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Abstract

Nielsen transformations determine the automorphisms of a free group of rank n, and also of a free abelian
group of rank n, and furthermore the generating n-tuples of such groups form a single Nielsen equivalence
class. For an arbitrary rank n group, the generating n-tuples may fall into several Nielsen classes. Diaconis
and Graham [‘The graph of generating sets of an abelian group’, Colloq. Math. 80 (1999), 31–38]
determined the Nielsen classes for finite abelian groups. We extend their result to the case of infinite
abelian groups.
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1. Introduction

Let G be any group of rank n. The following transformations defined on the set 0t (G)
of all generating t-tuples of G (t ≥ n) are called elementary Nielsen transformations:

(1) π : 0t (G)→ 0t (G), defined by

π(w1, w2, . . . , wi , . . . , wt )= (w2, w1, . . . , wi , . . . , wt );

(2) σ : 0t (G)→ 0t (G), defined by

σ(w1, w2, . . . , wt )= (w2, w3, . . . , wt , w1);

(3) µ : 0t (G)→ 0t (G), defined by

µ(w1, . . . , wi , . . . , wt )= (w1w2, w2, . . . , wi , . . . , wt );

(4) τ : 0t (G)→ 0t (G), defined by

τ(w1, . . . , wi , . . . , wt )= (w
−1
1 , . . . , wi , . . . , wt ).

The elementary Nielsen transformations generate a group, Nt (G), acting on 0t (G).
Two t-tuples from 0t (G) are said to be Nielsen equivalent if one can be transformed
into the other by means of a finite sequence of elementary Nielsen transformations.
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Nielsen [3] showed that every two generating t-tuples of Fn , the free group of rank n,
are Nielsen equivalent, whence it follows in particular that Nn(Fn)∼= Aut(Fn).

We are interested here in the case where G is an arbitrary additively written abelian
group A of rank n ≥ 1, that is, in what the Nielsen equivalence classes of 0t (A) might
be for all t ≥ n. We shall use the standard (and unique for the torsion subgroup) direct
decomposition of such an A:

A = Z1 × · · · × Zk × Zk+1 × · · · × Zn =

n∏
j=1

Z j ,

where for 1≤ j ≤ k, Z j ∼= Z, and for k + 1≤ j ≤ n, Z j ∼= Z/m j Z with the m j
integers exceeding 1 and satisfying m j+1|m j (so that mn divides all the m j ).

The following theorem, which in essence extends that of Diaconis and Graham [2]
from finite to finitely generated abelian groups, gives the complete answer.

THEOREM 1.1.

(i) If t > n then all generating t-tuples of A are Nielsen equivalent.
(ii) The case t = n.

(a) If k = n (so that A is free abelian) then all generating n-tuples of A are
Nielsen equivalent. (This case is well known.)

(b) Suppose that k < n (so that A has torsion). Let z1, z2, . . . , zn be fixed
generators of the cyclic summands Z1, Z2, . . . , Zn of A. Then every
generating n-tuple of A is Nielsen equivalent to one and only one n-tuple
of the form (z1, z2, . . . , zn−1, r zn), where 1≤ r < mn/2 and (r, mn)= 1.
Hence in the case mn > 2, 0n(A) falls into ϕ(mn)/2 Nielsen classes, while
if mn = 2 there is again just one Nielsen class. (Here ϕ is the Euler totient
function, ϕ(m)= |{i : 0< i ≤ m, gcd(i, m)= 1}|, m ∈ N∗.)

Our proof follows that of [2] closely. What is new is the inclusion of the case
where A is infinite (k ≥ 1) and the use of matrices from GLt (Z). Note also that
in [2] only transformations generated by the first three types of elementary Nielsen
transformations are used, so that in case (ii)(b) (with, in addition, k = 0) they obtain
ϕ(mn) classes.

2. Preliminaries

Any t-tuple g := (g1, . . . gt ) of elements of A can be written as a t × n matrix,

g=


g11 g12 · · · g1n
g21 g22 · · · g2n
...

...
. . .

...

gt1 gt2 · · · gtn

,
where gi j ∈ Z j , 1≤ i ≤ t, 1≤ j ≤ n, and g j = g j1 · · · g jn . Using this representation
of t-tuples of A together with the Z-module structure of the subgroups Z j of A, we
have an action of GLt (Z) on the set 0t (A) of generating t-tuples of elements of A,
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namely that given by multiplication of the above matrix g on the left by the matrices
of GLt (Z).

Consider the following matrices in GLt (Z):

M1 =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

, M2 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

,

M3 =


1 1 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

, M4 =


−1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

.
These matrices in fact generate GLt (Z) [1] and we have an epimorphism8 : N(Ft )→

GLt (Z), induced by the natural epimorphism Ft → Zt . Thus 8(π)= M1, 8(σ)=
M2, 8(µ)= M3, and 8(τ)= M4, taking G = Ft in the definitions of π, σ, µ, τ
above.

The following lemma is immediate from the fact that on the one hand M1, M2,
M3, M4 act on the t-tuples of 0(A) like π, σ, µ, τ respectively, and on the other they
generate GLt (Z).

LEMMA 2.1. Let A be, as above, a finitely generated abelian group of rank n, and
let g and h be generating t-tuples of A, written, as above, as t × n matrices. Then
g is Nielsen equivalent to h if and only if there exists a matrix S ∈ GLt (Z) such that
Sg= h.

The next lemma is key.

LEMMA 2.2. Let C be an (additively written) nontrivial cyclic group and
(a1, . . . , at ) a generating t-tuple of C, t ≥ 2. Then for any generator z of C, there
exists S ∈ GLt (Z) such that S(a1, . . . , at )

T
= (z, 0, . . . , 0)T . (Here T denotes

the transpose.) Equivalently, there exists a sequence of elementary Nielsen
transformations taking (a1, . . . , at ) to (z, 0, . . . , 0) for any generator z of C.

PROOF. We use induction on t . We identify C with the additive group of the ring
Z/mZ, where m = |C | (including the case m =∞, C ∼= Z).

Let t = 2, and let (a1, a2) be any pair generating C . Since z is a generator of C ,
we have a1 = n1z, a2 = n2z, for some n1, n2 ∈ Z. Let d = gcd(n1, n2), let k, l ∈ Z be
such that kn1 + ln2 = d, and define S1 ∈ GL2(Z) by

S1 =

(
k l

−n2/d n1/d

)
.

One verifies directly that S1(a1, a2)
T
= (dz, 0)T . Since (dz, 0) is a generating pair,
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we have (d, m)= 1 (d =±1 if m =∞), and so for some c ∈ Z we have cd ≡
1 mod m. A possible two further S2 and S3 are defined as follows: first(

1 0
c 1

)(
dz
0

)
=

(
dz
z

)
,

and then (
0 1
1 0

)(
1 −d
0 1

)(
dz
z

)
=

(
z
0

)
.

Taking the product of the matrices S1, S2, S3 (right to left) we obtain a matrix
S ∈ GL2(Z) such that

S

(
a1
a2

)
=

(
z
0

)
.

The inductive step from t to t + 1 proceeds as follows: if (a1, . . . , at , at+1)

is a generating (t + 1)-tuple of C , then by the induction hypothesis there exists
M ∈ GLt (Z) such that

M(a1, . . . , at )
T
= (u, 0, . . . , 0)T ,

where u is any generator of the subgroup 〈a1, . . . , at 〉. Define the (t + 1)× (t + 1)
matrix W by

W :=

(
M 0T

0 1

)
.

Then W ∈ GLt+1(Z), and

W


a1
a2
...

at
at+1

=


u
0
...

0
at+1

,
where now (u, 0, . . . , 0, at+1) is a generating (t + 1)-tuple for C . Defining
Q(t+1)×(t+1) by

Q :=



1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 1 0 · · · 0 0


,

we have

Q


u
0
...

0
at+1

=


u
at+1

0
...

0

.
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Let S ∈ GL2(Z) be obtained as in the case t = 2 above, that is, such that

S(u, at+1)
T
= (z, 0)T ,

where z is our chosen arbitrary generator of C . If we define the matrix R ∈ GLt+1(Z)
by

R :=

(
S ©

© It−1

)
,

then RQW (a1, . . . , at , at+1)
T
= (z, 0, . . . , 0)T . 2

3. Proof of the theorem

PROOF. The proof follows that for finite abelian groups given by Diaconis and
Graham [2], except that we present it in a somewhat modified form, using matrices
in GLt (Z) to execute the Nielsen transformations. We may assume without loss of
generality that t ≥ 2 since the case t = 1 (implying n = 1) is obvious.

As above, we write an arbitrary generating t-tuple of A in the form of a t × n matrix:

g=


g11 g12 · · · g1n
g21 g22 · · · g2n
...

...
. . .

...

gt1 gt2 · · · gtn

,
with gi j ∈ Z j , 1≤ i ≤ t, 1≤ j ≤ n.

We show by induction on s, 1≤ s < t, that for any choice of generators z1,
z2, . . . , zs of Z1, Z2, . . . , Zs respectively, there is a matrix Rs ∈ GLt (Z) such that

Rsg=



z1 0 · · · 0 f1,s+1 · · · f1n
0 z2 · · · 0 f2,s+1 · · · f2n
...

...
. . .

...
...

. . .
...

0 0 · · · zs fs,s+1 · · · fsn
...

...
. . .

...
...

. . .
...

0 0 · · · 0 ft,s+1 · · · ftn


. (3.1)

The initial step: s = 1.
Since g is a generating t-tuple, it follows that (g1 j , g2 j , . . . , gt j ) is a generating

t-tuple for Z j , 1≤ j ≤ n. Consider the first column of (gi j ), whose entries are in Z1.
By Lemma 2.2, there exists a matrix R1 ∈ GLt (Z) such that

R1


g11
g21
...

gt1

=


z1
0
...

0

,
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where z1 is the arbitrarily chosen generator of the cyclic group Z1 (z1 =±1 if
Z1 ∼= Z). Thus

R1g=


z1 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...

0 at2 · · · atn

,
for some ai j ∈ Z j . As always, since R1 ∈ GLt (Z), R1g is still a generating t-tuple
of A.

The inductive step from s to s + 1≤ n.
We assume inductively that there is a matrix Rs such that Rsg has the form (3.1)

above. Consider the (t − s)-tuple fs+1 := ( fs+1,s+1, . . . , ft,s+1) consisting of the
entries in (3.1) below fs,s+1. This generates a subgroup 〈d〉 of the cyclic group Zs+1.
Thus by Lemma 2.2 there exists a (t − s)× (t − s) matrix P ∈ GLt−s(Z) such that

P


fs+1,s+1
fs+2,s+1
...

ft,s+1

=


d
0
...

0

.
Hence defining the t × t matrix

S :=

(
Is ©

© P

)
, S ∈ GLt (Z),

where Is is the s × s identity matrix, we have

S



z1 0 · · · 0 f1,s+1 · · · f1n
0 z2 · · · 0 f2,s+1 · · · f2n
...

...
. . .

...
...

. . .
...

0 0 · · · zs fs,s+1 · · · fsn
...

...
. . .

...
...

. . .
...

0 0 · · · 0 ft,s+1 · · · ftn



=



z1 0 · · · 0 f1,s+1 f1,s+2 · · · f1n
0 z2 · · · 0 f2,s+1 f2,s+2 · · · f2n
...

...
. . .

...
...

...
. . .

...

0 0 · · · zs fs,s+1 fs,s+2 · · · fsn
0 0 · · · 0 d hs+1,s+2 · · · hs+1,n
0 0 · · · 0 0 hs+2,s+2 · · · hs+2,n
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 ht,s+2 · · · htn


.

Now since the elements of A represented by the rows of the submatrix
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z1 0 . . . 0 f1,s+1
0 z2 . . . 0 f2,s+1
...

...
. . .

...
...

0 0 · · · zs fs,s+1
0 0 · · · 0 d


generate Z1 × Z2 × · · · × Zs+1, there must exist integers v1, v2, . . . , vs+1 such that

v1(z1, 0, . . . , 0, f1,s+1)+ v2(0, z2, 0, . . . , 0, f2,s+1)+ · · · + vs+1(0, . . . , 0, d)

= (0, . . . , 0, zs+1),

where zs+1 is the arbitrarily chosen generator of Zs+1. It follows that v j ≡ 0 mod m j
for j = 1, . . . , s (where, as usual, we interpret this to mean v j = 0 for those j , if
any, for which Z j ∼= Z). In view of the ordering of the Z j so that m j+1|m j , we
also have that all of v1, . . . , vs ≡ 0 mod ms+1 (or are all zero if Zs+1 ∼= Z). Hence
vs+1d = zs+1, so that in fact d generates Zs+1. Thus there exist integers ai , 1≤ i ≤ s,
such that fi,s+1 = ai d . We now proceed in three steps.
• Step 1 (valid also if s + 1= t). Let Ws be the matrix in GLt (Z) obtained from

the identity matrix by replacing the (i, s + 1) entries with ai for 1≤ i ≤ s. Then

Ws



z1 0 · · · 0 ∗ ∗ · · · ∗

0 z2 · · · 0 ∗ ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · zs ∗ ∗ · · · ∗

0 0 · · · 0 d ∗ · · · ∗

0 0 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 ∗ · · · ∗



=



z1 0 · · · 0 0 ∗ · · · ∗

0 z2 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · zs 0 ∗ · · · ∗

0 0 · · · 0 d ∗ · · · ∗

0 0 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 ∗ · · · ∗


.

The ∗ entries are placeholders and their values are not important for the
argument; we are using them to simplify notation.
The next two steps require s + 1< t .

• Step 2. Let Xs be the matrix in GLt (Z) obtained from the identity matrix by
replacing the (s + 2, s + 1) entry with vs+1. Then
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Xs



z1 0 · · · 0 0 ∗ · · · ∗

0 z2 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · zs 0 ∗ · · · ∗

0 0 · · · 0 d ∗ · · · ∗

0 0 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 ∗ · · · ∗



=



z1 0 · · · 0 0 ∗ · · · ∗

0 z2 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · zs 0 ∗ · · · ∗

0 0 · · · 0 d ∗ · · · ∗

0 0 · · · 0 zs+1 ∗ · · · ∗
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 ∗ · · · ∗


.

• Step 3. Let Ys be the matrix in GLt (Z) obtained from the identity matrix by
modifying four of the entries as follows: (s + 1, s + 1) : 0, (s + 1, s + 2) : 1,
(s + 2, s + 1) : 1, (s + 2, s + 2) : −b, where b is an integer such that bzs+1 = d .
An immediate calculation gives

Ys



z1 0 · · · 0 0 ∗ · · · ∗

0 z2 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · zs 0 ∗ · · · ∗

0 0 · · · 0 d ∗ · · · ∗

0 0 · · · 0 zs+1 ∗ · · · ∗
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 ∗ · · · ∗



=



z1 0 · · · 0 0 ∗ · · · ∗

0 z2 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · zs 0 ∗ · · · ∗

0 0 · · · 0 zs+1 ∗ · · · ∗

0 0 · · · 0 0 ∗ · · · ∗

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 ∗ · · · ∗


. (3.2)

https://doi.org/10.1017/S0004972711002279 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002279


[9] Nielsen equivalence in finitely generated abelian groups 135

We have thus reached the form required by the induction step, completing the
induction.

Part (i) of the theorem (the case t > n) now follows, since for s = n (<t) the matrix
on the right of Equation (3.2) becomes

h=



z1 0 · · · 0 0
0 z2 · · · 0 0
...

...
. . .

...
...

0 0 · · · zn−1 0
0 0 · · · 0 zn
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


.

For part (ii) of the theorem (the case t = n), the above argument (up to and including
Step 1) shows that for s = n − 1 our initial generating t-tuple can be transformed by
means of matrices from GLn(Z) to

h=


z1 0 · · · 0 0
0 z2 · · · 0 0
...

...
. . .

...
...

0 0 · · · zn−1 0
0 0 · · · 0 d

, (3.3)

and the generator d of Zn can be written as r zn for a unique r with 1≤ r < mn
satisfying (r, mn)= 1. If r ≥ mn/2, then premultiplication by the matrix(

In−1 0T

0 −1

)
∈ GLn(Z)

will cause r zn to be replaced by −r zn = r ′zn for r ′ satisfying 0< r ′ < mn/2.
Finally, we show that if h1, h2 are as in (3.3) with entries d1 = r1zn, d2 = r2zn in

place of d , where 0< r1 < r2 < mn/2, then h1, h2 cannot be transformed into one
another by any matrix from GLn(Z). If A ∈ GLn(Z), with Ah1 = h2, one can easily
see that modulo mn , A is a diagonal matrix, with entries ai i = 1 for 1≤ i ≤ n − 1,
and with annr1 = r2. Since det(A) ∈ {−1, 1}, A ∈ GLn(Z), then also modulo mn ,
det(A)= ann ∈ {−1, 1}. It follows that r1 = r2 or r1 =−r2. 2
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