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Nonlinear dynamics of unstably stratified
two-layer shear flow in a horizontal channel
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The Rayleigh–Taylor instability at the interface of two sheared fluid layers in a horizontal
channel is investigated in the absence of inertia. The dynamics of the flow is described
by a nonlinear lubrication equation which is solved numerically for adverse density
stratifications. The early-time dynamics features a number of finger-like protrusions of
different heights at the interface. The fingers travel at different speeds leading to a sequence
of merging events after which the interface eventually settles to a near-saturated state,
comprising only one finger that includes most of the lower fluid. For sufficiently large
density stratifications, the final state spans the height of the channel and includes two
thin fluid films at each wall, both of which undergo chaotic dynamics, but finite-time
touch-down/touch-up is shown to be precluded by the shear flow. An asymptotic analysis
in the large-Bond-number limit (intense density stratification) reveals the finer structure of
the final state including Landau–Levich-type connection regions. The asymptotic solutions
are compared with numerical results of the lubrication model as well as direct numerical
simulations, and excellent agreement is observed between the three in terms of interfacial
structure, wave speed and film thicknesses.

Key words: channel flow, lubrication theory

1. Introduction

The Rayleigh–Taylor (RT) instability occurs at the interface between two superposed fluid
layers when the overlying fluid is the more dense and it falls into the lower density fluid
under the action of gravity. Given its many applications in nature and in technology
(e.g. Sharp 1984; Kull 1991), the RT instability has been studied extensively both
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experimentally (e.g. Lewis 1950; Emmons, Chang & Watson 1960; Cole & Tankin 1973;
Fermigier et al. 1992) and theoretically (e.g. Rayleigh 1883; Taylor 1950; Chandrasekhar
1981; Yiantsios & Higgins 1989; Newhouse & Pozrikidis 1990), with the focus on the
case of a thin viscous liquid resting on a horizontal surface or hanging on the underside
of a plate. In the equilibrium configuration the interface between the two fluids is flat.
A small-amplitude perturbation to this rest state undergoes linear growth followed by
the formation of pendant drops (Yiantsios & Higgins 1989; Elgowainy & Ashgriz 1997)
or mushroom-shaped structures (Newhouse & Pozrikidis 1990) in the nonlinear regime.
In certain cases the RT instability can be completely suppressed by using an electric
field (Taylor & McEwan 1965; Tseluiko & Papageorgiou 2007; Cimpeanu, Papageorgiou
& Petropoulos 2014; Anderson et al. 2017), a temperature gradient (Kopbosynov &
Pukhnachev 1986; Burgess et al. 2001) or an insoluble surfactant (Frenkel & Halpern 2017;
Kalogirou 2018), or through vertical vibrations of the wall (Wolf 1970) or the introduction
of wall curvature (Trinh et al. 2014). The presence of a shear flow can lead to a nonlinear
saturation of the RT instability (Babchin et al. 1983; Frenkel & Halpern 2000; Halpern
& Frenkel 2001), in which case the flow can be described by a Kuramoto–Sivashinsky
equation (Hooper & Grimshaw 1985).

In this work we consider the RT instability that emerges at the interface between
two immiscible viscous fluids in a horizontal channel which are undergoing shear flow
due to the horizontal translation of the upper channel wall. Inertia is neglected so
that instability due to viscosity stratification does not occur (Yih 1967). This system
is susceptible to the early-stage linear growth alluded to above and a formal linear
stability analysis demonstrates that small-amplitude wave-like disturbances are unstable
if their wavenumber lies in a range that is subtended between zero and a finite cut-off
value (assuming non-zero interfacial tension) (Chandrasekhar 1981). Thus the instability
is essentially long-wave in character and with this in mind we focus our attention on
long-wave perturbations. In particular we study the dynamics mainly via a nonlinear
evolution equation that we derive and which includes the effects of surface tension,
viscosity stratification and gravity, but ignores inertia.

Interestingly, even though related lubrication equations have been obtained by several
other authors (Hammond 1983; Yiantsios & Higgins 1989; Oron, Davis & Bankoff 1997;
Bertozzi & Pugh 1998; Jensen 2000; Lister et al. 2006; Tseluiko & Papageorgiou 2007),
investigations of the validity of such equations through comparisons with experimental
data or direct numerical simulations (DNS) have been limited. Anderson et al. (2017)
obtained a non-local equation describing the evolution of an electrified viscous thin film
wetting the underside of a wall, and carried out DNS to assess the accuracy of the
asymptotic model. In this work we also perform DNS, and attempt qualitative comparisons
to examine the validity of our numerical results based on the lubrication equation, even for
parameter sets outside the applicability region of the model.

A key parameter in our problem is the Bond number, which acts as a measure of the
relative strength of gravitational and surface tension forces. In our case adverse density
stratification is in place for any positive value of the Bond number, leading to RT instability
and the appearance of large-amplitude protrusions at the fluid–fluid interface. As we shall
see, these protrusions initially take the form of individual fingers that travel in the same
direction as the basic shear flow. The emergence of such fingers is of course common in
RT phenomena; what is of particular interest here is the way in which these fingers are
advected with the flow and interact with one another. In fact we see in our simulations
that a coarsening of the dynamics occurs as the fingers run into one another, following a
sequence of merging events that leads ultimately to the formation of a residual, solitary

955 A32-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1070


Nonlinear dynamics of unstably stratified two-layer flow

finger which propagates with a very nearly fixed form and at a near-constant speed. When
the Bond number is sufficiently large, this solitary wave spans the whole of the channel
height and, in so doing, effectively (almost) segregates the two fluids. We also establish
that the interface may not achieve touch-down or touch-up at the channel walls in finite
time. We note that singularity formation has been investigated analytically in related
thin-film flow studies (e.g. Bertozzi & Pugh 1998; Tseluiko & Papageorgiou 2007), where
uniform boundedness of solutions has been rigorously established.

In § 2 we introduce the governing equations and present the lubrication model partial
differential equation (the derivation is provided in an appendix). In § 3 we present and
discuss the results of unsteady numerical simulations of the model equation (§ 3.1) to
reveal the coarsening dynamics mentioned above and the eventual emergence of fixed-form
travelling-wave solutions. The latter are investigated using a continuation method in § 3.3,
and the results are compared with those obtained from DNS of the full Stokes equations in
§ 3.4. Further insight into the shape of the final travelling-wave state is attained in § 4 via
a large-Bond-number asymptotic analysis that also reveals a simple leading-order formula
for the wave speed which depends only on the viscosity stratification parameter. In § 5 we
summarise our findings.

2. Mathematical model

We consider an unstably stratified two-fluid flow in a horizontal channel of fixed height
d, with the top fluid (labelled as fluid 2) being heavier than the bottom fluid (labelled as
fluid 1) such that the fluid densities satisfy ρ2 > ρ1. The two fluids have generally different
viscosities μ1 /=μ2, and the flow in the channel is driven by the horizontal motion of the
upper channel wall with speed U. The problem is expressed in non-dimensional form by
rescaling lengths with d, velocities with U, pressures with μ1U/d and time with d/U. We
neglect fluid inertia and study the dynamics under the conditions of Stokes flow.

We define a Cartesian coordinate system, with x being the horizontal coordinate, y the
vertical coordinate and t denoting time. In non-dimensional terms, the channel walls are
at y = 0 and y = 1 and the fluids are separated by an interface at y = h(x, t). Defining
the velocity vector uj = (uj, vj) in each fluid (j = 1, 2), where the velocity components
are space- and time-dependent, the dynamics within each fluid layer is governed by the
non-dimensional continuity and Stokes equations:

∇ · uj = 0, 0 = −∇pj + mj∇2uj − rj

(r − 1)

B
C

ŷ, (2.1)

where pj = pj(x, y, t) is the fluid pressure, ∇ = (∂x, ∂y) is the gradient operator and
ŷ = (0, 1)T is the unit vector that points in the opposite direction to the gravitational force.
The parameters m1 = 1, m2 = m, r1 = 1 and r2 = r, where m = μ2/μ1 and r = ρ2/ρ1
are the viscosity ratio and the density ratio, respectively. The capillary number, C, and the
Bond number, B, are defined by

C = μ1U
γ

> 0, B = (ρ2 − ρ1)gd2

γ
= (r − 1)

ρ1gd2

γ
> 0, (2.2a,b)

where γ is the interfacial tension and g is the acceleration due to gravity. The boundary
conditions at the channel walls and at the interface are

u1 = (0, 0) at y = 0; u2 = (1, 0) at y = 1; (2.3a)

u1 = u2,
[
(n · σ j) · n

]1
2 = C−1κ,

[
(n · σ j) · t

]1
2 = 0 at y = h(x, t), (2.3b)
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where the jump notation [ fj]1
2 = f1 − f2 is used. The last two equations in (2.3b)

are the interfacial normal and tangential stress jumps, respectively, where σ j is the
(dimensionless) stress tensor in fluid j, defined by

σ j = −pjI + (∇u + (∇u)T) , j = 1, 2, (2.4)

and I is the identity matrix. The unit normal vector n at the interface (pointing into the
lower fluid), the unit tangent vector t at the interface and the interfacial curvature κ are
given by

n = (hx, −1)

(1 + h2
x)

1/2 , t = (1, hx)

(1 + h2
x)

1/2 , κ = hxx

(1 + h2
x)

3/2 . (2.5a–c)

Following Ooms, Segal & Cheung (1985), we impose the constraint that the total flow rate
through the channel,

Q(t) =
∫ h(x,t)

0
u1(x, y, t) dy +

∫ 1

h(x,t)
u2(x, y, t) dy, (2.6)

is fixed at time t so that there is no pressure drop over a domain of specified length in the
x direction.

The unstably stratified system is characterised by the appearance of long waves at the
interface (Yiantsios & Higgins 1989). Consequently, exploiting the disparity between the
x and y length scales, we perform a lubrication analysis to derive the following model
system that will allow us to study the nonlinear spatio-temporal interfacial dynamics (see
Appendix A for a detailed derivation):

ht + qx = 0, with q = D−1
(

mh2H1 + 1
3

h3(1 − h)3H2F
)

, (2.7a,b)

where D , H1, H2, F are all functions of h and are defined by

D(h) = m2h4 + 2mh(1 − h)
(

2 − h(1 − h)
)

+ (1 − h)4 > 0, (2.8a)

H1(h) = (m − 1)h3 + (Q − 1)(m − 1)h2 + (1 − 2Q)h + (3Q − 1), (2.8b)

H2(h) = (1 − h) + mh > 0, (2.8c)

F(h) = C−1(Bhx + hxxx). (2.8d)

The functions D and H2 are positive provided that 0 < h < 1, while the functions H1 and
F can each be of either sign depending on the values of Q(t), hx and hxxx. The lubrication
model presented above is similar to the model of Tilley, Davis & Bankoff (1994) and it
reduces to those obtained in related studies on channel flows with surfactant (Blyth &
Pozrikidis 2004; Frenkel & Halpern 2017; Kalogirou & Blyth 2020), in the case when
surfactant is neglected.

Small-amplitude long-wave disturbances are unstable according to (2.7) as is expected
in the presence of adverse density stratification, B > 0, when gravity has a destabilising
effect (Oron et al. 1997). Of particular interest here is the character of the nonlinear wave
development as the interfacial amplitude grows beyond the confines of the linear regime.
To this end, in the next section we focus on carrying out numerical simulations of the
evolution equation (2.7) in a domain that is sufficiently large, to capture the instability due
to density stratification.
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3. Numerical results

3.1. Time-dependent simulations of the lubrication equation (2.7)
The lubrication equation (2.7) is solved numerically using a pseudospectral scheme
(e.g. Trefethen 2000) on a periodic domain [−L, L] and the unconditionally stable
Crank–Nicolson method is used for the time discretisation. The discretised nonlinear
system is solved at each time level by using Newton’s method. The (unknown) flow rate
Q(t) is calculated at each time step by imposing the zero-pressure-drop condition (A12),
which is done numerically by setting the integral of the pressure gradient (A11) to zero and
solving for Q(t) (integrals are approximated by the trapezoidal rule). In all the simulations
presented in this work, the (half) domain length is fixed to L = 28, which is sufficiently
large to capture the phenomena of interest. Typically, 512 grid points are used to discretise
the spatial domain, so the grid resolution is 2L/512 = 0.0194, and a time step of size 0.05
is found to be sufficient to produce accurate results.

The initial condition corresponds to a sinusoidal disturbance superimposed on a flat
interface at uniform height h0, and is given by

h(x, 0) = h0

[
1 + hA cos

(nπx
L

)]
, (3.1)

where hA is a constant and n is an integer. In what follows we describe the dynamics for the
particular case hA = 0.2 and n = 1. Following extensive simulations with other choices
of these parameters (some further comment on which is provided below), including
combinations of Fourier modes and amplitudes hA selected from a random distribution,
this was found to be representative of the dynamics that is observed. Unless otherwise
stated, the parameters used in the numerical computations are h0 = 0.2, m = 0.5, C =
10−3 and B = 1.

Interfacial profiles at different stages of the simulation starting from the initial condition
(3.1) and using the aforementioned parameter set are shown in figure 1. At early times a
number of protrusions, hereinafter referred to as fingers, appear on the interface. In this
case six fingers emerge, as can be seen in figure 1(a–c) corresponding to t = 15, 20, 35.
Intuition suggests that the number of fingers will be dependent on the size of the Bond
number, since a greater density disparity between the two fluids should correspond to
a greater susceptibility to interfacial instability. While in the present results it takes
approximately 35 time units for all six fingers to clearly form at the interface, we note that
for larger values of B more fingers develop and also these emerge earlier in the simulation.

The number of fingers formed can be estimated using the growth rates determined from
linear theory (e.g. Tseluiko & Papageorgiou 2007). These are calculated from (2.7) by
writing h = h0 + A exp(iKx + σ t) + c.c. (complex conjugate), and linearising on the basis
that A/h0 � 1 with a view to calculating σ for a prescribed wavenumber K (more details
are provided in Appendix B). In figure 2, the linear growth rate, Re(σ ), is plotted against
the spatial frequency k = LK/π for various values of the Bond number B. In the context of
the numerical simulations of the evolution equation (2.7), the variable k is taken to be an
integer corresponding to the number of wavelengths that fit exactly into the computational
domain of length 2L. The fastest growing mode in the numerical simulation corresponds
to the spatial frequency closest to that which maximises the growth rate, namely kmax =
(L/π)

√
B/2 (see Appendix B). For example, when L = 28 we have kmax ≈ 6 for B = 1

and kmax ≈ 9 for B = 2, the former prediction being in line with the six fingers that are
observed in figure 1(c). The cut-off wavenumber for linear instability is Kc = √

B so that
the range of unstable wavenumbers depends solely on the Bond number (see also Oron
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Figure 1. Interfacial profiles obtained at different times (a) t = 15, (b) t = 20, (c) t = 35, (d) t = 50,
(e) t = 100 and ( f ) t = 200 for the parameter values h0 = 0.2, m = 0.5, C = 10−3 and B = 1. Starting from
an initial condition of the form (3.1) with hA = 0.2 and n = 1 (also shown with a broken line in panel a), six
distinct fingers are seen to develop at early times in the simulation. These then get closer to the lower wall and
slowly drift to the right due to background shear flow. The tallest finger travels faster and eventually merges
with the finger directly in front of it. The merging dynamics continues to take place until a single wide finger
remains that almost touches both channel walls. The solution seen in ( f ) has been shifted to the right by a
distance L = 28 for better visualisation of the final finger. The time evolution of the interfacial profile can be
seen in the supplementary movie available at https://doi.org/10.1017/jfm.2022.1070.

et al. 1997). Accordingly, in the simulations we must choose integer k < LKc/π in order
to observe instability.

Finger formation similar to that seen in figure 1 has also been observed in a related
study of channel flow by Mavromoustaki, Matar & Craster (2010). In the absence of the
shear flow (so when the upper wall is stationary), the finger pattern in the interfacial
profile retains the symmetry of the initial condition (3.1) approximately x = 0 (see related
studies on static liquid film configurations, for example those by Yiantsios & Higgins
(1989), Bertozzi & Pugh (1998), Tseluiko & Papageorgiou (2007), Wang, Mählmann &
Papageorgiou (2009), Barannyk et al. (2015) and Wang & Papageorgiou (2018)). Here
the symmetry is broken by the superimposed shear flow and consequently the interfacial
profile tends to drift in the positive x direction. The individual fingers (as seen in the
various panels of figure 1) travel more or less holding their shape, size and speed.
Generally speaking, taller fingers have greater volume and move faster, as is confirmed in
§ 3.3. As a result the tallest finger eventually catches up with the finger directly in front of
it, and the pair subsequently merge to form a larger finger whose volume is approximately
the sum of the two individual volumes. An example can be seen in figure 1(c,d), where
the interfacial profiles are displayed at t = 35, 50. After this first coalescence, the tallest
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Figure 2. Linear growth rate for different values of the Bond number, plotted against k = (L/π)K, where
K is the wavenumber and L = 28 is the (half) domain length. Parameter values for h0, m, C are the same
as in figure 1. A positive growth rate is supported for wavenumbers in the range K ∈ (0,

√
B), so interfacial

instability is enhanced as the value of B increases. The maximum growth rate occurs at kmax = (L/π)
√

B/2.

finger has gained sufficient volume to approach the upper channel wall (see figure 1d).
The merging process continues so that the number of fingers gradually diminishes until
only a single, rather wide, finger remains (see figure 1f ); this finger essentially combines
the individual volumes of all fingers from the earlier stage of the simulation, with any
deficit accounted for in the thin lower fluid film that comprises the remainder of the flow
domain. Note that despite the apparently rather steep slope on either side of the finger,
the scales are such that the gradient here is modest, so that the legitimacy of the assumed
lubrication approximation ought to be maintained. With reference to alternative choices
of initial condition mentioned above, broadly similar dynamics is observed, including
the occurrence of merging events, the only difference being the number of final-state
fingers (akin to that at t = 200 in figure 1) that are ultimately obtained. Similar coarsening
dynamics has been reported by Glasner & Witelski (2003) and Kitavtsev (2014) who
investigated dewetting of thin films, as well as by Chang, Demekhin & Kalaidin (2000)
and Razis et al. (2014) in their studies of roll wave structures propagating down an inclined
plane.

The merging events just described can also be seen in the evolution of the displacement
norm ‖h − h0‖2 shown in figure 3(a), where each of the sudden upward steps in the
curve corresponds to the merging of a pair of fingers. The final merging event occurs
at around t = 150 when the norm reaches the final plateau, and after this time the solitary
finger propagates downstream essentially retaining the same form for the remainder of
the simulation. Also shown in figure 3 is the trace of the interfacial minimum and
maximum during the simulation. The minimum first decreases until around t = 35 when
the interface almost makes contact with the bottom wall; at the same time the maximum
increases until the interface almost touches the upper wall (this occurs at around t = 50;
see also figure 1c,d). At later times the interfacial minimum and maximum settle down
to a near-constant value; in fact they exhibit small-amplitude and apparently random
fluctuations approximately a mean level, as can be seen from figure 3(d,e). This irregular
large-time behaviour is reminiscent of the chaotic dynamics seen in the evolution of thin
films (e.g. Kawahara 1983; Kawahara & Toh 1988; Kalogirou & Papageorgiou 2016). We
explain this by noting that at large times the near-saturated state features a thin film of the
lower fluid over much of the domain, and a thin film of the upper fluid confined between
the top of the finger and the upper wall. The evolution of these thin films can be described
by Kuramoto–Sivashinsky-type equations (see Appendix C and the related studies by
Hooper & Grimshaw (1985), Charru & Fabre (1994), Tilley et al. (1994) and Kalogirou
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Figure 3. (a) Time evolution of interfacial solution norm, (b,c) interfacial minimum and maximum, including
(d,e) a close-up evolution at later times of the simulation. Parameter values for h0, m, C, B remain the same as
in figure 1.

et al. (2016)), which are well known for demonstrating chaotic behaviour (Papageorgiou,
Maldarelli & Rumschitzki 1990). Both films are linearly unstable with a growth rate of
the order of 10−3; its small size is attributable to the h3

0 and (1 − h0)
3 terms in the growth

rate formula (B2). In related studies where the flow evolves from a static initial state, the
fluid film tends to approach the wall in infinite time (Tseluiko & Papageorgiou 2007).
Such a touch-down scenario appears to be absent here, and we believe the near saturation
combined with thin-gap chaotic dynamics is connected with the background shear flow.
In Appendix D we provide an analytical argument to support the numerical results seen in
figures 1 and 3, in particular that the solution remains bounded such that 0 < h < 1 for all
time.

The final interfacial wave profile in figure 1( f ), also shown in figure 4(a), features a
capillary ridge and a depression on the top-right and the bottom-right part of the finger,
respectively (these features are more obviously seen in the sketch in figure 11; see also in
figure 13b). The interfacial velocity, shown with a red thin line in figure 4(a), becomes
large in magnitude at the two points x1 and x2 where the interface is closest to each wall
(similar behaviour was observed in Papageorgiou, Petropoulos & Vanden-Broeck (2005),
Wang et al. (2009) and Barannyk et al. (2015)). To understand the source of these peaks
we plotted the magnitude of the various terms that define the interfacial velocity in (A8) to
determine which term dominates. We found that the F term, defined in (2.8d), experiences
(positive or negative) peaks as can be seen in figure 4(b), but these are most pronounced
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Figure 4. (a) Profile h of the interfacial wave (blue line) and interfacial horizontal velocity uI = u|y=h (red
line) and (b) term F = C−1(Bhx + hxxx) which dominates in the pressure gradient distribution, plotted at time
t = 200. Parameter values for h0, m, C, B are the same as in figure 1. The interfacial velocity is seen to become
large in magnitude at the two points x1 and x2 where the interface takes the form of a capillary ridge or
depression and is closest to the upper/lower channel walls. This is accompanied by a drop in the pressure
gradient as evident by the dips in the profile of term F .

where the interface is closest to each wall (i.e. at the points labelled as x1 and x2). We
note that the F term is related to Fχ in (A7b) and that this term dominates over the other
terms in the pressure gradient expression (A11). The large negative peaks in the profile of
F lead to large negative spikes in pressure gradient, which drives the rapid flow near the
walls (note that the flat parts of the F curve are much smaller in magnitude, on the scale
shown, but not constant).

3.2. Physical discussion
Intuition might suggest that the action of gravity will lead to the heavier fluid displacing
the lower, lighter fluid. In a static configuration for which there is no preference for flow
to the right or left, one would anticipate that a localised interfacial disturbance will tend
to migrate upwards as fluid is drawn in from either side by hydrostatic force. Since the
shear flow removes the left/right symmetry, the possibility arises of a finite-amplitude
travelling wave that is sustained by a tripartite combination of shear, gravity and surface
tension. Indeed, this has been demonstrated in the weakly nonlinear regime by Babchin
et al. (1983). Examples of fully nonlinear waves in related unstably stratified problems
include travelling waves on fluid films flowing down the underside of an inclined plane –
see, for example, Kofman et al. (2018) and Zhou & Prosperetti (2022).

Considering moderate- to large-amplitude waves, we now examine more closely one
of the travelling-wave solutions obtained as the large time limit of the initial value
problem for the lubrication model equation (2.7) solved in § 3. In figure 5 we show the
final-state interfacial profile when B = 0.1 together with the corresponding streamline
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Figure 5. (a) Flow configuration and (b) interfacial curvature for B = 0.1 and parameters h0, m, C fixed to the
same values as in figure 1. In (a), the colour corresponds to the vertical velocity v1 in the lower fluid, the thick
line indicates the location of the interface and thin lines shown within the fluids are the streamlines.

pattern in a frame of reference that is travelling at the wave speed. Figure 6 shows a more
highly deformed interfacial profile computed for B = 0.4. We note the striking qualitative
similarity between the interfacial profile seen in figure 5 and that computed for a viscous
film flowing on the underside of an inclined plate (see e.g. Kofman et al. 2018; Zhou &
Prosperetti 2022).

The speed of the travelling frame is 0.18 for figure 5 and 0.465 for figure 6, both of
which values are smaller than the upper wall speed, which is unity according to our
non-dimensionalisation. Consequently, in both figures the flow is from right to left in the
lower part of the channel and from left to right in the upper part of the channel. Focusing
on the results in figure 5, located in the main part of the upward bulge in the lower fluid
is an eddy with fluid circulating in the clockwise direction. Critically, the interface is not
symmetric about the vertical line through the eddy centre. The fluid is drawn upward on
the left-hand side of the eddy by hydrostatic force. On the right-hand side of the eddy the
large curvatures that occur around x = −2.5 and x = 5 suggest that the capillary force is
sufficiently strong to combat the hydrostatic effect and to drive the fluid downwards. The
whole structure is sustained by the background shear flow which flushes the rest of the
lower fluid away to the left.

For fairly small Bond number, the effect of surface tension is relatively strong and
only reasonably mild interfacial curvature is needed to provide the necessary capillary
pressure to support the eddy motion. For larger Bond number the relative effect of surface
tension is weaker and much larger curvatures are needed to provide the necessary capillary
pressure. Thus we see the notably sharper features in the interfacial profile for B = 0.4 in
figure 6 at approximately x = 17 and x = 21, and the much stronger curvatures at the same
locations, roughly a factor of ten larger than the corresponding values for the B = 0.1
case. Interestingly, the flow structure is more complex for the larger Bond number. There
are many stagnation points within a single flow period: eight are located at the centre of
eddies (note the four very slender eddies adjacent to the interface, which can be seen in

955 A32-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1070


Nonlinear dynamics of unstably stratified two-layer flow

1.0

0.5y

x x

0.2

0

–0.2

0.8

0.6

0.4

0.2

8

S
tr

ea
m

li
n
es

κ
 =

 h
xx

10 12 18

x

0.6

0.5

0.4

0.6

0.5

0.4

14

22.0 22.5 23.0 23.5 24.0

15 16

19 20

0 5 10 15 20 25

0.02

0.01

0

–0.01

–0.02
0

v1

(d ) (e)

( f )

(a)

(b)

(c)

Figure 6. (a) Flow configuration and (b) interfacial curvature for B = 0.4 and parameters h0, m, C fixed to
the same values as in figure 1. The colour in (a) corresponds to the vertical velocity v1 in the lower fluid.
In (a,c–f ), the thick line indicates the location of the interface and the thin lines shown within the fluids are
the streamlines. Two clockwise-moving eddies exist in each fluid (panel a), and the streamlines are seen to
cross at two stagnation points at (x, y) = (15.6, 0.5) and (22.85, 0.53), indicated by red dots in (e, f ). Near
the transition regions where the interface ascends/descends from one wall to the other, a total of four smaller
counterclockwise-moving eddies are generated due to the draught from the surrounding fluids, as shown in
(c,d).

figure 6c,d), two more are located at local saddle points in the streamline pattern evident
in figure 6(e,f ) and several others are located on the interface itself.

3.3. Travelling-wave solutions
The results of the numerical simulation discussed in the previous section indicated that
the interface evolves into a travelling wave. Although the flow was found to be chaotic
in the narrow gaps at the walls, this does not significantly affect the rest of the wave
profile so that overall the interfacial travelling wave propagates with approximately fixed
form and constant speed in the direction of the background shear flow. Motivated by
this, in this section we seek travelling-wave solutions to the evolution equation (2.7)
using the continuation software AUTO-07p (Doedel & Oldman 2009). Introducing the
travelling-wave coordinate ξ = x − ct, with wave speed c > 0, equation (2.7) becomes

− chξ + qξ = 0. (3.2)

Assuming steady flow in the travelling-wave frame, we take the total flow rate Q to be
constant.

To prepare the ground for the computations in AUTO, we define the scaled independent
variable X = (ξ + L)/(2L), so that X ∈ [0, 1], and rewrite (3.2) as the first-order system
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Figure 7. Interfacial travelling-wave profiles computed using AUTO for various values of B. The parameters
h0, m, C are fixed to the same values as in figure 1.

of ordinary differential equations UX = 2LA(U), where

U ≡ (U1, U2, U3, U4) ≡ (h, hX, hXX, hXXX) and A(U) ≡ (U2, U3, U4,N (U)) .

(3.3a,b)

The nonlinear function N (U) in (3.3a,b) is found by rearranging equation (3.2) for
hXXXX; see also the expression for q in (2.7b) and the definition of F in (2.8d). Periodic
boundary conditions are imposed on h, hX, hXX . Three integral constraints are imposed
to fix the volume of each fluid in a domain period, to break the translational invariance
of the system (Sandstede 2002; Champneys & Sandstede 2007) and to enforce the
zero-pressure-drop condition (A12). The parameter continuation is initiated close to the
bifurcation point for small-amplitude periodic waves using the approximate solution
h(X) = h0 + 10−3 cos(2πX). The remaining parameters are determined so that the initial
guess is close to neutral stability, according to predictions from linear theory (see
Appendix B).

The number of free parameters in the continuation is determined by the relation
Ncont = Nbc + Nint − Ndim + 1, where Nbc is the number of boundary conditions, Nint is
the number of integral constraints and Ndim is the size of the system (Doedel & Oldman
2009). Here we have Nbc = Nint = 3 and Ndim = 4 (cf. (3.3a,b)), and hence Ncont = 3. We
perform continuation in terms of the travelling-wave speed c, the flow rate Q and one other
geometrical or physical parameter, such as the (half) domain length L or the undisturbed
lower fluid thickness h0, while holding the rest of the parameters fixed.

Interfacial wave profiles obtained for different values of B are shown in figure 7 (the
parameters h0, m and C are set to the same values as in the previous section). Evidently
the interface forms an increasingly pronounced finger as the Bond number increases. This
results in a near segregation of the two fluids as the finger almost touches the walls at
sufficiently large B. This is consistent with the time-dependent calculations of the previous
section. In fact the profile for B = 1 is almost identical to the final wave state in figure 1(f ),
the only difference being that the thin-film regions near each wall are in the present case
flat and steady. The capillary ridge and the depression at the leading edge of the finger are
also apparent.

Figure 8 shows the variation of the travelling-wave speed c and the flow rate Q with the
Bond number B, for different values of the undisturbed lower fluid thickness h0, capillary
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Figure 8. Variation of wave speed c and flow rate Q with Bond number B. The various curves shown are
obtained for different values of (a,b) undisturbed lower fluid thickness h0, (c,d) capillary number C or (e, f )
viscosity ratio m, as quoted in the respective legends (legends refer to both panels in the same row). Unless
given in the legends, parameters h0, m, C take the same values as in figure 1.

number C and viscosity ratio m. Strikingly, for sufficiently large Bond number, both c and
Q reach a plateau at the same limiting value. Furthermore, this limiting value increases
with m but seems to be independent of both h0 and C. Reducing h0 delays the approach
to the plateau, i.e. the wave speed becomes constant at a larger value of the Bond number.
These results may be used to corroborate the comments made in the previous section on
finger merging. From figure 8(a) it is clear that c depends strongly on h0 before the plateau
is attained. In a domain of fixed length 2L, increasing h0 increases the volume of the lower
fluid leading to a taller finger. According to figure 8, roughly speaking c increases with
h0 so that a taller finger travels faster. Once h0 is sufficiently large for the travelling wave
to (almost) touch the upper wall, the finger widens as h0 increases but the wave speed
remains approximately constant.

3.4. Direct numerical simulations
Thus far our observations have been based on solutions to the model long-wave evolution
equation (2.7). We have also considered values of the Bond number at which, strictly
speaking, the model equation is outside of its range of validity (see the derivation in
Appendix A). To provide some reassurance that our results are nonetheless relevant to a
real flow, in this section we consider the full system (2.1), (2.3) and (A4) with no long-wave
approximation. We solve this system numerically using the finite-element object-oriented
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Figure 9. Comparison of interfacial profiles obtained from time-dependent calculations of the lubrication
model, travelling-wave calculations of the same model and DNS of the Navier–Stokes equations. Each solution
has been shifted to the right by an appropriate distance for better visualisation. The solution over the whole
computational domain in shown in (b) with magnifications thereof illustrated in (a,c,d). Parameter values for
h0, m, C, B are the same as in figure 1.

multi-physics library oomph-lib (Heil & Hazel 2006a,b). The flow set-up is otherwise the
same and we again start our simulations from the initial condition (3.1). Some additional
details about the numerical implementation in oomph-lib are provided in Appendix E.

Generally speaking the interfacial displacement evolves in time in a manner similar to
that predicted by the lubrication model. For sufficiently large Bond number this includes
the early finger formation, the ensuing merging dynamics and the subsequent near-wall
touch-down/touch-up behaviour. The ultimate fully merged profile comprising a single
wide finger is shown in figure 9. Superimposed onto this profile is that found from the
travelling-wave solution to the lubrication model (cf. § 3.3) and the large-time profile
obtained from the time-dependent simulation of the lubrication model (cf. § 3.1). Despite
the moderate size of the Bond number (here B = 1 and the lubrication model strictly
requires B � 1) there is excellent agreement between all three sets of results. The only
minor discrepancies occur in the upper part of the finger which is slightly wider in the
DNS profile (figure 9a), and in the thin film near to the lower wall (figure 9c,d) where
small interfacial ripples are observed in both sets of time-dependent calculations.

Inspired by the good agreement seen in figure 9 between model results and DNS, we
performed extensive numerical simulations for a range of Bond numbers to establish the
predictive power of the model. A comparison between numerical results obtained from
time-dependent simulations of the model evolution equation (2.7) and DNS can be found
in figure 10. In figure 10(a), the maximum absolute error is shown as a function of the Bond
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Figure 10. Comparison between numerical results obtained from time-dependent simulations of the model
evolution equation (2.7) and DNS, for various Bond numbers. (a) Maximum absolute error found by calculating
the difference between the two final-time interfacial profiles (model and DNS). (b) Solution amplitude found
by taking the difference between the interfacial maximum and minimum at the final time. The parameters h0,
m, C are fixed to the same values as in figure 1.

number, found by calculating the difference between the two final-time interfacial profiles.
An overall trend of growing error for increasing Bond number is evident, indicating that
the model will eventually (for much larger B) not be able to capture the ‘true’ dynamics.
Figure 10(b) demonstrates that the amplitude of the two solutions is almost identical for
all Bond numbers considered. For B � 0.4, the interfacial structure almost touches both
channel walls and the amplitude approaches the value 1 (cf. figure 8a). This allows us to
conclude that the apparent increase in error at higher Bond numbers is mainly due to width
disparity between the fingers, similar to that seen in figure 9(a).

4. Asymptotic analysis for large Bond number

Encouraged by the results in § 3, and in a bid to further understand the plateauing
behaviour seen in figure 8, we now present an asymptotic analysis of the fully merged
large-time travelling-wave state in the limit of large Bond number using the lubrication
model.

We start by integrating equation (3.2) and using the definition of the flux in (2.7b),
giving

q = D−1
(

mh2H1 + 1
3 h3(1 − h)H2F

)
= ch − C , for some constant C , (4.1)

where the first term on the right-hand side is the additional flux in the lower layer
introduced by the shift in reference frame. Seeking a solution in the limit B → ∞ to
support the results found in §§ 3.1–3.3, we divide the expected wide-finger solution into a
number of asymptotic regions as shown in figure 11. This includes two transition regions
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Figure 11. Sketch of the saturated interfacial profile of width L , with the various asymptotic regions. The
dashed vertical lines indicate locations of matching between solutions in the different regions. Key to region
names: TR/TL, right/left transition regions; FD/FU , down/up flat-film regions; CRD/CRU/CLD/CLU , right/left
and down/up connection regions.

TL, TR in which the profile ascends/descends from one wall to the other (here, subscripts
L and R denote ‘left’ and ‘right’); two flat thin-film regions FD and FU (here, subscripts
D/U mean down/up); and four connection regions CRD, CRU , CLD, CLU that match the
right/left transition regions to the down/up thin-film regions.

4.1. Transition regions TR and TL

We suppose there exist two transition regions in which (asymptotically) the two walls are
connected to each other by a section of the interface which meets them at zero contact
angle. In both of these regions the interface has a relatively steep slope. We seek a solution
in the form

h = H (ζ ), with ξ = B−1/2ζ in TR; ξ = −L − B−1/2ζ in TL, (4.2a–c)

where H is to be found, ζ = O(1) and L is the width of region FU (see figure 11). We
note that the scaling of B−1/2 � 1 for the ξ coordinate was chosen to retain the effect of
surface tension at leading order, by ensuring the balance of the two terms on the right-hand
side of (2.8d). In the coordinate rescalings (4.2b,c), the origin of ξ is assumed to be in
region TR and hence (4.2c) is essentially a shift of (4.2b) by a distance L . The value of
L can be estimated analytically by noticing that almost all the volume of the lower fluid
is included in the finger. The volume of the finger is approximately L (the dimensionless
height of the channel is 1), and this should be equal to the lower fluid volume in the
undisturbed state. Therefore at leading order, L = 2Lh0, where 2L is the domain length
and h0 is the undisturbed lower fluid height.

We assume that m, C and Q are of order 1, and that c = O(1) and C = o
(
B3/2) (these

latter scalings will be confirmed later). Then (4.1) becomes at leading order

Hζ + Hζ ζ ζ = 0, (4.3)

noting that D and H2 are positive for 0 < H < 1. Assuming a solution in which the
interface meets each wall with zero contact angle, then

H = 1
2
(1 − sin ζ ), over − π

2
< ζ <

π

2
. (4.4)
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For later reference, it is important to note that

H ∼ 1
4

(
ζ − π

2

)2
, as ζ → π

2
, (4.5a)

H ∼ 1 − 1
4

(
ζ + π

2

)2
, as ζ → −π

2
. (4.5b)

In both transition regions the limit ζ → ±π/2 corresponds to approaching the film near
the lower/upper wall, respectively.

4.2. Flat-film regions FD and FU

In the flat thin-film regions against the lower/upper walls (these regions lie outside/inside
the finger), the film is of approximately uniform thickness and we take, respectively,

h = B−1HD or h = 1 − B−1HU, (4.6a,b)

where HD and HU are both constant. The scaling of B−1 is chosen for matching purposes
as we will see later. In region FD, (2.7b) implies q ∼ B−2, and so the right-hand side
dominates in (4.1) and the flat-film thickness is found to be

HD = Ĉ

c
, (4.7)

where we have defined

C = B−1Ĉ . (4.8)

In region FU , we expand q in terms of B−1, apply the scaling (4.8) in (4.1) and disregard
terms of O

(
B−2), resulting in

Q − B−1HU = c − B−1
(

cHU + Ĉ
)

. (4.9)

Hence the appropriate balance at O(1) and O
(
B−1) gives, respectively,

Q = c and HU = Ĉ

1 − c
= c

(1 − c)
HD, (4.10a,b)

on using (4.7). The leading-order relationship between c and Q in (4.10a) has already been
noted in the results of figure 8.

4.3. Connection regions CRD and CRU

Here we write

h = B−1H̃(z) or h = 1 − B−1Ĥ(z), and ξ = ±
(

B−1/2 π

2
+ B−1z

)
, (4.11a–c)

where (4.11a,b) are introduced in regions CRD/CRU (near the lower/upper walls),
respectively, and the plus/minus signs in (4.11c) apply in the respective regions CRD/CRU .
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Taking Taylor expansions with respect to B−1 in the various functions used to define
the flux q in (2.7b), and substituting in (4.1), provides the leading-order balance in each
connection region. In particular, accounting for (4.8), in region CRD we find at O

(
B−1)

1
3C

H̃3H̃zzz = cH̃ − Ĉ , (4.12a)

and in region CRU we recover (4.10a) at O(1), while at O
(
B−1) we get

1
3mC

Ĥ3Ĥzzz = (1 − c)Ĥ − Ĉ . (4.12b)

Making use of (4.7) and (4.10b), we rescale by writing {H̃, Ĥ} = {HD, HU}H and z =
β{D,U}Z, where βD = HD/(3Cc)1/3 and βU = HU/(3mC(1 − c))1/3. Then (4.12) both
reduce to the Landau–Levich equation (Landau & Levich 1942, see also Bretherton 1961)

H
′′′ = H − 1

H3 , (4.13)

where a prime denotes a derivative with respect to Z.
The far-field conditions follow by matching to the solution in transition region TR and

to the flat-film solution at the walls. Reconciling the scalings (4.2b) and (4.11c), and using
(4.5) and (4.6), the required matching conditions in regions CRD/CRU are

H ∼ 1
2
A{D,U}Z2 as Z → −∞ and H ∼ 1 as Z → ∞, (4.14a,b)

where

AD = β2
D

2HD
and AU = β2

U
2HU

. (4.15a,b)

The first and second conditions in (4.14a,b) effect the matches with the transition region TR
and with the flat thin-film regions FD, FU , respectively. The connecting region problems
near the right transition region thus require the solution of the Landau–Levich equation
(4.13) subject to the matching conditions (4.14a,b). This problem appears in a number of
related studies including the dragging of a liquid by a moving plate (Landau & Levich
1942), the motion of long bubbles in horizontal tubes (Bretherton 1961) and the capillary
draining of annular films in horizontal tubes (Hammond 1983; Lister et al. 2006) and
vertical tubes (Jensen 2000). It has a one-parameter family of solutions, meaning that
A{D,U} cannot be determined at this stage.

4.4. Connection regions CLD and CLU

Working as in the previous section, we write

h = B−1H̃ (z) or h = 1 − B−1Ĥ (z), and ξ = −L ±
(
−B−1/2 π

2
+ B−1z

)
,

(4.16a–c)

where L was introduced in (4.2c). The scalings (4.16a,b) are applied in regions CLD/CLU
(near the lower/upper walls), respectively, and the plus/minus signs in (4.16c) apply in the
respective regions CLD/CLU .

955 A32-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1070
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Figure 12. Variation of the interfacial wave speed c against the viscosity ratio m, according to the asymptotic
result in (4.18).

Introducing the same scalings as before, {H , H̃ } = {HD, HU}H and z = β{D,U}Z, we
again obtain the Landau–Levich equation (4.13). The matching conditions are

H ∼ 1
2
A{D,U}Z2 as Z → ∞ and H ∼ 1 as Z → −∞. (4.17a,b)

The asymptotic problem given by (4.13) and (4.17a,b) admits a unique solution and
therefore AD = AU . We find numerically that these constants are equal to 0.643, which
agrees with the value quoted elsewhere in the literature (e.g. Bretherton 1961; Jensen 2000;
Lister et al. 2006).

4.5. Comparison with numerical solutions
Since AD = AU , it follows from (4.15a,b) that an explicit formula can be obtained for
the wave speed at leading order (using also the definitions of HD and HU from (4.7) and
(4.10b)), given by

c = m2/5

1 + m2/5 . (4.18)

It is surprising that c depends only on the viscosity ratio, but this is in line with the results
presented in § 3.3, in particular figure 8. The relationship (4.18) is plotted in figure 12.
The wave speed varies rapidly with m when m < 1 and the lower fluid is the more viscous.
Note that 0 < c < 1 and so the wave speed is less than the wall speed (which has been used
to non-dimensionalise velocities); in particular c = 1/2 when m = 1/2 so that the wave
propagates at half the wall speed for equal-viscosity fluids. These remarks agree with the
results in figure 8.

Since AD = AU = 0.643, it follows that the as yet undetermined constant Ĉ is given
by

Ĉ = 2.675 C2/3c5/3, (4.19)

where c is given by (4.18). This result may be combined with (4.6), (4.7) and (4.10b) to
yield an estimate for the thin-film thickness in regions FD, FU for a particular value of B.

We conclude this section by comparing the predictions of the present asymptotic
analysis with numerical solutions of the lubrication model and of the full equations
via DNS. To facilitate this comparison, we fix the parameters to the same values that
were used in the numerical computations in § 3, namely h0 = 0.2, m = 0.5, C = 10−3,
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Figure 13. Solution to the asymptotic problem in the (a) left and (b) right connection regions, plotted for the
same parameter values used in previous figures (h0 = 0.2, m = 0.5, C = 10−3, B = 1), and shown with red
dashed curves. The black solid curves correspond to the time-dependent results. The asymptotic results have
been rescaled back to the original variables, h = h(ξ), by using the appropriate values for β{D,U} and scalings
in (4.11), and have been also shifted horizontally in order to match the spatial location of the connection regions
as seen in figure 1( f ).

and we take a moderate value for the Bond number such as B = 1. Setting m = 0.5 in
(4.18) yields the leading-order prediction for the wave speed c = 0.43. The numerically
computed speed for the lubrication model is approximately c = 0.4725; this was obtained
from a time-dependent simulation of the lubrication model (2.7) and it was confirmed
by a travelling-wave calculation as described in § 3.3; see, in particular, figure 8. The
corresponding wave speed obtained from DNS is approximately cDNS = 0.4723. Once
again we note that the lubrication model agrees well with full DNS even for Bond numbers
outside its strict range of validity.

Using these results and taking the same parameter values in (4.19), (4.7), (4.10b) and
then (4.6), we find the individual film thicknesses to be hFD = 0.015 and hFU = 0.012
near the down/up walls, respectively, while the numerically computed values from the
lubrication model are 0.0176 and 0.0126, respectively, and the corresponding DNS values
are approximately 0.0175 and 0.0127. Clearly the results obtained from simulations of the
lubrication model and DNS are almost identical, and they are in good agreement with the
asymptotic results.

Finally we compare the numerical solution of the asymptotic problem in each
connection region with that obtained via a time-dependent simulation of the lubrication
model. Numerically solving the Landau–Levich equation (4.13) with far-field conditions
(4.14a,b) or (4.17a,b) gives the solutions shown with the red curves in figure 13 (the
results have been scaled back to the original variables). The solution obtained from
time-dependent simulations is superimposed with black curves (this is the same profile
shown in figure 1f ), providing good agreement between the two sets of results.

5. Conclusions

We have considered the RT instability that arises at the interface between two immiscible
viscous fluids in a channel that is undergoing a shearing motion due to the translation
of the upper wall. We have derived a nonlinear lubrication equation that is appropriate
for describing the evolution of the fluid–fluid interface on the assumption that the
wavelength of the interfacial disturbances is large in comparison with the channel height.
For any positive Bond number, meaning that the fluids are unstably stratified and RT
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instability is present, a small-amplitude perturbation to the initially flat interface grows
to develop a highly nonlinear structure. Numerical computations performed assuming
periodic boundary conditions, and on the assumption that there is no pressure drop across
one period, demonstrated the appearance of a pronounced finger-like pattern with the
number of fingers in one period accurately predicted by linear stability theory. The fingers
in general have different heights and travel at different speeds (taller fingers travel faster)
so that inter-finger collisions and merging events occur. As merging continues the number
of fingers gradually reduces leaving finally a residual finger which roughly encompasses
all of the lower fluid volume. This behaviour is similar to the coarsening dynamics
of roll wave structures propagating down an inclined plane (Chang et al. 2000; Razis
et al. 2014). At sufficiently large Bond number the final finger spans the entire channel
cross-section so that it essentially segregates the two fluids; the width of the finger is set
by the initial volume ratio of the two fluids in the periodic domain. The finger propagates
as a more-or-less fixed-form travelling wave, although thin-film coatings of each fluid
adjacent to the channel walls are unsteady. Their highly irregular behaviour is reminiscent
of the chaotic dynamics that characterises the evolution of thin films in certain parameter
regimes (Kawahara 1983; Kawahara & Toh 1988; Kalogirou & Papageorgiou 2016). We
have demonstrated analytically that touch-down/touch-up of the interface with the channel
walls does not occur in finite time, and our numerics in fact indicate that the minimum gap
almost saturates in time due to the presence of a base shear flow.

The existence of fully steady travelling-wave solutions was confirmed by a continuation
procedure carried out using AUTO-07p (Doedel & Oldman 2009) in a moving reference
frame. These calculations successfully reproduced the large-time interfacial profile
attained in the unsteady simulations (overlooking the persistent chaotic behaviour in
the thin-film regions). Furthermore they demonstrated that the wave speed and the total
channel flux both reach a plateau as the Bond number is increased to a relatively large
value (in fact roughly around B = 1), and that this plateau depends only on the size
of the viscosity ratio. This behaviour was further investigated via a large-Bond-number
asymptotic analysis that revealed the finer details of the post-coarsening final-state
travelling wave and confirmed that the wave speed and channel flux approach the same
value in the large-B limit. The asymptotic structure includes localised depression and
capillary ridge features that occur in narrow connection regions close to the wall wherein
the system is well approximated by the Landau–Levich equation (Landau & Levich 1942).
In this regard our analysis resembles that presented by other authors for similar problems
(e.g. Bretherton 1961; Hammond 1983; Jensen 2000; Lister et al. 2006).

Although we have focused our attention on relatively large values of the Bond number,
our lubrication equation is formally only valid for small values of this parameter (in that
case, smaller-amplitude travelling waves that do not straddle the whole channel height are
achieved; see the light grey curve in figure 7 for an example using B = 0.1). With this in
mind we have also carried out time-dependent simulations of the full Stokes equations.
These were found to be in excellent agreement with the predictions of the lubrication
model, even for moderate sized Bond number. Both qualitative and quantitative agreement
was found, for example in the estimation of the final-state travelling-wave speed and the
residual film thickness at the channel walls. For sufficiently large Bond number, the model
predictions are not expected to accurately characterise the dynamics (cf. figure 10). In fact,
for large enough Bond number we expect to see features such as interfacial break-up and
droplet formation (Kalogirou, Cimpeanu & Blyth 2020).

The stability of the final travelling-wave states has not been addressed here directly.
However, since for both the lubrication model and the full Stokes equations the waves
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emerge as the large-time limit of an initial value problem, this suggests that they are
stable to two-dimensional disturbances; although loss of stability to perturbations of
wavelength greater than the length of our computational domain cannot be ruled out. The
stability of the system to transverse perturbations, however, remains to be investigated
(e.g. Mavromoustaki, Matar & Craster 2011). While in this paper we have focused
on single-finger saturated states, multi-finger states can also be attained in unsteady
simulations through particular choices of the initial condition, and these are the subject
of our ongoing research. A further point of interest suggested by the asymptotic analysis
of § 4 concerns the possibility of finding shock-like solutions wherein the interfacial level
changes smoothly from one constant value to another from upstream to downstream in the
manner of a hydraulic fall. It should be noted that the analysis of § 4 does not determine
the width of the travelling wave, L , this being set effectively by the volume ratio of the
two fluids in the periodic domain. With this in mind, by extending the domain length
to infinity, shock solutions of the kind computed for an inclined channel with stationary
walls by Mavromoustaki et al. (2010), using the entropy-flux approach of Bertozzi, Münch
& Shearer (1999), could presumably be constructed. This is left as a topic for future
investigation.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.1070.
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Appendix A. Derivation of the lubrication equation

A lubrication equation for the evolution of a disturbance at the interface can be derived by
assuming that the wavelength of the disturbance is much larger than the channel height.
This suggests a rescaling of the horizontal coordinate and the introduction of a slow time
scale as follows:

χ = ε x, τ = ε t, with ε � 1, (A1)

where ε is the height-to-wavelength ratio and χ , τ are of O(1). The flow velocities and
pressures are expanded in the following manner (Tilley et al. 1994):

uj = u(0)
j + ε u(1)

j , vj = ε v
(0)
j + ε2v

(1)
j , pj = ε−1p(0)

j + p(1)
j . (A2a–c)

The following rescaling for the Bond and capillary numbers is also introduced, in order
to keep the effects of gravity and surface tension in the leading-order dynamics (e.g.
Mavromoustaki et al. 2010):

B = ε2B̃, C = ε3C̃ with B̃, C̃ = O(1). (A3)
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Nonlinear dynamics of unstably stratified two-layer flow

Expansions (A2a–c) and rescalings (A1) and (A3) are substituted into the kinematic
equation

ht +
(∫ h(x,t)

0
u1 dy

)
x

= 0 at y = h(x, t), (A4)

the momentum and continuity equations (2.1), and the normal and tangential stress
balances given in (2.3), yielding the leading-order system

mju
(0)
jyy − p(0)

jχ = 0, for j = 1, 2, (A5a)

p(0)
jy + rj

(r − 1)

B̃

C̃
= 0, for j = 1, 2, (A5b)

u(0)
jχ + v

(0)
jy = 0, for j = 1, 2, (A5c)

u(0)
1 = 0, v

(0)
1 = 0, at y = 0, (A5d)

u(0)
2 = 1, v

(0)
2 = 0, at y = 1, (A5e)

u(0)
1 = u(0)

2 , at y = h(χ, τ ), (A5f )

mu(0)
2y − u(0)

1y = 0, at y = h(χ, τ ), (A5g)

p(0)
2 − p(0)

1 = 1

C̃
hχχ , at y = h(χ, τ ), (A5h)

∫ h

0
u(0)

1 dy +
∫ 1

h
u(0)

2 dy = Q(t). (A5i)

Integrating (A5b) in y gives

p(0)
j = − rj

(r − 1)

B̃

C̃
y + Pj, (A6)

where the functions Pj(χ, τ ) are related to each other, via condition (A5h), as

P2 = P1 + F, where F = C̃−1(B̃h + hχχ ). (A7a,b)

The momentum equations (A5a) can then be integrated in y twice to obtain

u(0)
1 = 1

2
y2P1χ + yA1, u(0)

2 = 1
2 m

( y2 − 1)P2χ + ( y − 1)A2 + 1, (A8a,b)

where the no-slip boundary conditions at the walls (A5d), (A5e) have been applied. The
arbitrary functions Aj = Aj(χ, τ ) are determined by using the two conditions (A5f ), (A5g),
and then using (A7a). Their expressions simplify to

A2 = 1
m

(
A1 − hFχ

)
, A1 = 2m − (1 + (m − 1)h2)P1χ − (h − 1)2Fχ

2(1 + (m − 1)h)
. (A9a,b)

The continuity equations (A5c) can be used to provide similar expressions for the
leading-order vertical velocity perturbations; integrating in y and using the no-penetration
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boundary conditions at the walls (A5d), (A5e), yields

v
(0)
1 = −1

6
y3P1χχ − 1

2
y2A1χ , v

(0)
2 = − 1

6m
( y3 − 3y + 2)P2χχ − 1

2
( y2 − 2y + 1)A2χ .

(A10a,b)
It remains to use the integral constraint (A5i) to determine the leading-order pressure
gradient, finding

P1χ = D−1
[
−6m

(
(m − 1)h2 − 2(m − 1)h − 1

)
+(h − 1)2

(
(m − 1)h2 + 2(1 − 2m)h − 1

)
Fχ − 12m ((m − 1)h + 1) Q(t)

]
,

(A11)

where D is defined in (2.8a). We note that the flow rate Q(t) can be found by satisfying
a periodicity condition on the pressure (Ooms et al. 1985; Blyth & Pozrikidis 2004;
Kalogirou & Blyth 2020), e.g.∫ L

−L
P1χ dx = P1(L, τ ) − P1(−L, τ ) = 0, (A12)

or equivalently fixing the pressure drop in the streamwise direction to be zero over a
specified domain of length 2L.

With the solution for P1χ known from (A11), function A1 and then A2 can be found
from (A9a,b) and finally P2χ can be found using (A7a). The leading-order horizontal
velocities in each fluid can then be obtained from (A8). The evolution of the interfacial
displacement is found by inserting the leading-order horizontal velocity (A8a) into the
kinematic equation (A4), and is given by

hτ + qχ = 0 with q = 1
6

P1χh3 + 1
2

A1h2. (A13)

The evolution equation (A13) can be scaled back to the original variables x, t and the
result is given in (2.7), which also includes the original parameters B, C. We note that the
expression for q in (2.7) is the same as that in (A13), but it is written in a different form
for convenience.

Appendix B. Linear stability theory

The growth rate of (2.7) is found by writing h = h0 + A exp(iKx + σ t) + c.c. (complex
conjugate) for some small amplitude A. Here, σ is the growth rate which is generally a
complex number and K is the wavenumber, assumed real. Substituting this expression into
(2.7) yields

σ + iKD(h0)
−1
(

mh2
0H1(h0) + 1

3C
h3

0(1 − h0)
3H2(h0)(iKB − iK3)

)
= 0. (B1)

The growth rate is then provided by the real part of σ and is given by

Re(σ ) = K2(B − K2)
h3

0(1 − h0)
3H2(h0)

3CD(h0)
. (B2)

Since 0 < h0 < 1, and D > 0, H2 > 0, the growth rate is clearly positive if K < Kc, where
the cut-off wavenumber is Kc = √

B. The growth rate attains its maximum at the point
where ∂K(Re(σ )) = 0, which is located at Kmax = √

B/2.

955 A32-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1070


Nonlinear dynamics of unstably stratified two-layer flow

Appendix C. Weakly nonlinear analysis

Writing h(x, t) = δ
(
H0 + δH(x, t)

)
in (2.7), with δ � 1, H0 = O(1) is constant and H =

O(1), we find

δ2Ht +
[
α1Hδ3 +

(
α2H + α3H2

)
δ4

+
(
α4H + α5H2 + α6Hx + α7Hxxx

)
δ5 + O

(
δ6
)]

x
= 0, (C1)

where αi = αi(H0, m, Q(t)) for i = 1, . . . , 5, and α6 = H3
0B/(3C), α7 = H3

0/(3C). The
numerical evidence suggests that the flow rate Q is a constant in the large-time limit when
the travelling-wave structure is reached (see figure 8), so we treat Q(t) as a constant to
leading order. The second term on the left-hand side can be then removed by taking a
Galilean transformation of the form x̂ = x − δα1t. A slow-time scale is introduced by t̂ =
δ2t, and the capillary number is rescaled as C = δC0 (Kalogirou & Papageorgiou 2016),
and so the evolution equation (C1) becomes at leading order

Ht̂ + αHx̂ + 2α3HHx̂ + H3
0

3C0
(BHx̂x̂ + Hx̂x̂x̂x̂) = 0, (C2)

where α is a time-dependent coefficient which depends on the first-order correction to
Q(t).

Appendix D. Boundedness of solutions

The results in § 3.1 suggest that when the interface gets close to one of the channel walls,
then the F term in (2.8d) dominates the evolution equation (2.7); cf. figure 4. To examine
near-wall touch-down/touch-up, it is therefore sufficient to keep only the dominant terms
in the evolution equation, which reduces to

ht +
(

1
3

h3(1 − h)3D−1H2F
)

x
= 0, (D1)

where we recall that F = C−1(Bhx + hxxx). A similar equation has been obtained in
related studies investigating the RT instability in thin viscous films (Yiantsios & Higgins
1989), also in the presence of electric fields (Tseluiko & Papageorgiou 2007; Anderson
et al. 2017). In particular, if the interface is in the vicinity of the lower or upper wall, that
is, h ≈ 0 or h ≈ 1, the evolution equation (D1) is similar to those previously derived by
Tseluiko & Papageorgiou (2007) or Anderson et al. (2017), respectively, if the influence of
electric fields is omitted in both of these studies.

Here we aim to prove that smooth solutions are uniformly bounded. We follow closely
the proof of Tseluiko & Papageorgiou (2007) for an electrified film. We begin by defining
the functional

E(h) = 1
2

C−1
∫ L

−L

(
−Bh2 + h2

x

)
dx. (D2)
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This can be shown to be non-increasing in time, as follows:

dE
dt

=
∫ L

−L
C−1 (−Bhht + hxhxt) dx =

∫ L

−L
C−1 (Bh + hxx) (−ht) dx

=
∫ L

−L
C−1 (Bh + hxx)

(
1
3

h3(1 − h)3D−1H2F
)

x
dx

= −
∫ L

−L

1
3

h3(1 − h)3D−1H2F2 dx ≤ 0, (D3)

where we have used (D1) to replace ht, and the periodicity of h to remove the boundary
terms when integrating by parts. The inequality in (D3) is proved on recalling that D > 0
and H2 > 0 from (2.8a) and (2.8c), respectively. The functional in (D2) can be written as

E(h) = −1
2

C−1B‖h‖2
2 + 1

2
C−1‖hx‖2

2 = α1‖h‖2
H1 − α2‖h‖2

2, (D4)

where α1 = 1
2 C−1 > 0 and α2 = 1

2 C−1(B + 1) > 0. Here, ‖h‖2 denotes the L2-norm and
‖h‖2

H1 = ‖h‖2
2 + ‖hx‖2

2 is the norm defined in the H1 Sobolev space comprising periodic
functions in [−L, L].

Using the interpolation inequality gives (e.g. Bertozzi & Pugh 1998)

‖h‖2 ≤ γ1‖h‖1/3
H1 ‖h‖2/3

1 , (D5a)

where ‖h‖1 is the L1-norm and γ1 is a positive constant. Applying Young’s inequality to
the right-hand side of (D5a) yields

‖h‖2 ≤ γ1

(
ε

3
‖h‖H1 + 2

3
√

ε
‖h‖1

)
, (D5b)

where ε is a positive constant, and hence

‖h‖2
2 ≤ γ 2

1

(
ε2

9
‖h‖2

H1 + 4
9ε

‖h‖2
1 + 4

√
ε

9
‖h‖H1‖h‖1

)
≤ 2γ 2

1

(
ε2

9
‖h‖2

H1 + 4
9ε

‖h‖2
1

)
.

(D5c)
By inserting the result in (D5c) into (D4), we establish that

E(h) ≥ α̃1‖h‖2
H1 − α̃2‖h‖2

1, or equivalently ‖h‖2
H1 ≤ β1E(h) + β2‖h‖2

1. (D6a,b)

Here, α̃1 = α1 − 2α2γ
2
1 ε2/9, α̃2 = 8α2γ

2
1 /(9ε) and β1 = 1/α̃1, β2 = α̃2/α̃1. We note that

α̃1 is positive for small enough ε and α̃2 > 0 for any ε > 0, and hence we can ensure that
both β1, β2 are positive by choosing ε to be sufficiently small.

Assuming a smooth initial condition h(x, 0) = h(0)(x) ∈ H1 satisfying periodicity in the
domain [−L, L], then the norm ‖h‖H1 is uniformly bounded since from (D6) we find

‖h‖2
H1 ≤ β1E(h(0)) + β2‖h(0)‖2

1 ≡ C̄, (D7)

using the result in (D3) and conservation of volume, i.e. ‖h‖1 = ‖h(0)‖1, which follows
immediately from (D1). This proves that the Sobolev norm of the solution h is bounded
for all t > 0.
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Figure 14. Lower fluid mesh from a DNS in oomph-lib, using 600 elements in the horizontal direction and
16 elements in the vertical direction in each fluid layer. The saturated interfacial profile shown is obtained for
B = 1. The colour corresponds to the horizontal velocity in the lower fluid, varying from 0 (blue) on the lower
channel wall to 1 (red) on the upper wall. The fluid is seen to move slightly faster than the upper wall (darker
red colour) right before the capillary ridge at x = 12.5.

We use this boundedness result to show that the interface cannot touch the channel walls
in finite time. We start by tracking the time evolution of the two spatial integrals

d
dt

∫ L

−L

1
h

dx =
∫ L

−L
− ht

h2 dx = 2
3

∫ L

−L
hx(1 − h)3D−1H2F dx (D8a)

and
d
dt

∫ L

−L

1
(1 − h)

dx =
∫ L

−L

ht

(1 − h)2 dx = 2
3

∫ L

−L
hxh3D−1H2F dx, (D8b)

where in both integrals we have substituted the expression for ht from (D1) and integrated
by parts. The upper bound D−1H2 � max{1, m−1} ≡ M is valid for 0 < h < 1 (in fact,
the bound of 1 or m−1 is approached when h ≈ 0 or h ≈ 1, respectively). Using this result
and the definition of F from (2.8d), we can show that the integrals on the far right-hand
sides in (D8) are bounded by

2
3
MC−1

∫ L

−L
hx(Bhx + hxxx) dx = 2

3
MC−1

(
B‖hx‖2

2 − ‖hxx‖2
2

)
� a‖hx‖2

2 � a‖hx‖2
2 + a‖h‖2

2 = a‖h‖2
H1 � aC̄, (D9)

with a = 2
3MC−1B > 0. The last step in (D9) applies the uniform bound result shown

earlier in (D7). We have therefore proved that the spatial integrals of h−1 and (1 − h)−1

remain bounded over a finite time interval. This result can be used to show that a solution
satisfying 0 < h < 1 initially, will satisfy this condition at all (finite) times; equivalently,
that is to say the interface will not touch down/up in finite time. The rest of the proof is
based on Agmon’s inequality (Agmon 1965) and can be completed in the same way as in
Tseluiko & Papageorgiou (2007).

Appendix E. Details of the oomph-lib implementation

The governing equations are discretised in space using the finite-element method and in
time using the second-order-accurate backward differentiation formulae (BDF). A Newton
solver is then applied to solve the fully space–time discretised system, and adaptive time
stepping is employed so that a temporal root-mean-square error norm (based on the
difference between a prediction and the computed solution) remains below a tolerance
of 10−5. We refer the reader to the oomph-lib webpage (Heil & Hazel 2006b) for more
details on the methods used.

The mesh is based on quadrilateral Crouzeix–Raviart elements and the method of spines
is used to approximate the nodal position of the interface at a given location. A simulation
for B = 1 uses 600 elements in the horizontal direction and 16 elements in the vertical
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direction in each fluid layer. These parameters were found to be sufficient to produce
accurate results, in the sense that simulations with double resolution gave interfacial
profiles that are visually indistinguishable from those seen in figure 9. An example of the
mesh for the highly deformed saturated state obtained for B = 1 is depicted in figure 14.
We note that smaller values of B produce less deformed interfacial structures and hence
require fewer elements to produce accurate results.
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