A NOTE ON NIELSEN EQUIVALENCE IN FINITELY GENERATED ABELIAN GROUPS

DANIEL OANCEA

(Received 16 November 2010)

Abstract

Nielsen transformations determine the automorphisms of a free group of rank n, and also of a free abelian group of rank n, and furthermore the generating n-tuples of such groups form a single Nielsen equivalence class. For an arbitrary rank n group, the generating n-tuples may fall into several Nielsen classes. Diaconis and Graham ['The graph of generating sets of an abelian group', Colloq. Math. 80 (1999), 31-38] determined the Nielsen classes for finite abelian groups. We extend their result to the case of infinite abelian groups.

2010 Mathematics subject classification: primary 20F99; secondary 20K99.
Keywords and phrases: Nielsen transformations, abelian groups.

1. Introduction

Let G be any group of rank n. The following transformations defined on the set $\Gamma_{t}(G)$ of all generating t-tuples of $G(t \geq n)$ are called elementary Nielsen transformations:
(1) $\pi: \Gamma_{t}(G) \rightarrow \Gamma_{t}(G)$, defined by

$$
\pi\left(w_{1}, w_{2}, \ldots, w_{i}, \ldots, w_{t}\right)=\left(w_{2}, w_{1}, \ldots, w_{i}, \ldots, w_{t}\right)
$$

(2) $\sigma: \Gamma_{t}(G) \rightarrow \Gamma_{t}(G)$, defined by

$$
\sigma\left(w_{1}, w_{2}, \ldots, w_{t}\right)=\left(w_{2}, w_{3}, \ldots, w_{t}, w_{1}\right)
$$

(3) $\mu: \Gamma_{t}(G) \rightarrow \Gamma_{t}(G)$, defined by

$$
\mu\left(w_{1}, \ldots, w_{i}, \ldots, w_{t}\right)=\left(w_{1} w_{2}, w_{2}, \ldots, w_{i}, \ldots, w_{t}\right)
$$

(4) $\tau: \Gamma_{t}(G) \rightarrow \Gamma_{t}(G)$, defined by

$$
\tau\left(w_{1}, \ldots, w_{i}, \ldots, w_{t}\right)=\left(w_{1}^{-1}, \ldots, w_{i}, \ldots, w_{t}\right)
$$

The elementary Nielsen transformations generate a group, $\mathbf{N}_{t}(G)$, acting on $\Gamma_{t}(G)$. Two t-tuples from $\Gamma_{t}(G)$ are said to be Nielsen equivalent if one can be transformed into the other by means of a finite sequence of elementary Nielsen transformations.

[^0]Nielsen [3] showed that every two generating t-tuples of F_{n}, the free group of rank n, are Nielsen equivalent, whence it follows in particular that $\mathbf{N}_{n}\left(F_{n}\right) \cong \operatorname{Aut}\left(F_{n}\right)$.

We are interested here in the case where G is an arbitrary additively written abelian group A of rank $n \geq 1$, that is, in what the Nielsen equivalence classes of $\Gamma_{t}(A)$ might be for all $t \geq n$. We shall use the standard (and unique for the torsion subgroup) direct decomposition of such an A :

$$
A=Z_{1} \times \cdots \times Z_{k} \times Z_{k+1} \times \cdots \times Z_{n}=\prod_{j=1}^{n} Z_{j}
$$

where for $1 \leq j \leq k, Z_{j} \cong \mathbb{Z}$, and for $k+1 \leq j \leq n, Z_{j} \cong \mathbb{Z} / m_{j} \mathbb{Z}$ with the m_{j} integers exceeding 1 and satisfying $m_{j+1} \mid m_{j}$ (so that m_{n} divides all the m_{j}).

The following theorem, which in essence extends that of Diaconis and Graham [2] from finite to finitely generated abelian groups, gives the complete answer.
Theorem 1.1.
(i) If $t>n$ then all generating t-tuples of A are Nielsen equivalent.
(ii) The case $t=n$.
(a) If $k=n$ (so that A is free abelian) then all generating n-tuples of A are Nielsen equivalent. (This case is well known.)
(b) Suppose that $k<n$ (so that A has torsion). Let $z_{1}, z_{2}, \ldots, z_{n}$ be fixed generators of the cyclic summands $Z_{1}, Z_{2}, \ldots, Z_{n}$ of A. Then every generating n-tuple of A is Nielsen equivalent to one and only one n-tuple of the form $\left(z_{1}, z_{2}, \ldots, z_{n-1}, r z_{n}\right)$, where $1 \leq r<m_{n} / 2$ and $\left(r, m_{n}\right)=1$. Hence in the case $m_{n}>2, \Gamma_{n}(A)$ falls into $\varphi\left(m_{n}\right) / 2$ Nielsen classes, while if $m_{n}=2$ there is again just one Nielsen class. (Here φ is the Euler totient function, $\varphi(m)=|\{i: 0<i \leq m, \operatorname{gcd}(i, m)=1\}|, m \in \mathbb{N}^{*}$.)
Our proof follows that of [2] closely. What is new is the inclusion of the case where A is infinite ($k \geq 1$) and the use of matrices from $\mathrm{GL}_{t}(\mathbb{Z})$. Note also that in [2] only transformations generated by the first three types of elementary Nielsen transformations are used, so that in case (ii)(b) (with, in addition, $k=0$) they obtain $\varphi\left(m_{n}\right)$ classes.

2. Preliminaries

Any t-tuple $\mathbf{g}:=\left(g_{1}, \ldots g_{t}\right)$ of elements of A can be written as a $t \times n$ matrix,

$$
\mathbf{g}=\left(\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 n} \\
g_{21} & g_{22} & \cdots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{t 1} & g_{t 2} & \cdots & g_{t n}
\end{array}\right)
$$

where $g_{i j} \in Z_{j}, 1 \leq i \leq t, 1 \leq j \leq n$, and $g_{j}=g_{j 1} \cdots g_{j n}$. Using this representation of t-tuples of A together with the \mathbb{Z}-module structure of the subgroups Z_{j} of A, we have an action of $\mathrm{GL}_{t}(\mathbb{Z})$ on the set $\Gamma_{t}(A)$ of generating t-tuples of elements of A,
namely that given by multiplication of the above matrix \mathbf{g} on the left by the matrices of $\mathrm{GL}_{t}(\mathbb{Z})$.

Consider the following matrices in $\mathrm{GL}_{t}(\mathbb{Z})$:

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right), \quad M_{2}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right), \\
M_{3}=\left(\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right), \quad M_{4}=\left(\begin{array}{ccccc}
-1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right) .
\end{array}
$$

These matrices in fact generate $\mathrm{GL}_{t}(\mathbb{Z})$ [1] and we have an epimorphism $\Phi: \mathbf{N}\left(F_{t}\right) \rightarrow$ $\mathrm{GL}_{t}(\mathbb{Z})$, induced by the natural epimorphism $F_{t} \rightarrow \mathbb{Z}^{t}$. Thus $\Phi(\pi)=M_{1}, \Phi(\sigma)=$ $M_{2}, \Phi(\mu)=M_{3}$, and $\Phi(\tau)=M_{4}$, taking $G=F_{t}$ in the definitions of π, σ, μ, τ above.

The following lemma is immediate from the fact that on the one hand M_{1}, M_{2}, M_{3}, M_{4} act on the t-tuples of $\Gamma(A)$ like π, σ, μ, τ respectively, and on the other they generate $\mathrm{GL}_{t}(\mathbb{Z})$.

Lemma 2.1. Let A be, as above, a finitely generated abelian group of rank n, and let \mathbf{g} and \mathbf{h} be generating t-tuples of A, written, as above, as $t \times n$ matrices. Then \mathbf{g} is Nielsen equivalent to \mathbf{h} if and only if there exists a matrix $S \in \mathrm{GL}_{t}(\mathbb{Z})$ such that $S \mathbf{g}=\mathbf{h}$.

The next lemma is key.
LEMMA 2.2. Let C be an (additively written) nontrivial cyclic group and $\left(a_{1}, \ldots, a_{t}\right)$ a generating t-tuple of $C, t \geq 2$. Then for any generator z of C, there exists $S \in \mathrm{GL}_{t}(\mathbb{Z})$ such that $S\left(a_{1}, \ldots, a_{t}\right)^{T}=(z, 0, \ldots, 0)^{T}$. (Here T denotes the transpose.) Equivalently, there exists a sequence of elementary Nielsen transformations taking $\left(a_{1}, \ldots, a_{t}\right)$ to $(z, 0, \ldots, 0)$ for any generator z of C.

Proof. We use induction on t. We identify C with the additive group of the ring $\mathbb{Z} / m \mathbb{Z}$, where $m=|C|$ (including the case $m=\infty, C \cong \mathbb{Z}$).

Let $t=2$, and let $\left(a_{1}, a_{2}\right)$ be any pair generating C. Since z is a generator of C, we have $a_{1}=n_{1} z, a_{2}=n_{2} z$, for some $n_{1}, n_{2} \in \mathbb{Z}$. Let $d=\operatorname{gcd}\left(n_{1}, n_{2}\right)$, let $k, l \in \mathbb{Z}$ be such that $k n_{1}+\ln _{2}=d$, and define $S_{1} \in \mathrm{GL}_{2}(\mathbb{Z})$ by

$$
S_{1}=\left(\begin{array}{cc}
k & l \\
-n_{2} / d & n_{1} / d
\end{array}\right)
$$

One verifies directly that $S_{1}\left(a_{1}, a_{2}\right)^{T}=(d z, 0)^{T}$. Since $(d z, 0)$ is a generating pair,
we have $(d, m)=1(d= \pm 1$ if $m=\infty)$, and so for some $c \in \mathbb{Z}$ we have $c d \equiv$ $1 \bmod m$. A possible two further S_{2} and S_{3} are defined as follows: first

$$
\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right)\binom{d z}{0}=\binom{d z}{z}
$$

and then

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -d \\
0 & 1
\end{array}\right)\binom{d z}{z}=\binom{z}{0}
$$

Taking the product of the matrices S_{1}, S_{2}, S_{3} (right to left) we obtain a matrix $S \in \mathrm{GL}_{2}(\mathbb{Z})$ such that

$$
S\binom{a_{1}}{a_{2}}=\binom{z}{0}
$$

The inductive step from t to $t+1$ proceeds as follows: if $\left(a_{1}, \ldots, a_{t}, a_{t+1}\right)$ is a generating $(t+1)$-tuple of C, then by the induction hypothesis there exists $M \in \mathrm{GL}_{t}(\mathbb{Z})$ such that

$$
M\left(a_{1}, \ldots, a_{t}\right)^{T}=(u, 0, \ldots, 0)^{T}
$$

where u is any generator of the subgroup $\left\langle a_{1}, \ldots, a_{t}\right\rangle$. Define the $(t+1) \times(t+1)$ matrix W by

$$
W:=\left(\begin{array}{cc}
M & \mathbf{0}^{T} \\
\mathbf{0} & 1
\end{array}\right)
$$

Then $W \in \mathrm{GL}_{t+1}(\mathbb{Z})$, and

$$
W\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{t} \\
a_{t+1}
\end{array}\right)=\left(\begin{array}{c}
u \\
0 \\
\vdots \\
0 \\
a_{t+1}
\end{array}\right),
$$

where now $\left(u, 0, \ldots, 0, a_{t+1}\right)$ is a generating $(t+1)$-tuple for C. Defining $Q_{(t+1) \times(t+1)}$ by

$$
Q:=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

we have

$$
Q\left(\begin{array}{c}
u \\
0 \\
\vdots \\
0 \\
a_{t+1}
\end{array}\right)=\left(\begin{array}{c}
u \\
a_{t+1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Let $S \in \mathrm{GL}_{2}(\mathbb{Z})$ be obtained as in the case $t=2$ above, that is, such that

$$
S\left(u, a_{t+1}\right)^{T}=(z, 0)^{T}
$$

where z is our chosen arbitrary generator of C. If we define the matrix $R \in \mathrm{GL}_{t+1}(\mathbb{Z})$ by

$$
R:=\left(\begin{array}{cc}
S & \bigcirc \\
\bigcirc & I_{t-1}
\end{array}\right)
$$

then $R Q W\left(a_{1}, \ldots, a_{t}, a_{t+1}\right)^{T}=(z, 0, \ldots, 0)^{T}$.

3. Proof of the theorem

Proof. The proof follows that for finite abelian groups given by Diaconis and Graham [2], except that we present it in a somewhat modified form, using matrices in $\mathrm{GL}_{t}(\mathbb{Z})$ to execute the Nielsen transformations. We may assume without loss of generality that $t \geq 2$ since the case $t=1$ (implying $n=1$) is obvious.

As above, we write an arbitrary generating t-tuple of A in the form of a $t \times n$ matrix:

$$
\mathbf{g}=\left(\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 n} \\
g_{21} & g_{22} & \cdots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{t 1} & g_{t 2} & \cdots & g_{t n}
\end{array}\right),
$$

with $g_{i j} \in Z_{j}, 1 \leq i \leq t, 1 \leq j \leq n$.
We show by induction on $s, 1 \leq s<t$, that for any choice of generators z_{1}, z_{2}, \ldots, z_{s} of $Z_{1}, Z_{2}, \ldots, Z_{s}$ respectively, there is a matrix $R_{s} \in \mathrm{GL}_{t}(\mathbb{Z})$ such that

$$
R_{s} \mathbf{g}=\left(\begin{array}{ccccccc}
z_{1} & 0 & \cdots & 0 & f_{1, s+1} & \cdots & f_{1 n} \tag{3.1}\\
0 & z_{2} & \cdots & 0 & f_{2, s+1} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & f_{s, s+1} & \cdots & f_{s n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & f_{t, s+1} & \cdots & f_{t n}
\end{array}\right) .
$$

The initial step: $s=1$.
Since \mathbf{g} is a generating t-tuple, it follows that $\left(g_{1 j}, g_{2 j}, \ldots, g_{t j}\right)$ is a generating t-tuple for $Z_{j}, 1 \leq j \leq n$. Consider the first column of ($g_{i j}$), whose entries are in Z_{1}. By Lemma 2.2, there exists a matrix $R_{1} \in \mathrm{GL}_{t}(\mathbb{Z})$ such that

$$
R_{1}\left(\begin{array}{c}
g_{11} \\
g_{21} \\
\vdots \\
g_{t 1}
\end{array}\right)=\left(\begin{array}{c}
z_{1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

where z_{1} is the arbitrarily chosen generator of the cyclic group $Z_{1} \quad\left(z_{1}= \pm 1\right.$ if $\left.Z_{1} \cong \mathbb{Z}\right)$. Thus

$$
R_{1} \mathbf{g}=\left(\begin{array}{cccc}
z_{1} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{t 2} & \cdots & a_{t n}
\end{array}\right)
$$

for some $a_{i j} \in Z_{j}$. As always, since $R_{1} \in \mathrm{GL}_{t}(\mathbb{Z}), R_{1} \mathbf{g}$ is still a generating t-tuple of A.
The inductive step from s to $s+1 \leq n$.
We assume inductively that there is a matrix R_{s} such that $R_{s} \mathbf{g}$ has the form (3.1) above. Consider the $(t-s)$-tuple $\mathbf{f}_{s+1}:=\left(f_{s+1, s+1}, \ldots, f_{t, s+1}\right)$ consisting of the entries in (3.1) below $f_{s, s+1}$. This generates a subgroup $\langle d\rangle$ of the cyclic group Z_{s+1}. Thus by Lemma 2.2 there exists a $(t-s) \times(t-s)$ matrix $P \in \mathrm{GL}_{t-s}(\mathbb{Z})$ such that

$$
P\left(\begin{array}{c}
f_{s+1, s+1} \\
f_{s+2, s+1} \\
\vdots \\
f_{t, s+1}
\end{array}\right)=\left(\begin{array}{c}
d \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Hence defining the $t \times t$ matrix

$$
S:=\left(\begin{array}{cc}
I_{S} & \bigcirc \\
\bigcirc & P
\end{array}\right), \quad S \in \mathrm{GL}_{t}(\mathbb{Z})
$$

where I_{s} is the $s \times s$ identity matrix, we have

$$
\begin{aligned}
& S\left(\begin{array}{ccccccc}
z_{1} & 0 & \cdots & 0 & f_{1, s+1} & \cdots & f_{1 n} \\
0 & z_{2} & \cdots & 0 & f_{2, s+1} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & f_{s, s+1} & \cdots & f_{s n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & f_{t, s+1} & \cdots & f_{t n}
\end{array}\right) \\
&=\left(\begin{array}{cccccccc}
z_{1} & 0 & \cdots & 0 & f_{1, s+1} & f_{1, s+2} & \cdots & f_{1 n} \\
0 & z_{2} & \cdots & 0 & f_{2, s+1} & f_{2, s+2} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & f_{s, s+1} & f_{s, s+2} & \cdots & f_{s n} \\
0 & 0 & \cdots & 0 & d & h_{s+1, s+2} & \cdots & h_{s+1, n} \\
0 & 0 & \cdots & 0 & 0 & h_{s+2, s+2} & \cdots & h_{s+2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & h_{t, s+2} & \cdots & h_{t n}
\end{array}\right) .
\end{aligned}
$$

Now since the elements of A represented by the rows of the submatrix

$$
\left(\begin{array}{ccccc}
z_{1} & 0 & \ldots & 0 & f_{1, s+1} \\
0 & z_{2} & \ldots & 0 & f_{2, s+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & z_{s} & f_{s, s+1} \\
0 & 0 & \cdots & 0 & d
\end{array}\right)
$$

generate $Z_{1} \times Z_{2} \times \cdots \times Z_{s+1}$, there must exist integers $v_{1}, v_{2}, \ldots, v_{s+1}$ such that

$$
\begin{aligned}
& v_{1}\left(z_{1}, 0, \ldots, 0, f_{1, s+1}\right)+v_{2}\left(0, z_{2}, 0, \ldots, 0, f_{2, s+1}\right)+\cdots+v_{s+1}(0, \ldots, 0, d) \\
& \quad=\left(0, \ldots, 0, z_{s+1}\right)
\end{aligned}
$$

where z_{s+1} is the arbitrarily chosen generator of Z_{s+1}. It follows that $v_{j} \equiv 0 \bmod m_{j}$ for $j=1, \ldots, s$ (where, as usual, we interpret this to mean $v_{j}=0$ for those j, if any, for which $Z_{j} \cong \mathbb{Z}$). In view of the ordering of the Z_{j} so that $m_{j+1} \mid m_{j}$, we also have that all of $v_{1}, \ldots, v_{s} \equiv 0 \bmod m_{s+1}\left(\right.$ or are all zero if $\left.Z_{s+1} \cong \mathbb{Z}\right)$. Hence $v_{s+1} d=z_{s+1}$, so that in fact d generates Z_{s+1}. Thus there exist integers $a_{i}, 1 \leq i \leq s$, such that $f_{i, s+1}=a_{i} d$. We now proceed in three steps.

- \quad Step 1 (valid also if $s+1=t$). Let W_{s} be the matrix in $\mathrm{GL}_{t}(\mathbb{Z})$ obtained from the identity matrix by replacing the $(i, s+1)$ entries with a_{i} for $1 \leq i \leq s$. Then

$$
\begin{aligned}
W_{s}\left(\begin{array}{cccccccc}
z_{1} & 0 & \cdots & 0 & * & * & \cdots & * \\
0 & z_{2} & \cdots & 0 & * & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & * & * & \cdots & * \\
0 & 0 & \cdots & 0 & d & * & \cdots & * \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right) \\
=\left(\begin{array}{ccccccccc}
z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\
0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & 0 & * & \cdots & * \\
0 & 0 & \cdots & 0 & d & * & \cdots & * \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right) .
\end{aligned}
$$

The $*$ entries are placeholders and their values are not important for the argument; we are using them to simplify notation.
The next two steps require $s+1<t$.

- \quad Step 2. Let X_{s} be the matrix in $\mathrm{GL}_{t}(\mathbb{Z})$ obtained from the identity matrix by replacing the $(s+2, s+1)$ entry with v_{s+1}. Then

$$
\begin{aligned}
& X_{s}\left(\begin{array}{cccccccc}
z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\
0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & 0 & * & \cdots & * \\
0 & 0 & \cdots & 0 & d & * & \cdots & * \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right) \\
&=\left(\begin{array}{ccccccccc}
z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\
0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & 0 & * & \cdots & * \\
0 & 0 & \cdots & 0 & d & * & \cdots & * \\
0 & 0 & \cdots & 0 & z_{s+1} & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right) .
\end{aligned}
$$

- \quad Step 3. Let Y_{s} be the matrix in $\mathrm{GL}_{t}(\mathbb{Z})$ obtained from the identity matrix by modifying four of the entries as follows: $(s+1, s+1): 0,(s+1, s+2): 1$, $(s+2, s+1): 1,(s+2, s+2):-b$, where b is an integer such that $b z_{s+1}=d$. An immediate calculation gives

$$
\begin{align*}
& Y_{S}\left(\begin{array}{cccccccc}
z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\
0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & 0 & * & \cdots & * \\
0 & 0 & \cdots & 0 & d & * & \cdots & * \\
0 & 0 & \cdots & 0 & z_{s+1} & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right) \\
&=\left(\begin{array}{ccccccccc}
z_{1} & 0 & \cdots & 0 & 0 & * & \cdots & * \\
0 & z_{2} & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & z_{s} & 0 & * & \cdots & * \\
0 & 0 & \cdots & 0 & z_{s+1} & * & \cdots & * \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & * & \cdots & *
\end{array}\right) . \tag{3.2}
\end{align*}
$$

We have thus reached the form required by the induction step, completing the induction.

Part (i) of the theorem (the case $t>n$) now follows, since for $s=n(<t)$ the matrix on the right of Equation (3.2) becomes

$$
\mathbf{h}=\left(\begin{array}{ccccc}
z_{1} & 0 & \cdots & 0 & 0 \\
0 & z_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & z_{n-1} & 0 \\
0 & 0 & \cdots & 0 & z_{n} \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0
\end{array}\right) .
$$

For part (ii) of the theorem (the case $t=n$), the above argument (up to and including Step 1) shows that for $s=n-1$ our initial generating t-tuple can be transformed by means of matrices from $\mathrm{GL}_{n}(\mathbb{Z})$ to

$$
\mathbf{h}=\left(\begin{array}{ccccc}
z_{1} & 0 & \cdots & 0 & 0 \tag{3.3}\\
0 & z_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & z_{n-1} & 0 \\
0 & 0 & \cdots & 0 & d
\end{array}\right)
$$

and the generator d of Z_{n} can be written as $r z_{n}$ for a unique r with $1 \leq r<m_{n}$ satisfying $\left(r, m_{n}\right)=1$. If $r \geq m_{n} / 2$, then premultiplication by the matrix

$$
\left(\begin{array}{cc}
I_{n-1} & \mathbf{0}^{T} \\
\mathbf{0} & -1
\end{array}\right) \in \mathrm{GL}_{n}(\mathbb{Z})
$$

will cause $r z_{n}$ to be replaced by $-r z_{n}=r^{\prime} z_{n}$ for r^{\prime} satisfying $0<r^{\prime}<m_{n} / 2$.
Finally, we show that if $\mathbf{h}_{1}, \mathbf{h}_{2}$ are as in (3.3) with entries $d_{1}=r_{1} z_{n}, d_{2}=r_{2} z_{n}$ in place of d, where $0<r_{1}<r_{2}<m_{n} / 2$, then $\mathbf{h}_{1}, \mathbf{h}_{2}$ cannot be transformed into one another by any matrix from $\mathrm{GL}_{n}(\mathbb{Z})$. If $A \in \mathrm{GL}_{n}(\mathbb{Z})$, with $A \mathbf{h}_{1}=\mathbf{h}_{2}$, one can easily see that modulo m_{n}, A is a diagonal matrix, with entries $a_{i i}=1$ for $1 \leq i \leq n-1$, and with $a_{n n} r_{1}=r_{2}$. Since $\operatorname{det}(A) \in\{-1,1\}, A \in \mathrm{GL}_{n}(\mathbb{Z})$, then also modulo m_{n}, $\operatorname{det}(A)=a_{n n} \in\{-1,1\}$. It follows that $r_{1}=r_{2}$ or $r_{1}=-r_{2}$.

Acknowledgement

This work formed part of the author's PhD dissertation (York University, 2010). The author thanks his supervisor R. G. Burns for help with the presentation of this paper.

References

[1] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 14 (Springer, Berlin, 1972), pp. 85-92.
[2] P. Diaconis and R. Graham, 'The graph of generating sets of an abelian group', Colloq. Math. 80 (1999), 31-38.
[3] J. Nielsen, 'Die Isomorphismengruppe der Freien Gruppen', Math. Ann. 91 (1924), 169-209.

DANIEL OANCEA, 1549 Victoria St. E, Whitby, Ontario, Canada L1N 9E3
e-mail: daniel.oancea@opg.com

[^0]: (C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

