{equation*}
$$

In view of (3.4) and (4.2), for $n \geq 0$,

$$
\begin{equation*}
h(8 n+3) \equiv 2 b_{8}(n)(\bmod 4) \tag{4.3}
\end{equation*}
$$

where $b_{8}(n)$ is the number of 8 -regular partitions of n and the generating function of $b_{8}(n)$ is

$$
\sum_{n=0}^{\infty} b_{8}(n) q^{n}=\frac{f_{8}}{f_{1}}
$$

Cui and Gu [4] found some congruences modulo 2 for $b_{8}(n)$. They proved that, for any prime $p \equiv-1(\bmod 6), \alpha \geq 1$ and $n \geq 0$,

$$
\begin{equation*}
b_{8}\left(p^{2 \alpha} n+\frac{(24 i+7 p) p^{2 \alpha-1}-7}{24}\right) \equiv 0(\bmod 2), \quad i=1,2, \ldots, p-1 \tag{4.4}
\end{equation*}
$$

Replacing n by $p^{2 \alpha} n+\left((24 i+7 p) p^{2 \alpha-1}-7\right) / 24(i=1,2, \ldots, p-1)$ in (4.3) and using (4.4),

$$
\begin{equation*}
h\left(8 p^{2 \alpha} n+\frac{(24 i+7 p) p^{2 \alpha-1}+2}{3}\right) \equiv 0(\bmod 4), \quad i=1,2, \ldots, p-1 . \tag{4.5}
\end{equation*}
$$

Replacing n by $8 p^{2 \alpha} n+\left((24 i+7 p) p^{2 \alpha-1}+2\right) / 3(i=1,2, \ldots, p-1)$ in (3.1) and using (4.5), we see that, for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
f\left(24 p^{2 \alpha} n+(24 i+7 p) p^{2 \alpha-1}\right) \equiv 0(\bmod 4), \quad i=1,2, \ldots, p-1 . \tag{4.6}
\end{equation*}
$$

By (1.1),

$$
\begin{equation*}
f\left(8 p^{2 \alpha}(3 n+1)+(24 i+7 p) p^{2 \alpha-1}\right)=f\left(8 p^{2 \alpha}(3 n+2)+(24 i+7 p) p^{2 \alpha-1}\right)=0 . \tag{4.7}
\end{equation*}
$$

Congruence (1.4) follows from (4.6) and (4.7).

Next, we prove (1.5). By (2.2) and (4.1), it is easy to check that

$$
\begin{equation*}
\frac{f_{2}^{7} f_{8}^{2}}{f_{1}^{5} f_{4}^{3}} \equiv f_{1} \psi\left(q^{4}\right)(\bmod 2) \tag{4.8}
\end{equation*}
$$

Let $a(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} a(n) q^{n}=f_{1} \psi\left(q^{4}\right) \tag{4.9}
\end{equation*}
$$

Combining (3.5), (4.8) and (4.9), we deduce that, for $n \geq 0$,

$$
\begin{equation*}
h(8 n+5) \equiv 2 a(n)(\bmod 4) \tag{4.10}
\end{equation*}
$$

For any prime $p \equiv-1(\bmod 6)$, employing (4.9) and Theorems 2.2 and 2.3,

$$
\begin{aligned}
\sum_{n=0}^{\infty} a(n) q^{n}= & \left(\sum_{\substack{m=(1-p) / 2,2 \\
m \neq(\pm p-1) / 6}}^{(p-1) / 2}(-1)^{m} q^{\left(3 m^{2}+m\right) / 2} f\left(-q^{\left(3 p^{2}+(6 m+1) p\right) / 2},-q^{\left(3 p^{2}-(6 m+1) p\right) / 2}\right)\right. \\
& \left.+(-1)^{(\pm p-1) / 6} q^{\left(p^{2}-1\right) / 24} f_{p^{2}}\right) \\
& \times\left(\sum_{k=0}^{(p-3) / 2} q^{2\left(k^{2}+k\right)} f\left(q^{2\left(p^{2}+(2 k+1) p\right)}, q^{2\left(p^{2}-(2 k+1) p\right)}\right)+q^{\left(p^{2}-1\right) / 2} \psi\left(q^{4 p^{2}}\right)\right)
\end{aligned}
$$

Now we consider the congruence

$$
\begin{equation*}
\frac{3 m^{2}+m}{2}+2\left(k^{2}+k\right) \equiv \frac{13\left(p^{2}-1\right)}{24}(\bmod p) \tag{4.11}
\end{equation*}
$$

where $-(p-1) / 2 \leq m \leq(p-1) / 2$ and $0 \leq k \leq(p-1) / 2$. We can rewrite (4.11) as

$$
\begin{equation*}
(6 m+1)^{2}+3(4 k+2)^{2} \equiv 0(\bmod p) \tag{4.12}
\end{equation*}
$$

Since $p \equiv-1(\bmod 6)$ and -3 is a quadratic nonresidue modulo p, (4.12) yields

$$
6 m+1 \equiv 4 k+2 \equiv 0(\bmod p) .
$$

Hence, $m=(-p-1) / 6$ and $k=(p-1) / 2$. The fact that (4.11) has only one solution $(m, k)=((-p-1) / 6,(p-1) / 2)$ implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p n+\frac{13\left(p^{2}-1\right)}{24}\right) q^{p n+13\left(p^{2}-1\right) / 24}=(-1)^{(-p-1) / 6} q^{13\left(p^{2}-1\right) / 24} f_{p^{2}} \psi\left(q^{4 p^{2}}\right) \tag{4.13}
\end{equation*}
$$

Dividing by $q^{13\left(p^{2}-1\right) / 24}$ on both sides of (4.13) and then replacing q^{p} by q,

$$
\sum_{n=0}^{\infty} a\left(p n+\frac{13\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{(-p-1) / 6} f_{p} \psi\left(q^{4 p}\right)
$$

which implies that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a\left(p^{2} n+\frac{13\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{(-p-1) / 6} f_{1} \psi\left(q^{4}\right) \tag{4.14}
\end{equation*}
$$

and, for $n \geq 0$,

$$
\begin{equation*}
a\left(p(p n+i)+\frac{13\left(p^{2}-1\right)}{24}\right)=0, \quad i=1,2, \ldots, p-1 \tag{4.15}
\end{equation*}
$$

In view of (4.9) and (4.14),

$$
\begin{equation*}
a\left(p^{2} n+\frac{13\left(p^{2}-1\right)}{24}\right) \equiv a(n)(\bmod 2) \tag{4.16}
\end{equation*}
$$

By (4.16) and mathematical induction, we see that, for $n \geq 0$ and $\alpha \geq 0$,

$$
\begin{equation*}
a\left(p^{2 \alpha} n+\frac{13\left(p^{2 \alpha}-1\right)}{24}\right) \equiv a(n)(\bmod 2) \tag{4.17}
\end{equation*}
$$

Replacing n by $p(p n+i)+13\left(p^{2}-1\right) / 24(i=1,2, \ldots, p-1)$ in (4.17) and employing (4.15), for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
a\left(p^{2 \alpha} n+\frac{(24 i+13 p) p^{2 \alpha-1}-13}{24}\right) \equiv 0(\bmod 2), \quad i=1,2, \ldots, p-1 \tag{4.18}
\end{equation*}
$$

Replacing n by $p^{2 \alpha} n+\left((24 i+13 p) p^{2 \alpha-1}-13\right) / 24(i=1,2, \ldots, p-1)$ in (4.10) and using (4.18), for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
h\left(8 p^{2 \alpha} n+\frac{(24 i+13 p) p^{2 \alpha-1}+2}{3}\right) \equiv 0(\bmod 4), \quad i=1,2, \ldots, p-1 \tag{4.19}
\end{equation*}
$$

Replacing n by $8 p^{2 \alpha} n+\left((24 i+13 p) p^{2 \alpha-1}+2\right) / 3(i=1,2, \ldots, p-1)$ in (3.1) and using (4.19), for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
f\left(24 p^{2 \alpha} n+(24 i+13 p) p^{2 \alpha-1}\right) \equiv 0(\bmod 4), \quad i=1,2, \ldots, p-1 \tag{4.20}
\end{equation*}
$$

Thanks to (1.1),

$$
\begin{equation*}
f\left(24 p^{2 \alpha} n+(24 i+5 p) p^{2 \alpha-1}\right)=f\left(24 p^{2 \alpha} n+(24 i+21 p) p^{2 \alpha-1}\right)=0 \tag{4.21}
\end{equation*}
$$

Congruence (1.5) follows from (4.20) and (4.21).
To conclude this section, we give a proof of (1.6). By (2.2) and (4.1), it is easy to check that

$$
\begin{equation*}
\frac{f_{2} f_{4} f_{8}^{2}}{f_{1}^{3}} \equiv f_{16} \psi(q)(\bmod 2) \tag{4.22}
\end{equation*}
$$

Let $c(n)$ be defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} c(n) q^{n}=f_{16} \psi(q) \tag{4.23}
\end{equation*}
$$

In view of (3.6), (4.22) and (4.23), for $n \geq 0$,

$$
\begin{equation*}
h(8 n+7) \equiv 4 c(n)(\bmod 8) . \tag{4.24}
\end{equation*}
$$

We consider the congruence

$$
\begin{equation*}
16 \times \frac{3 m^{2}+m}{2}+\frac{k^{2}+k}{2} \equiv \frac{19\left(p^{2}-1\right)}{24}(\bmod p), \tag{4.25}
\end{equation*}
$$

where $-(p-1) / 2 \leq m \leq(p-1) / 2$ and $0 \leq k \leq(p-1) / 2$. For any prime $p \equiv$ $-1(\bmod 6),(4.25)$ holds if and only if $m=(-p-1) / 6$ and $k=(p-1) / 2$. Using (4.23) and Theorems 2.2 and 2.3,

$$
\sum_{n=0}^{\infty} c\left(p n+\frac{19\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{(-p-1) / 6} f_{16 p} \psi\left(q^{p}\right)
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} c\left(p^{2} n+\frac{19\left(p^{2}-1\right)}{24}\right) q^{n}=(-1)^{(-p-1) / 6} f_{16} \psi(q) \tag{4.26}
\end{equation*}
$$

and, for $n \geq 0$,

$$
\begin{equation*}
c\left(p(p n+i)+\frac{19\left(p^{2}-1\right)}{24}\right)=0, \quad i=1,2, \ldots, p-1 \tag{4.27}
\end{equation*}
$$

Combining (4.23) and (4.26),

$$
\begin{equation*}
c\left(p^{2} n+\frac{19\left(p^{2}-1\right)}{24}\right) \equiv c(n)(\bmod 2) \tag{4.28}
\end{equation*}
$$

By (4.28) and mathematical induction, for $n \geq 0$ and $\alpha \geq 0$,

$$
\begin{equation*}
c\left(p^{2 \alpha} n+\frac{19\left(p^{2 \alpha}-1\right)}{24}\right) \equiv c(n)(\bmod 2) . \tag{4.29}
\end{equation*}
$$

Replacing n by $p(p n+i)+19\left(p^{2}-1\right) / 24(i=1,2, \ldots, p-1)$ in (4.29) and using (4.27), for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
c\left(p^{2 \alpha} n+\frac{(24 i+19 p) p^{2 \alpha-1}-19}{24}\right) \equiv 0(\bmod 2), \quad i=1,2, \ldots, p-1 \tag{4.30}
\end{equation*}
$$

Replacing n by $p^{2 \alpha} n+\left((24 i+19 p) p^{2 \alpha-1}-19\right) / 24(i=1,2, \ldots, p-1)$ in (4.24) and employing (4.30), for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
h\left(8 p^{2 \alpha} n+\frac{(24 i+19 p) p^{2 \alpha-1}+2}{3}\right) \equiv 0(\bmod 8), \quad i=1,2, \ldots, p-1 \tag{4.31}
\end{equation*}
$$

Replacing n by $8 p^{2 \alpha} n+\left((24 i+19 p) p^{2 \alpha-1}+2\right) / 3(i=1,2, \ldots, p-1)$ in (3.1) and using (4.31), for $n \geq 0$ and $\alpha \geq 1$,

$$
\begin{equation*}
f\left(24 p^{2 \alpha} n+(24 i+19 p) p^{2 \alpha-1}\right) \equiv 0(\bmod 8), \quad i=1,2, \ldots, p-1 \tag{4.32}
\end{equation*}
$$

By (1.1),

$$
\begin{equation*}
f\left(24 p^{2 \alpha} n+(24 i+3 p) p^{2 \alpha-1}\right)=f\left(24 p^{2 \alpha} n+(24 i+11 p) p^{2 \alpha-1}\right)=0 \tag{4.33}
\end{equation*}
$$

Congruence (1.6) follows from (4.32) and (4.33). This completes the proof.

Acknowledgement

The author wishes to thank the referee for valuable suggestions.

References

[1] G. E. Andrews, P. Paule and C. Schneider, 'Plane partitions VI: Stembridge's TSPP theorem', $A d v$. Appl. Math. 34 (2005), 709-739.
[2] B. C. Berndt, Ramanujan's Notebooks, Part III (Springer, New York, 1991).
[3] A. Blecher, 'Geometry for totally symmetric plane partitions (TSPPs) with self-conjugate main diagonal', Util. Math. 88 (2012), 223-235.
[4] S. P. Cui and N. S. S. Gu, 'Arithmetic properties of l-regular partitions', Adv. Appl. Math. 51 (2013), 507-523.
[5] M. D. Hirschhorn and J. A. Sellers, 'Arithmetic properties of 1-shell totally symmetric plane partitions', Bull. Aust. Math. Soc., to appear. Published online 27 September 2013.
[6] J. R. Stembridge, 'The enumeration of totally symmetric plane partitions', Adv. Math. 111 (1995), 227-243.

OLIVIA X. M. YAO, Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
e-mail: yaoxiangmei@163.com

[^0]: This work was supported by the National Natural Science Foundation of China (11226300). (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

