Bull. Aust. Math. Soc. **84** (2011), 127–136 doi:10.1017/S0004972711002279

A NOTE ON NIELSEN EQUIVALENCE IN FINITELY GENERATED ABELIAN GROUPS

DANIEL OANCEA

(Received 16 November 2010)

Abstract

Nielsen transformations determine the automorphisms of a free group of rank n, and also of a free abelian group of rank n, and furthermore the generating n-tuples of such groups form a single Nielsen equivalence class. For an arbitrary rank n group, the generating n-tuples may fall into several Nielsen classes. Diaconis and Graham ['The graph of generating sets of an abelian group', *Colloq. Math.* **80** (1999), 31–38] determined the Nielsen classes for finite abelian groups. We extend their result to the case of infinite abelian groups.

2010 *Mathematics subject classification*: primary 20F99; secondary 20K99. *Keywords and phrases*: Nielsen transformations, abelian groups.

1. Introduction

Let *G* be any group of rank *n*. The following transformations defined on the set $\Gamma_t(G)$ of all generating *t*-tuples of *G* ($t \ge n$) are called *elementary Nielsen transformations*:

(1) $\pi: \Gamma_t(G) \to \Gamma_t(G)$, defined by

 $\pi(w_1, w_2, \ldots, w_i, \ldots, w_t) = (w_2, w_1, \ldots, w_i, \ldots, w_t);$

(2) $\sigma: \Gamma_t(G) \to \Gamma_t(G)$, defined by

 $\sigma(w_1, w_2, \ldots, w_t) = (w_2, w_3, \ldots, w_t, w_1);$

(3) $\mu: \Gamma_t(G) \to \Gamma_t(G)$, defined by

$$\mu(w_1, \ldots, w_i, \ldots, w_t) = (w_1 w_2, w_2, \ldots, w_i, \ldots, w_t);$$

(4) $\tau: \Gamma_t(G) \to \Gamma_t(G)$, defined by

$$\tau(w_1, \ldots, w_i, \ldots, w_t) = (w_1^{-1}, \ldots, w_i, \ldots, w_t)$$

The elementary Nielsen transformations generate a group, $N_t(G)$, acting on $\Gamma_t(G)$. Two *t*-tuples from $\Gamma_t(G)$ are said to be *Nielsen equivalent* if one can be transformed into the other by means of a finite sequence of elementary Nielsen transformations.

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

Nielsen [3] showed that every two generating *t*-tuples of F_n , the free group of rank *n*, are Nielsen equivalent, whence it follows in particular that $N_n(F_n) \cong \operatorname{Aut}(F_n)$.

We are interested here in the case where *G* is an arbitrary additively written abelian group *A* of rank $n \ge 1$, that is, in what the Nielsen equivalence classes of $\Gamma_t(A)$ might be for all $t \ge n$. We shall use the standard (and unique for the torsion subgroup) direct decomposition of such an *A*:

$$A = Z_1 \times \cdots \times Z_k \times Z_{k+1} \times \cdots \times Z_n = \prod_{j=1}^n Z_j$$

where for $1 \le j \le k$, $Z_j \cong \mathbb{Z}$, and for $k + 1 \le j \le n$, $Z_j \cong \mathbb{Z}/m_j\mathbb{Z}$ with the m_j integers exceeding 1 and satisfying $m_{j+1}|m_j$ (so that m_n divides all the m_j).

The following theorem, which in essence extends that of Diaconis and Graham [2] from finite to finitely generated abelian groups, gives the complete answer.

THEOREM 1.1.

- (i) If t > n then all generating t-tuples of A are Nielsen equivalent.
- (ii) The case t = n.
 - (a) If k = n (so that A is free abelian) then all generating n-tuples of A are Nielsen equivalent. (This case is well known.)
 - (b) Suppose that k < n (so that A has torsion). Let z₁, z₂, ..., z_n be fixed generators of the cyclic summands Z₁, Z₂, ..., Z_n of A. Then every generating n-tuple of A is Nielsen equivalent to one and only one n-tuple of the form (z₁, z₂, ..., z_{n-1}, rz_n), where 1 ≤ r < m_n/2 and (r, m_n) = 1. Hence in the case m_n > 2, Γ_n(A) falls into φ(m_n)/2 Nielsen classes, while if m_n = 2 there is again just one Nielsen class. (Here φ is the Euler totient function, φ(m) = |{i : 0 < i ≤ m, gcd(i, m) = 1}|, m ∈ N*.)</p>

Our proof follows that of [2] closely. What is new is the inclusion of the case where A is infinite $(k \ge 1)$ and the use of matrices from $GL_t(\mathbb{Z})$. Note also that in [2] only transformations generated by the first three types of elementary Nielsen transformations are used, so that in case (ii)(b) (with, in addition, k = 0) they obtain $\varphi(m_n)$ classes.

2. Preliminaries

Any *t*-tuple $\mathbf{g} := (g_1, \dots, g_t)$ of elements of *A* can be written as a $t \times n$ matrix,

$$\mathbf{g} = \begin{pmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{t1} & g_{t2} & \cdots & g_{tn} \end{pmatrix},$$

where $g_{ij} \in Z_j$, $1 \le i \le t$, $1 \le j \le n$, and $g_j = g_{j1} \cdots g_{jn}$. Using this representation of *t*-tuples of *A* together with the \mathbb{Z} -module structure of the subgroups Z_j of *A*, we have an action of $GL_t(\mathbb{Z})$ on the set $\Gamma_t(A)$ of generating *t*-tuples of elements of *A*, namely that given by multiplication of the above matrix **g** on the left by the matrices of $GL_t(\mathbb{Z})$.

Consider the following matrices in $GL_t(\mathbb{Z})$:

$$M_{1} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}, \quad M_{2} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}, \quad M_{4} = \begin{pmatrix} -1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix},$$

These matrices in fact generate $GL_t(\mathbb{Z})$ [1] and we have an epimorphism $\Phi : \mathbf{N}(F_t) \to GL_t(\mathbb{Z})$, induced by the natural epimorphism $F_t \to \mathbb{Z}^t$. Thus $\Phi(\pi) = M_1$, $\Phi(\sigma) = M_2$, $\Phi(\mu) = M_3$, and $\Phi(\tau) = M_4$, taking $G = F_t$ in the definitions of π, σ, μ, τ above.

The following lemma is immediate from the fact that on the one hand M_1 , M_2 , M_3 , M_4 act on the *t*-tuples of $\Gamma(A)$ like π , σ , μ , τ respectively, and on the other they generate $GL_t(\mathbb{Z})$.

LEMMA 2.1. Let A be, as above, a finitely generated abelian group of rank n, and let **g** and **h** be generating t-tuples of A, written, as above, as $t \times n$ matrices. Then **g** is Nielsen equivalent to **h** if and only if there exists a matrix $S \in GL_t(\mathbb{Z})$ such that $S\mathbf{g} = \mathbf{h}$.

The next lemma is key.

LEMMA 2.2. Let *C* be an (additively written) nontrivial cyclic group and (a_1, \ldots, a_t) a generating t-tuple of *C*, $t \ge 2$. Then for any generator *z* of *C*, there exists $S \in GL_t(\mathbb{Z})$ such that $S(a_1, \ldots, a_t)^T = (z, 0, \ldots, 0)^T$. (Here *T* denotes the transpose.) Equivalently, there exists a sequence of elementary Nielsen transformations taking (a_1, \ldots, a_t) to $(z, 0, \ldots, 0)$ for any generator *z* of *C*.

PROOF. We use induction on *t*. We identify *C* with the additive group of the ring $\mathbb{Z}/m\mathbb{Z}$, where m = |C| (including the case $m = \infty$, $C \cong \mathbb{Z}$).

Let t = 2, and let (a_1, a_2) be any pair generating *C*. Since *z* is a generator of *C*, we have $a_1 = n_1 z$, $a_2 = n_2 z$, for some $n_1, n_2 \in \mathbb{Z}$. Let $d = \text{gcd}(n_1, n_2)$, let $k, l \in \mathbb{Z}$ be such that $kn_1 + ln_2 = d$, and define $S_1 \in \text{GL}_2(\mathbb{Z})$ by

$$S_1 = \begin{pmatrix} k & l \\ -n_2/d & n_1/d \end{pmatrix}.$$

One verifies directly that $S_1(a_1, a_2)^T = (dz, 0)^T$. Since (dz, 0) is a generating pair,

we have (d, m) = 1 $(d = \pm 1$ if $m = \infty)$, and so for some $c \in \mathbb{Z}$ we have $cd \equiv 1 \mod m$. A possible two further S_2 and S_3 are defined as follows: first

$$\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \begin{pmatrix} dz \\ 0 \end{pmatrix} = \begin{pmatrix} dz \\ z \end{pmatrix},$$

and then

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} dz \\ z \end{pmatrix} = \begin{pmatrix} z \\ 0 \end{pmatrix}.$$

Taking the product of the matrices S_1 , S_2 , S_3 (right to left) we obtain a matrix $S \in GL_2(\mathbb{Z})$ such that

$$S\binom{a_1}{a_2} = \binom{z}{0}.$$

The inductive step from t to t + 1 proceeds as follows: if $(a_1, \ldots, a_t, a_{t+1})$ is a generating (t + 1)-tuple of C, then by the induction hypothesis there exists $M \in GL_t(\mathbb{Z})$ such that

$$M(a_1, \ldots, a_t)^T = (u, 0, \ldots, 0)^T,$$

where *u* is any generator of the subgroup $\langle a_1, \ldots, a_t \rangle$. Define the $(t + 1) \times (t + 1)$ matrix *W* by

$$W := \begin{pmatrix} M & \mathbf{0}^T \\ \mathbf{0} & 1 \end{pmatrix}.$$

Then $W \in GL_{t+1}(\mathbb{Z})$, and

$$W\begin{pmatrix}a_1\\a_2\\\vdots\\a_t\\a_{t+1}\end{pmatrix} = \begin{pmatrix}u\\0\\\vdots\\0\\a_{t+1}\end{pmatrix},$$

where now $(u, 0, ..., 0, a_{t+1})$ is a generating (t+1)-tuple for C. Defining $Q_{(t+1)\times(t+1)}$ by

$$Q := \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} u \\ \end{pmatrix} \quad \begin{pmatrix} u \\ u \\ \end{pmatrix} \quad \begin{pmatrix} u \\ u \\ \end{pmatrix}$$

we have

$$Q\begin{pmatrix}u\\0\\\vdots\\0\\a_{t+1}\end{pmatrix} = \begin{pmatrix}u\\a_{t+1}\\0\\\vdots\\0\end{pmatrix}.$$

Let $S \in GL_2(\mathbb{Z})$ be obtained as in the case t = 2 above, that is, such that

$$S(u, a_{t+1})^T = (z, 0)^T$$

where *z* is our chosen arbitrary generator of *C*. If we define the matrix $R \in GL_{t+1}(\mathbb{Z})$ by

$$R := \begin{pmatrix} S & \bigcirc \\ \bigcirc & I_{t-1} \end{pmatrix},$$

then $RQW(a_1, \ldots, a_t, a_{t+1})^T = (z, 0, \ldots, 0)^T$.

3. Proof of the theorem

PROOF. The proof follows that for finite abelian groups given by Diaconis and Graham [2], except that we present it in a somewhat modified form, using matrices in $GL_t(\mathbb{Z})$ to execute the Nielsen transformations. We may assume without loss of generality that $t \ge 2$ since the case t = 1 (implying n = 1) is obvious.

As above, we write an arbitrary generating *t*-tuple of A in the form of a $t \times n$ matrix:

$$\mathbf{g} = \begin{pmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & g_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{t1} & g_{t2} & \cdots & g_{tn} \end{pmatrix},$$

with $g_{ij} \in Z_j$, $1 \le i \le t$, $1 \le j \le n$.

We show by induction on $s, 1 \le s < t$, that for any choice of generators z_1, z_2, \ldots, z_s of Z_1, Z_2, \ldots, Z_s respectively, there is a matrix $R_s \in GL_t(\mathbb{Z})$ such that

$$R_{s}\mathbf{g} = \begin{pmatrix} z_{1} & 0 & \cdots & 0 & f_{1,s+1} & \cdots & f_{1n} \\ 0 & z_{2} & \cdots & 0 & f_{2,s+1} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & z_{s} & f_{s,s+1} & \cdots & f_{sn} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & f_{t,s+1} & \cdots & f_{tn} \end{pmatrix}.$$
(3.1)

The initial step: s = 1.

Since **g** is a generating *t*-tuple, it follows that $(g_{1j}, g_{2j}, \ldots, g_{tj})$ is a generating *t*-tuple for Z_j , $1 \le j \le n$. Consider the first column of (g_{ij}) , whose entries are in Z_1 . By Lemma 2.2, there exists a matrix $R_1 \in GL_t(\mathbb{Z})$ such that

$$R_1\begin{pmatrix}g_{11}\\g_{21}\\\vdots\\g_{t1}\end{pmatrix} = \begin{pmatrix}z_1\\0\\\vdots\\0\end{pmatrix},$$

[5]

where z_1 is the arbitrarily chosen generator of the cyclic group Z_1 ($z_1 = \pm 1$ if $Z_1 \cong \mathbb{Z}$). Thus

$$R_1 \mathbf{g} = \begin{pmatrix} z_1 & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{t2} & \cdots & a_{tn} \end{pmatrix},$$

for some $a_{ij} \in Z_j$. As always, since $R_1 \in GL_t(\mathbb{Z})$, $R_1\mathbf{g}$ is still a generating *t*-tuple of *A*.

The inductive step from s to $s + 1 \le n$ *.*

We assume inductively that there is a matrix R_s such that $R_s \mathbf{g}$ has the form (3.1) above. Consider the (t - s)-tuple $\mathbf{f}_{s+1} := (f_{s+1,s+1}, \ldots, f_{t,s+1})$ consisting of the entries in (3.1) below $f_{s,s+1}$. This generates a subgroup $\langle d \rangle$ of the cyclic group Z_{s+1} . Thus by Lemma 2.2 there exists a $(t - s) \times (t - s)$ matrix $P \in \operatorname{GL}_{t-s}(\mathbb{Z})$ such that

$$P\begin{pmatrix}f_{s+1,s+1}\\f_{s+2,s+1}\\\vdots\\f_{t,s+1}\end{pmatrix} = \begin{pmatrix}d\\0\\\vdots\\0\end{pmatrix}.$$

Hence defining the $t \times t$ matrix

$$S := \begin{pmatrix} I_s & \bigcirc \\ \bigcirc & P \end{pmatrix}, \quad S \in \operatorname{GL}_t(\mathbb{Z}),$$

where I_s is the $s \times s$ identity matrix, we have

$$S\begin{pmatrix} z_1 & 0 & \cdots & 0 & f_{1,s+1} & \cdots & f_{1n} \\ 0 & z_2 & \cdots & 0 & f_{2,s+1} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & z_s & f_{s,s+1} & \cdots & f_{sn} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & f_{t,s+1} & f_{1,s+2} & \cdots & f_{1n} \\ 0 & z_2 & \cdots & 0 & f_{2,s+1} & f_{2,s+2} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & d & h_{s+1,s+2} & \cdots & h_{s+1,n} \\ 0 & 0 & \cdots & 0 & 0 & h_{s+2,s+2} & \cdots & h_{s+2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & h_{t,s+2} & \cdots & h_{tn} \end{pmatrix}$$

Now since the elements of A represented by the rows of the submatrix

https://doi.org/10.1017/S0004972711002279 Published online by Cambridge University Press

132

$$egin{pmatrix} z_1 & 0 & \dots & 0 & f_{1,s+1} \ 0 & z_2 & \dots & 0 & f_{2,s+1} \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & z_s & f_{s,s+1} \ 0 & 0 & \cdots & 0 & d \end{pmatrix}$$

generate $Z_1 \times Z_2 \times \cdots \times Z_{s+1}$, there must exist integers $v_1, v_2, \ldots, v_{s+1}$ such that

$$v_1(z_1, 0, \dots, 0, f_{1,s+1}) + v_2(0, z_2, 0, \dots, 0, f_{2,s+1}) + \dots + v_{s+1}(0, \dots, 0, d)$$

= (0, \dots, 0, z_{s+1}),

where z_{s+1} is the arbitrarily chosen generator of Z_{s+1} . It follows that $v_j \equiv 0 \mod m_j$ for j = 1, ..., s (where, as usual, we interpret this to mean $v_j = 0$ for those j, if any, for which $Z_j \cong \mathbb{Z}$). In view of the ordering of the Z_j so that $m_{j+1}|m_j$, we also have that all of $v_1, ..., v_s \equiv 0 \mod m_{s+1}$ (or are all zero if $Z_{s+1} \cong \mathbb{Z}$). Hence $v_{s+1}d = z_{s+1}$, so that in fact d generates Z_{s+1} . Thus there exist integers $a_i, 1 \le i \le s$, such that $f_{i,s+1} = a_i d$. We now proceed in three steps.

• Step 1 (valid also if s + 1 = t). Let W_s be the matrix in $GL_t(\mathbb{Z})$ obtained from the identity matrix by replacing the (i, s + 1) entries with a_i for $1 \le i \le s$. Then

$$W_{s}\begin{pmatrix} z_{1} & 0 & \cdots & 0 & * & * & \cdots & * \\ 0 & z_{2} & \cdots & 0 & * & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & z_{s} & * & * & \cdots & * \\ 0 & 0 & \cdots & 0 & d & * & \cdots & * \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & d & * & \cdots & * \\ 0 & 0 & \cdots & 0 & d & * & \cdots & * \\ 0 & 0 & \cdots & 0 & d & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \end{pmatrix}$$

The * entries are placeholders and their values are not important for the argument; we are using them to simplify notation.

The next two steps require s + 1 < t.

• Step 2. Let X_s be the matrix in $GL_t(\mathbb{Z})$ obtained from the identity matrix by replacing the (s + 2, s + 1) entry with v_{s+1} . Then

	$\left(z_{1}\right)$	0		0	0	*		*		
Xs	0	z_2	• • •	0	0	*	• • •	*		
	÷	÷	۰.	÷	÷	÷	۰.	÷		
	0	0		Z_S	0	*		*		
	0	0	• • •	0	d	*		*		
	0 0	0		0	0	*		*		
	:	÷	۰.	÷	÷	÷	۰.	÷		
	0	0	• • •	0	0	*		*)	
		(71	0		0		0	*		*)
		$\begin{pmatrix} z_1 \\ 0 \end{pmatrix}$	z2		0		0	*		*
	=	:	÷	۰.	÷	÷		÷	·	:
		0	0		Z_S	0		*		*
		0	0		0	d		*		*
		0	0		0	z_s	+1	*		*
		:	÷	۰.	÷		:	÷	·	:
		0	0		0		0	*		*/

• Step 3. Let Y_s be the matrix in $GL_t(\mathbb{Z})$ obtained from the identity matrix by modifying four of the entries as follows: (s + 1, s + 1) : 0, (s + 1, s + 2) : 1, (s + 2, s + 1) : 1, (s + 2, s + 2) : -b, where *b* is an integer such that $bz_{s+1} = d$. An immediate calculation gives

$$Y_{s} \begin{pmatrix} z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & d & * & \cdots & * \\ 0 & 0 & \cdots & 0 & d & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \end{pmatrix}$$

$$= \begin{pmatrix} z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & * & \cdots & * \end{pmatrix}.$$

$$(3.2)$$

[8]

•

We have thus reached the form required by the induction step, completing the induction.

Part (i) of the theorem (the case t > n) now follows, since for s = n (< t) the matrix on the right of Equation (3.2) becomes

$$\mathbf{h} = \begin{pmatrix} z_1 & 0 & \cdots & 0 & 0 \\ 0 & z_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & z_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & z_n \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

For part (ii) of the theorem (the case t = n), the above argument (up to and including Step 1) shows that for s = n - 1 our initial generating *t*-tuple can be transformed by means of matrices from $GL_n(\mathbb{Z})$ to

$$\mathbf{h} = \begin{pmatrix} z_1 & 0 & \cdots & 0 & 0 \\ 0 & z_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & z_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & d \end{pmatrix},$$
(3.3)

and the generator d of Z_n can be written as rz_n for a unique r with $1 \le r < m_n$ satisfying $(r, m_n) = 1$. If $r \ge m_n/2$, then premultiplication by the matrix

$$\begin{pmatrix} I_{n-1} & \mathbf{0}^T \\ \mathbf{0} & -1 \end{pmatrix} \in \mathrm{GL}_n(\mathbb{Z})$$

will cause rz_n to be replaced by $-rz_n = r'z_n$ for r' satisfying $0 < r' < m_n/2$.

Finally, we show that if \mathbf{h}_1 , \mathbf{h}_2 are as in (3.3) with entries $d_1 = r_1 z_n$, $d_2 = r_2 z_n$ in place of d, where $0 < r_1 < r_2 < m_n/2$, then \mathbf{h}_1 , \mathbf{h}_2 cannot be transformed into one another by any matrix from $GL_n(\mathbb{Z})$. If $A \in GL_n(\mathbb{Z})$, with $A\mathbf{h}_1 = \mathbf{h}_2$, one can easily see that modulo m_n , A is a diagonal matrix, with entries $a_{ii} = 1$ for $1 \le i \le n - 1$, and with $a_{nn}r_1 = r_2$. Since det $(A) \in \{-1, 1\}$, $A \in GL_n(\mathbb{Z})$, then also modulo m_n , det $(A) = a_{nn} \in \{-1, 1\}$. It follows that $r_1 = r_2$ or $r_1 = -r_2$.

Acknowledgement

This work formed part of the author's PhD dissertation (York University, 2010). The author thanks his supervisor R. G. Burns for help with the presentation of this paper.

References

- H. S. M. Coxeter and W. O. J. Moser, *Generators and Relations for Discrete Groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 14 (Springer, Berlin, 1972), pp. 85–92.
- [2] P. Diaconis and R. Graham, 'The graph of generating sets of an abelian group', *Colloq. Math.* 80 (1999), 31–38.
- [3] J. Nielsen, 'Die Isomorphismengruppe der Freien Gruppen', Math. Ann. 91 (1924), 169–209.

DANIEL OANCEA, 1549 Victoria St. E, Whitby, Ontario, Canada L1N 9E3 e-mail: daniel.oancea@opg.com