VOLUME 12 NUMBER 3 SEPTEMBER 1989 An International Journal of Current Research and Theory with Open Peer Commentary

Behavioral and Brain Sciences

Appearing in this issue, with Commentary . . .

A solution to the tag-assignment problem for neural networks Gary W. Strong & Bruce A. Whitehead

Explanatory coherence Paul Thagard

Genetic similarity, human altruism, and group selection J. Philippe Rushton

Spontaneous tool use and sensorimotor intelligence in *Cebus* compared with other monkeys and apes Suzanne Chevalier-Skolnikoff

Behavioral and Brain Sciences

Editor Stevan Harnad 20 Nassau St., Suite 240 Princeton, NJ 08542 E-mail: harnad@confidence.princeton.edu or harnad@pucc.bitnet

Managing Editor Chooi-Yeok Kuan

Copy Editor (Chief) Avis Kniffin

Associate Editors Behavioral Biology Jack P. Hailman/U. Wisconsin Hubert Markl/U. Konstanz

Biosocial Behavior Glendon Schubert/U. Hawaii, Manoa

Cognition and Artificial Intelligence Zenon Pylyshyn/U. Western Ontario

Cognitive Development Annette Karmiloff-Smith/MRC, London and MPI, Nijmegen

Evolutionary Biology Michael T. Ghiselin/California Academy of Sciences

Experimental Analysis of Behavior A. Charles Catania/U. Maryland, Baltimore County

History and Systems Julian Jaynes/Princeton

Language and Cognition Philip Johnson-Laird/MRC, Cambridge Peter Wason/University College, London

Editorial Policy Behavioral and Brain Sciences (BBS) is an international journal providing a special service called Open Peer Commentary* to researchers in any area of psychology, neuroscience, behavioral biology, or cognitive science who wish to solicit, from fellow specialists within and across these BBS disciplines, multiple responses to a particularly significant and controversial piece of work. (See *Instructions for Authors and Commentators*, inside back cover.) The purpose of this service is to contribute to the communication, criticism, stimulation, and particularly the unification of research in the behavioral and brain sciences, from molecular neurobiology to artificial intelligence and the philosophy of mind.

Papers judged by the editors and referees to be appropriate for Commentary are circulated to a large number of commentators selected by the editors, referees, and author to provide substantive criticism, interpretation, elaboration, and pertinent complementary and supplementary material from a full cross-disciplinary perspective. The article, accepted commentaries, and the author's response then appear simultaneously in BBS.

Commentary on BBS articles may be provided by any qualified professional in the behavioral and brain sciences, but much of it is drawn form a large body of BBS Associates who have become formally affiliated with the project.

Qualified professionals are eligible to become BBS Associates if they have (1) been nominated by a current BBS Associate, (2) refereed for BBS, or (3) had a commentary or article accepted for publication. A special subscription rate is available to Associates. Individuals interested in serving as BBS Associates are asked to write the editor.

This publication was supported in part by NIH Grant LM 03539 from the National Library of Medicine.

*Modelled on the 'CA Comment' service of the journal Current Anthropology.

Language and Language Disorders Max Coltheart/Macquarie U.

Linguistics Robert Freidin/Princeton

Neurobiology Irving Kupfermann/Columbia

Neuropharmacology Susan D. Iversen/Merck Sharp and Dohme, Ltd.

Neuropsychology Jeffrey A. Gray/Inst. Psychiatry, London John C. Marshall/Radcliffe Infirmary, Oxford

Neurophysiology Sten Grillner/Karolinska Institutet

Paleoneurology Stephen Jay Gould/Harvard

Perception Bruce Bridgeman/U. California Richard Gregory/U. Bristol

Philosophy Daniel C. Dennett/Tufts Gilbert Harman/Princeton

Philosophy of Science Adolf Grünbaum/U. Pittsburgh

Psychobiology Victor H. Denenberg/U. Connecticut David S. Olton/Johns Hopkins

Vision and Artificial Intelligence Stuart Sutherland/U. Sussex

Copying This journal is registered with the Copyright Clearance Center (27 Congress St., Salem, MA 01970). Organizations in the U.S.A. who are also registered with the CCC may therefore copy material (beyond the limits permitted by sections 107 and 108 of U.S. Copyright Law) subject to payment to the CCC of the per-copy fee indicated in the code on the first page of the article. This consent does not extend to multiple copying for promotional or commercial purposes.

ISI Tear Sheet Service, 3501 Market Street, Philadelphia, PA 19104, is authorized to supply single copies of separate articles for private use only.

For all other use, permission should be sought from the Cambridge or New York offices of the Press.

Subscriptions Behavioral and Brain Sciences (ISSN 0140-525X) is published quarterly in March, June, September, and December. Four parts form a volume. The subscription price, which includes postage, of Volume 12 (1989) is US \$154.00 net in the U.S.A. and Canada (£95.00 in the U.K.; £102.00 in the rest of the world) for institutions; US \$65.00 net (£43.00) for individuals; US \$38.00 net (£26.00) for BBS Associates; and US \$38.00 net (£26.00) for students (in the U.S.A. and Canada only) who provide proof of eligibility with order. Single parts cost US \$43.00 net (£26.00) plus postage. Institutional orders may be sent to a bookseller, or, in the U.S.A. and Canada direct to: Cambridge University Press, 40 West 20 Street, New York, NY 10011; in the U.K. and rest of the world to: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, England. Individuals must order direct from the Press. Second class postage paid at New York, N.Y. and at additional mailing offices. Postmaster: send address changes in the U.S.A. and Canada to Behavioral and Brain Sciences, Cambridge University Press, 40 West 20 Street, New York, NY 10011.

Advertising Inquiries about advertising should be sent to the Journals Promotion Department of the Cambridge or New York Office of Cambridge University Press.

© 1989 Cambridge University Press

Contents Volume 12:3 September 1989

Strong, G. W. & Whitehead, B. A. A solution to the tag-assignment problem for neural networks

Open Peer Commentary	
Aiple, F. & Fischer, B. Synchrony of spikes and	
attention in visual cortex	397
Bridgeman, B. Modeling separate processing pathways	
for spatial and object vision	398
Butler, B. E. Do we need an early locus of attention	
to resolve illusory conjunctions?	398
Cave, K. R. Visual attention and beyond	400
Dawson, M. R. W. Constraining tag-assignment from	
above and below	400
Duncan, J. Parallel processing: Giving up without	
a fight	402
Feldman, J. A. Tags is for kids	403
Fields, C. Affordance perception and the	
Y-magnocellular pathway	403
Findlay, J. & Kentridge, R. More packaging needed	
before tags are added	404
Hardin, C. L. The bicameral retina at a glance	405
Krueger, L. E. & Stadtlander, L. M. Features and	
locations: Dichotomy or continuum?	406
Kruschke, J. K. State transitions in constraint	
satisfaction networks	407
Lesperance, R. M. & Kaplan, S. A nonspatial solution	
to a spatial problem	408

Thagard, P. Explanatory coherence

Open Peer Commentary

Achinstein, P. Explanation and acceptability	467
Bereiter, C. & Scardamalia, M. When weak	
explanations prevail	468
Cheng, P. CH. & Keane, M. Explanatory coherence	
as a psychological theory	469
Chi, M. T. H. Assimilating evidence: The key to	
revision?	470
Cohen, L. J. Two problems for the explanatory	
coherence theory of acceptability	471
Dawes, R. M. Thagard's Principle 7 and Simpson's	
paradox	472
Dietrich, E. Is Thagard's theory of explanatory	
coherence the new logical positivism?	473
Earle, D. C. On the testability of ECHO	474
Feldman, J. A. What's in a link?	474
Gabrys, G. & Lesgold, A. Coherence: Beyond	
constraint satisfaction	475
Giere, R. N. What does explanatory coherence	
explain?	475
Hobbs, J. R. Are explanatory coherence and a	
connectionist model necessary?	476
Iosephson, J. R. Inference to the best explanation is	
basic	477
Klayman, J. & Hogarth, R. M. Does ECHO explain	
explanation? A psychological perspective	478

Clayman,	J.	å	Hogarth,	R.	М.	Does	ЕСНО	explain	
explanat	tion	1 ? .	A psychol	ogi	cal p	berspe	ctive		

Levenick, J. R. A self-organizing perceptual system	409
Müller, H. J., Humphreys, G. W., Quinlan, P. T. &	
Donnelly, N. Fundamental design limitations in tag	
assignment	410
Parker, D. M. Simultaneous processing of features	
may not be possible	411
Plaut, D. C. Neural networks and computational	
theory: Solving the right problem	411
Prinzmetal, W. & Ivry, R. Damn the (behavioral)	
data, full steam ahead	413
Sandon, P. A. An attentional hierarchy	414
Sun, R. & Schalit, E. Is the tag necessary?	415
Wagemans, J., Verfaillie, K., De Graef, P. &	
Lamberts, K. Is extension to perception of real-	
world objects and scenes possible?	415
Winder, C. P. Where's the psychological reality?	417
Young, M. P., Paterson, I. R. & Perrett, D. I.	
Attention to detail?	417

Authors' Response

Strong, G. W. & Whitehead, B. A. The value of	
modeling visual attention	419

435

Levine, D. S. Explanatory coherence in neural	
networks?	479
Lycan, W. G. Explanationism, ЕСНО, and the	
connectionist paradigm	480
Mangan, B. & Palmer, S. New science for old	480
McCauley, R. N. Acceptability, analogy, and the	
acceptability of analogies	482
McDermott, D. Optimization and connectionism are	
two different things	483
O'Rorke, P. Coherence and abduction	484
Papineau, D. Probability and normativity	484
Read, S. J. & Miller, L. C. Explanatory coherence in	
understanding persons, interactions, and	
relationships	485
Reggia, J. A. Measuring the plausibility of explanatory	
hypotheses	486
Simon, H. A. ECHO and STAHL: On the theory	
of combustion	487
Sintonen, M. Theory autonomy and future promise	488
Wetherick, N. E. Psychology, or sociology of science?	489
Zytkow, J. M. Testing ECHO on historical data	489
-	

Author's Response

Thagard,	P.	Extending	explanatory	^v coherence	490
----------	----	-----------	-------------	------------------------	-----

Rushton, J. P. Genetic similarity, human altruism, and group selection

Open Peer Commentary		Kline, P. Not genes: Behaviour	532
Anderson, J. L. A methodological critique of the		Krebs, D. Detecting genetic similarity without	
evidence for genetic similarity detection	518	detecting genetic similarity	533
Archer, J. Why help friends when you can help sisters		Leek, M. & Smith, P. K. Phenotypic matching,	
and brothers?	519	human altruism, and mate preference	534
Daly, M. On distinguishing evolved adaptation from		Lynn, R. Balanced polymorphism for ethnocentric and	
epiphenomena	520	nonethnocentric alleles	535
Dunbar, R. I. M. Genetic similarity theory needs		Masters, R. D. If "birds of a feather ," why do	
more development	520	"opposites attract"?	535
Economos, J. Altruism, nativism, chauvinism, racism,		Nagoshi, C. T. How important are distal genetic	
schism, and jizzum	521	factors in human assortative mating?	537
Eibl-Eibesfeldt, I. Familiality, xenophobia, and group		Reynolds, V. When is similarity genetic?	538
selection	523	Ridley, M. When does natural selection favour	
Eysenck, H. J. Testing one of Rushton's predictions	523	assortative mating?	539
Findlay, C. S. Biocultural versus biological systems:		Rowe, D. C. Why birds of a feather flock together:	
Implications for genetic similarity theory	524	Genetic similarity?	540
Gangestad, S. W. Uncompelling theory, uncompelling		Stam, H. J. How not to explain psychological	
data	525	phenomena	541
Ghiselin, M. T. Genetics versus economics as the		Tooby, J. & Cosmides, L. Kin selection, genic	
basis for friendships and other preferences	526	selection, and information-dependent strategies	542
Gouzoules, H. Genetic similarity between friends and		van den Berghe, P. L. Heritable phenotypes and	
lovers: Is an evolutionary view warranted?	526	ethnicity	544
Graves, J. & Byrne, R. W. Mate selection: The		Vine, I. The role of genes in genetic similarity	
wrong control group	527	detection	545
Hallpike, C. R. Green beard theory	528	Wahlsten, D. Science or prejudice?	546
Hartung, J. Testing genetic similarity: Out of control	529	Waldman, B. Sociobiology, sociology, and	
Hepper, P. G. Recognising kin = Recognising genetic		pseudoevolutionary reasoning	547
similarity	530	Wilson, D. S. Problems with the altruism hypothesis	548
Jensen, A. R. "Total perceived value" as the basis of			
assortative mating in humans	530	Author's Response	
Kenrick, D. T. Altruism, Darwinism, and the gift of		Rushton, J. P. Similarity and ethnicity mediate human	
Josiah Wedgewood	531	relationships, but why?	548
		· · · ·	

Chevalier-Skolnikoff, S. Spontaneous tool use and sensorimotor intelligence in *Cebus* compared with other monkeys and apes

Open Peer Commentary

Adams-Curtis, L. E. Does a Piagetian description	
work?	588
Anderson, J. R. On the contents of capuchins'	
cognitive tool-kit	588
Baldwin, J. D. Does "spontaneous" behavior require	
"cognitive special creation"?	589
Bard, K. A. & Vauclair, J. What's the tool and	
where's the goal?	590
Bekoff, M. Tools, terms, and telencephalons; Neural	
correlates of "complex" and "intelligent" behavior	591
Bernstein, I. S. Cognitive explanations: Plausibility is	
not enough	593
Branch, M. N. Using behavior to explain behavior	594
Etienne , A. S. The application of the Piagetian stage	
concept to comparative research	595
Falk D Primate tool use: But what about their	000
brains?	595
Frageszy D M Tool use imitation and insight	000
Apples evenges and concentual nee sound	506
Cihor K. D. Teel and conceptual pea soup	090
Gibson, K. R. 1001 use in cebus monkeys: Moving	=00
from orthodox to neo-Plagetian analyses	598
Greenfield, P. M. Cebus uses tools, but what about	
representation? Comparative evidence for	
generalized cognitive structures	599
Johnson, M. & Karmiloff-Smith, A. The right tools for	
the job?	600

Johnston, T. D. & Toth, J. P. Piagetian stages and	
the anagenetic study of cognitive evolution 60)0
Kortlandt, A. The applicability of Piagetian concepts	
to animals 60)2
Machhail E M Tool use implies sensorimator skill:	
But differences in skills do not imply differences in	
intelligences in skins do not imply differences in	no
intelligence	J2
Menzel, E. W., Jr. Is intelligent behavior a directly	
observable phenomenon? 60	03
Parker, S. T. Imitation and derivative reactions 60	04
Pepperberg, I. M. Tool use in birds: An avian monkey	
wrench? 60	04
Savage, A. & Snowdon, C. T. Apples and oranges:	
The pitfalls of comparative intelligence 60	05
Savage-Rumbaugh, S., Brakke, K. & Wilkinson, K.	
Tool use in monkeys 60	06
Tomasello, M. Cognition as cause 60	07
Visalberghi E Primate tool use: Parsimonious	
orrelanationa make better solones	ng
explanations make better science of	00
westergaard, G. C. & Sackett, G. P. Advanced	~ ~
sensorimotor intelligence in <i>Cebus</i> and <i>Macaca</i> 60	09

Author's Response

Chevalier-Skolnikoff, S. Tool use in Cebus: Its	
relation to object manipulation, the brain, and	
ecological adaptations	610