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Abstract. By analogy with the ergodic theoretical notion, we introduce notions of
rigidity for a minimal flow (X, T) according to the various ways a sequence T"> can
tend to the identity transformation. The main results obtained are:

(i) On a rigid flow there exists a T-invariant, symmetric, closed relation N such
that (X, T) is uniformly rigid iff N = A, the diagonal relation.

(ii) For syndetically distal (hence distal) flows rigidity is equivalent to uniform
rigidity,

(iii) We construct a family of rigid flows which includes Korner's example, in which
N exhibits various kinds of behaviour, e.g. N need not be an equivalence
relation.

(iv) The structure of flows in the above mentioned family is investigated. It is shown
that these flows are almost automorphic.

1. Introduction
The notion of (measure theoretical) rigidity was introduced by H. Furstenberg and
B. Weiss in [FW]. They call the finite measure preserving system (X, B, /A, T), rigid
if for some sequence nt-*oo and every fe L2(n), T">f-*f in L2(/J,). B. Weiss has
shown that if T is rigid then there exists a subsequence n\ of n, and a subalgebra
Ac LX(IM) which is dense in L2(n) and such that \\Tn'f-f\\x-*0 for every fe A,
(private communication).

In this paper we are concerned with analogous notions of rigidity in the setting
of topological dynamics and their interrelation. To be specific let X be a metric
compact space and T:X-»X a self homeomorphism. We call the pair (X, T) a
flow, and say that

(i) (X, T) is weakly rigid if for every e > 0 and points x, • • • xn e X, there exists
keZ\{0} such that d(Tkxi,xi)<e, (/"= 1,2,..., n).

(ii) (X, T) is rigid (with respect to a sequence nk / oo) if T"kx-> x V x e X.
(iii) (X, T) is uniformly rigid (w.r.t. nk) if lim T"k = Identity uniformly on X.

Clearly (iii)=>(ii)=>(i). It is easy to construct an example of a rigid flow which
is not uniformly rigid. (Take X = {reie: 0< 0<2TT, r = l - 2 ~ " , « = 1, 2, 3 , . . . or
r=l}and Tz = z exp (2m- 2~n) when \z\ = 1 - 2 " " and Tz = zif|z| = l; nk=2k). The
question whether (ii)=»(iii) becomes more difficult if we require (X, T) to be
minimal. The negative answer to this question was given by T. W. Korner who
produced an example of a minimal flow, rigid with respect to some sequence {nk}
and not uniformly rigid with respect to any sequence including {nk}, [K].
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Let (X, T) be a minimal flow, rigid w.r.t. a sequence {nk}. Define

There exists a subsequence n'k of nk

Ar = (x, x'): and sequences xk -» x and xJt -» x'
such that d(T"'"xk, T"'"x'k) -«• 0

TV is a closed symmetric T-invariant subset of X x X and it is easy to see that (X, T)
is uniformly rigid with respect to {nk} iff N = A (where A = {(x, x): xe X}). The
analogous regionally proximal relation Q which is defined for an arbitrary minimal
flow (X, T) by

( There exists a sequence {m,} and
(x, x'): sequences Xj -*• x and xj -* x' with

is of fundamental importance in the abstract theory of topological dynamics. Surpris-
ingly Q turns out to be an equivalence relation. Thus for a minimal flow (X, T) to
be equicontinuous it is necessary and sufficient that <? = A and the quotient flow
(X/Q, T) is the largest equicontinuous factor of (X, T). A necessary and sufficient
condition for (X, T) to have only trivial equicontinuous factors can be derived,
namely that it is (topologically) weakly mixing. In particular when (X, T) is distal
it always admits a non-trivial equicontinuous factor. (See [F, V, P, Ke-R, E-Ke, B]
for these results). As we shall see minimal distal flows are weakly rigid and there
are other analogies between distal and rigid flows. Thus we are naturally led to the
following two questions
(1) Is TV always an equivalence relation?
(2) Does a minimal rigid (weakly rigid) flow always have a non-trivial uniformly
rigid factor?

In order to describe our results concerning the first question we need some more
definitions. In a minimal flow (X, T) let P = {(x, x'): G(x, x') => A},

L = {(x, x'): O(x, x') contains A as a unique minimal subset}
(€ denotes orbit closure). It is easy to see that P and L are symmetric and T-invariant,
L<= P and L is an equivalence relation on X, [C]. P and L are called respectively
the proximal and syndetically proximal relations on (X, T). (X, T) is distal iff P = A
and we say that (X, T) is syndetically distal if L = A. Thus every distal flow is
syndetically distal. In § 2 we show that AT<= L. Hence a syndetically distal (and in
particular a distal) rigid flow is uniformly rigid. (We wish to thank B. Weiss who
is a co-author of this result for his permission to include it in our paper.) The next
two sections are devoted to a general method of construction of minimal flows with
various properties. In particular we retrieve Korner's example of a minimal rigid
but not uniformly rigid flow in a simpler and more transparent way and construct
an example in which N is not an equivalence relation, answering question (1) above
in the negative. We also investigate the structure of these examples, showing that
they are almost one to one extensions of an equicontinuous flow - i.e. almost
automorphic flows. In particular they admit non-trivial uniformly rigid factors. We
have no complete answer to our second question. In the last section we collect some
miscellaneous results about rigidity: Distal flows are weakly rigid, there are distal
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flows which are not rigid; (thus in general (i)=?>(ii)). Rigid flows have zero topological
entropy and there exist many uniformly rigid weakly mixing minimal flows. Finally
mixing flows admit only trivial rigid factors.

2. The relations N and N on a rigid flow
Let (X, T) be a rigid flow with respect to the sequence {nk}. Put

( There exist a sequence xk -* x

(x, x'): and subsequence {n'k} of {nk} ]

such that T"'*xk -* x'

Clearly JV is closed and T-invariant. The following proposition is easy to verify.

PROPOSITION 2.1

(1) NcNcNoN'1 (where N~1 = {(x,y):(y,x)eN}).
(2) (X, T) is uniformly rigid iff N = A. (We note that it is possible to build an

example where N # N ° JV"1.)

PROPOSITION 2.2. Let (X, T) be a minimal rigid flow, then
(1) N <= L; thus (x, x') e N implies 6(x, x') c R
(2) There exists a dense Gs subset Xo <= X with XoxX nN = A hence Xo x Xo n N = A.

In particular N and N are meagre subsets ofXxX.

Proof. (1) Since L is an equivalence relation it suffices to show that N<^ L, for then
by Proposition 2.1 N<= N° TV'c L° L~'<= L. Moreover since N is closed and
T-invariant Nc L will follow from Nc P.

Suppose then that (x,x')€N\P and let S = inf{d(Tnx, T"x')\ neZ}>0. Since
(x, x')eN there exist a sequence xk^>x and a subsequence {n'k} of {nk} with
T""xk^x'. Let t / c X be a non-empty open set. By minimality there exists / with
T'xe U. Since T"'kT'xk -» T'x' and T'xfc -* T'x we have for it large enough T'xk e t/
and 8<d(Tn'"T'xk,T'xk).

Thus the open set Vko = {z:3k> kod( T"kz, z) > 8} is dense and B = D ^ i vk is a
dense Gs subset of X. However for ze B, T"kz -» z a contradiction. Thus N c P and
the proof of (1) is complete.

(2) Put Ve,k = {x: </( T"^, JC) < e for every j > /c}. Then (J* K.k = ̂  and by Bair's
theorem the set Be = U*°=i m t (K,*) is an open dense subset of X.

We let X0 = nfc°_i B1/k. Suppose xeX0 and (x, x')e N, then there exist a sub-
sequence «£ of nk and a sequence xk -* x such that rn*xfc -» x'. Assume x ̂  x'; choose
/ with l / /<(l /2)d(x, x'). Since xeX0 there exists j with xe in t (V 1 / u ) . For big
enough k xk e Vinj and we have

2/Kd(x,x')<d(x,xk) + d(xk, T<xk) + d(T"*xk,x').

Sending k to infinity, we have the first and last terms on the right tend to zero while
the middle term is less than 1//. This contradiction shows that (XoxX)nAf = A.
It follows that AT1 n ( X x X o ) = A and hence i V « r ' n ( X o x X o ) = A. •

COROLLARY 2.3. For a minimal syndetically distal (and hence also distal) flow, rigidity
is equivalent to uniform rigidity.
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Remark Chacon's flow is one example of a minimal syndetically distal non-distal
flow. However, since it is zero dimensional it cannot be rigid (see § 6.7).

3. Concatenation flows
Let / denote the interval [-1,1], and let fl = Iz be the compact metric space of
bidirectional sequences in /, with the metric

d(x,y) = sup 2~^\xn-yn\.

We call elements of /" n-strings and we let \\w, w'\\ = supis j s n |w,-w;| for w,
w'e I". If xef l (or xe I") and i, k are integers, i< k, we let x[i, k] be the string
w = X,JC,+1 • • • xk. When we I" and w ' e / ' then ww' is the (n + /)-string
H>JH>2 • • • wnw\ • • • w',. We say that an n-string w appears in xe fl (or x e I1) at the
y'-the coordinate if x[j,j + n — l] = w. If We I", Vc W2 are closed subsets and i,
/ > 2 are integers, we define

Q(W, V) = {xeil:VjeZ,x[i+jn,i+jn+2n-l]eV},

C(W,V) = "\JCi(W,V),
i=0

C( W, V, l) = {xe W': V0<; < / - 2 , x[jn + l,jn+2] e V}.

We will call W the set of «-blocks and V the set of legitimate pairs of n-blocks.
Definition 3.1 Let {nk}^=l be a sequence of natural numbers, Wo = I and for every
k let Wk<= C( Wfc_!, Vk_i, nk) be compact sets. Let Vk<= C(Wk^, Vk_x,2nk). The
subshift (X, T) where X = n"=i C( Wfc, Vfc) will be called the concatenation flow of
{ Wfc}, { Vfc}. In other words, x e X iff for every natural k there are {wj}°L_oo6 Wk s.t.
x = • • • W-Iwowlw2 • • • and s.t. for every integer i, WiWi+l e Vk.
Definition 3.2. Let (X, T) be the concatenation flow of {Wk}, {Vk} and let mk denote
the length of the strings in Wk. Given x e X, by Definition 3.1 we can find integers
tk, k = 1, 2 , . . . , such that x e C,k( Wk, Vk). We will call tk a Wk partition ofx. One
can easily see that we can choose {f/t}/i°=i such that ffc_, = ^(mod mk_,) for every it.
Such a sequence {tk} will be called a block partition of X. If we choose {tk} s.t.
Os tk < mfc we will say that {fk} is a normalized block partition ofx.

Definition 3.3. Let I be a Ŵ  partition of xeX such that -mk/2<t<mk/2.
v = x[t- mk, t + mk -1] e Vfc will be called a central Vk block ofX.

The proof of the next lemma is left to the reader.

LEMMA 3.4. Let Wk, Vk, nk, k = 1, 2 , . . . , and (X, T) be as in Definition 3.1. Suppose
that the following condition holds: for every natural k there exists a 2~k net
{u\k\ U2k\ . . . , «/*'} of Vfc_i such that, for every we Wk, u\k) appears in w of every
1 < i s lk. Then (X, T) is a minimal flow.

Definition 3.5. Let (X, T) be the concatenation flow of {Wk}, {Vk}, Wk c J"\
satisfying the following four conditions:
(1) For each natural k there exists 1< rk < mk/2 and rjk e Vk such that for every

we Wk, w[l,rk] = r)k.
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(2) For every weWk, where w = w,w2 • • • wHk, w,eW([_1, and for every i s.t.
( i - l )m f c _ ,>r k , ||Wi_,, w,||<2~k.

(3) Let w be as in (2), then wt = w2 = v% , = wnk.
(4) For every natural k, a 2~* net of V ^ appears in -nk.
We call such a flow a concatenation flow with fixed part {r)k}.

PROPOSITION 3.6. Let (X, T) be a concatenation flow with a fixed part {r)k} then
(X, T) is a minimal rigid flow (with respect to the sequence mk).

Proof. From Lemma 3.4, it is clear that (X, T) is minimal. It is sufficient to show
that for every e > 0 , every integer i and every xeX there exists feo such that for
every k>ko, |x[i'] — Tm"x[i]\<e. Let {tk} be a block partition of x. Define w{j) =
x[tk +jmk, tk +jmk + mk-1]€ Wk and suppose that tk +jkmk^i<tk +jkmk + mk, or,
in other words x[i] is in wk

Jk\
We consider two cases.

(1) There exists no k such that x[i~\ is contained in the fixed part r)k of wk
Jk\ In

this case, choose k0 such that 2~*° < e. For every k > k0 we have by condition
(2) of Definition 3.5 (or by condition (3), if wk

Jk) is the last mk string of wj&t1')
that ||w[Jk\ w ( ^ + 1 ) | |<2- ' £ <e and thus, \x[i]-x[i+mk]\<e.

(2) There exists k0 such that x[i] is contained in the fixed part rj^ of wtyo\ In this
case, the fact that m^ divides mk for every k> k0, implies that shifting x[i] by
mk indices brings us to the same place in 77̂  (in another m^ block). Thus,
x[i] = x[i+mk].

So in each case, we have found the required k0. •

LEMMA 3.7. Let (X, T) be a concatenation flow with a fixed part rfk and let x, x'eX
have the same normalized block partition {tk}, where tk-*oo and tk — mk-*—ac. Let
Wk = x[tk- mk, tk-l] and w'k = x'[tk - mk, tk -1]. If for every natural k, wkw'k appears
in i]k+1 then (x, x') e N.

Proof. Choose yeX. For every natural k, i)k appears in y. Thus, we can find for
each k an integer sk such that for xk = T"ky we have

xk[tk -mk,tk + mk-l] = wkw'k.

Clearly, xk->x and Tmkxk -»• x' and thus (x, x)eN. D

Note that we have almost no restriction when choosing the fixed part i)k and thus
we can arrange that any given wkw'k will appear in r]k.

4. The structure of concatenation flows with fixed part
In this section we show that certain concatenation flows with fixed part are almost
automorphic.

LEMMA 4.1. Let (X, T) be a concatenation flow with a fixed part {ijfc}. Suppose that,
for a natural number k, a string wkw'k appears in yjk such that wk, w'k€ Wfc_, and
\\wk,w'k\\>2~k. Under these conditions every xeX has only one normalized Wk

partition.

Proof. Let xeX and k such that in rjk appears the string wkw'k, where ||wk, w'k|| >2~ k
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and wk, w'k e Wlc_1. Let rk be the length of the string rjk and let 1 < ik < rk be the
minimal index such that |*7ic[ 4]~Vk[k + mk-1]|>2~\

Suppose that x has two normalized Wk partitions t and t', and / < t'. We consider
the two following cases:

(1) t'-t<rk. We have x[t, t + rk-l] = Tjk = x[t',t'+rk-l] and so |x[f + i k ] -
x[t + ik + mk-i]\>2~k. Since outside the fixed part ?/k, |x[i]-x[i+mk_,]|<2~'c,
t' must be such that x[t + ik] lies in the fixed part rjk of a Wk block in the
t' partition. This implies that t'< t + ik< t'+rk. (As t'—t<rk we cannot have
t' — mk S t + ik < t' — mk + rk.) Suppose t + ik = t' +jk. Then jk < ik because t < t'. But

\vdjk] - Vdjk + mk-t]\ = \x[t + it] -x[t + ik + mt_,]| > 2~k

and this contradicts the minimality of ik.
(2) t'-t>rk. We have |x[f'+ ik]-x[t' + ik + mk^]\ > 2~k. From this it follows that

also in the t partition x[t'+ik] must be in r]k and thus t + mk^ t'+ik< t + mk + rk.
(As t'-t> rk, we cannot have t<t'+ik<t + rk.) Suppose t'k + ik = tk + mk +jk then

jk < ik and again we have a contradiction. •

Definition 4.2. Let (X, T) be a minimal concatenation flow of {Wk}, {Vk} where
Wk e /m* and where each x e X has only one normalized block partition. X will be
the set of all sequences {tk} where {tk} is a normalized block partition of some x e X.
On X we will define the following metric: for {fj, {t'k}eX, d{tk, t'k) = 2~" where
n = min, = 1>2... { j | r, # tj}. We will define T: X -* X as follows: for{tJ e X, T{tJ = {r̂ }
where <k = fk + l(mod mfc). Clearly, (X, T) is an equicontinuous flow since
d(T{tk},T{t'k}) =

PROPOSITION 4.3. Let (X, T) be a concatenation flow with a fixed part Tjk. Suppose
that there exists a natural number k0 such that for every k > fco there exists wk, w'k € Wk^
such that \\wk, w'k\\>2~k and such that the string wkw'k appears in rjk. Then
(1) (X, T) is the maximal equicontinuous factor of (X, T).
(2) P= Q = {(x, x')e X x X |x and x' have the same block partition}.
(3) (X, T) is an almost 1-1 factor of (X, T).

Proof. By Lemma 4.1 for every fc> feo and every xeX there is a unique normalized
Wk partition tk of x. Let {t'k}t=i be a normalized block partition of x. For fes fc0,
fJc = /fc and for fc < fc0, t'k = t^(mod wk). So {t'k} is unique and (X, T) is well defined.

Define p:X->X, p(x) = {tk}, where {tk} is the normalized block partition of x.
Clearly p( Tx) = T(px). We will now prove that p is continuous. Let x e X, {*„} e X,
xn-»x From Lemma 4.1, we have that {Ct(Wk, V ^ ) } ^ 1 are pairwise disjoint sets
for fc > fc0.

Let e = minosil<l2<m(i d(C,,(Wfc, Vt), Ch(Wk, Vk). Choose n0 such that for every
n > n0, d(xn, x) < e. Suppose that x € Ch( Wk, Vk), then, for n > n0, xn e C^ Wk, Vk).
But this implies that, for n> n0, d{p(xn),p(x))<2~k and so p is continuous.

We will now prove that (X, T) is an almost one to one factor of (X, T).
Let {yk} = y £ X be such that yk = 0 for each natural fc, and let x e X be such that

xep~\y). For every fc, x[0, mk-l]eWk and thus x[0, r f c - l ] = rjk. By (3) in
Definition 3.5

x[-»ifc_i, -1] = x[0, mk_x - 1 ] =
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But this determines x Thus p~1(y) contains only one point and (X, T) is an almost
one to one factor of (X, T).

It also follows that (X, T) is the maximal equicontinuous factor of (X, T),
because an equicontinuous flow has no proper almost one to one factors. Clearly
now PczQcR where R = {(x,x')\p(x) = p(x')}. But if (x,x')eR, they are
proximal because, for each natural k, -qk appears at the same places in x and x', so
P=Q = R. •

COROLLARY 4.4. If N # A in a concatenation flow X with fixed part, then every xeX
has a unique normalized block partition. Moreover, (x, x') e N implies that x and x'
have the same block partition.

Proof. Suppose xk -* x and Tm"xk -» x'. Choose k big enough such that \x[i] - x'[i]| >
2~k+2 for some i. Let n0, no> k, be such that for n>n0 \xn[i] — x[i]\<2~k

and \xn[i + mn]-x'[i]\<2-k. Then \xn[i]-xH[i + mH]\>2-k>2~" and xn[i] and
xn[i + mn] must lie in TJB+I. Hence the conditions of Proposition 4.3 are fulfilled
(where wk is the Wn block in t)n+l that contains x[i], and w'k is the Wn block that
contains x[i + mn]). D

5. Examples
We will now build concrete examples of minimal rigid but not uniformly rigid
concatenation flows with fixed part. The first example is an example where N is
not an equivalence relation and where for every xeX there exists at most one
x'^xeX such that (x, x')e N.

Example 5.1. Let/: / -» / be a monotonic ascending and continuous function. Choose
q, q'e I, q> q'. We will define by induction numbers mk and continuous monotonic
functions wk:I^Im" as follows: wo(s)=f(s) Vse/. Assume that we defined
wk_,(s):/->/"""-•. Choose e > 0 s.t. | s - s ' | < e implies \\wk_l(s),wk^l(s')\\<2~k

and choose 0 = s , < s 2
< - • •<sil = ls.t. |s ,+ 1-s, |<e, l < i < 4 and s.t. there exist

4 > r > r ' > l with sr = q, sr> = q'. Define

Define wk(s) = •nkwk-l(ss1)wk-1(ss2) • • • wt_,(5i,>t . ,(«, t . i) ' • " w
and let mk be the length of wk{s).

Define Wt = {wk(s)|se/} and

Vk = {Mss.OwkCss,-) |s G /, 1 < i < /fc,y = i +1, i - l}u {wk(q)wk(q')}.

Define (X, T) as the concatenation flow defined by {Wk}, {Vk}.

PROPOSITION 5.2. (X, T) in Example 5.1 is a non-empty concatenation flow with a
fixed part and thus is minimal and rigid.

Proof. Clearly for each k, C(Wk, Vk) is not empty and thus X^0. r)k contains
wk_i(si)wk_1(si+i) for every 1 < i < lk and contains wk_1(q)wk-i(q'). By the definition
of {*,}, Vk contains a 2~k net of Vk_,. r]k is a fixed part of Wk. By Proposition 3.6
(X, T) is minimal and rigid. •

LEMMA 5.3. (X, T) is not uniformly rigid with respect to mk.
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Proof. Let x, x'eX be as follows.

We define by induction on k x[ifc,jrfc], x'[ik,jk], where ik<ik-i and jk>jk-\.
For fc = 0, let io=7o = 0, and let x[iojo] = wo(q), x'[io,jo] = wo(q'). Assume that
x[ik,jk](x'[ik,jk]) is defined and equals wk(q)(wk(q')). Consider wk+l(q) =
Vk+\Wk(stq) • • • wk(s,kq) • • • wk(0). As s,k = 1, wk(q) appears in wk+l(q) (outside of

•*7fc+i)-

Define ik+u j k + l and x[ik + ,J f c + 1] such that x[ik+1,jk+l] = wk+l(q) and such that
x[ik,jk] is the above mentioned appearance of wk(q) in wk+i(q). Define x'[ik+i,jk+l]
to be wk+i(q'). Notice that x'[ik+1,jk+1] is well defined, since wk(q') (=x'[ik,jk])
appears in wk+i(q') exactly in the same place as wk{q) appears in wk+1l(q).

Clearly, ik+i<ik and jk+i>jk, which implies that all coordinates of x, x' are
defined. Also x, x' have the same block partition. The construction implies that
x ¥• x' since x[0] = wo{q) =f(q) ^fW) = wo(q') = x'[0]. For each fe, wk(q) is a central
Wk block of x, and wk(q') is a central Wk block of x'. wk(q)wk(q') appears in rjk

and thus by Lemma 3.7. (x, x') e N and by Proposition 2.1 (X, T) is not uniformly
rigid. •

PROPOSITION 5.4. Let X be as in Example 5.1 then
(1) For each xeX there is at most one x'^x such that (x, x')e N.
(2) Ifxitx' and (x,x')e N then for every integer ix[ i ]>x'[ i ] - Thus (x',x)g N and

N is not an equivalence relation.

Proof. Let (x, x ' )e N and x ^ x'. Let mh be a subsequence of mk and {xk}eX,xk-*x
such that Tmhxk-*x'. Choose i such that x [ i ] #x ' [ i ] . For each natural number /
choose i, such that x e Ql(Wl, V,) and such that i / < / < i / + m, i.e., x[i(, i/ + m ( - l ]
is the W, block x in which x[i] lies.

By 4.4. also x'eC,,[W,, V,] and for n big enough xn e C,,(W,, V,). Denote
ty = x[i,, i/ + m , - 1 ] , »} = x'[i/, ii + m , - 1 ] , and denote v" = xn[ih it + mt-l]e W,,

v,n = (Tmi*xn)[ih i, + m,-1]e W,. Choose k s.t. 2~k <\x[i]-x'[i]|. x[i] is contained
in uk and vk-*vk. x'[i] is contained in v'k and uj/1 -* t>fc. As |x [ i ] -x ' [ i ] |>2" ' c ; we
have, for large enough n, ||t;£, v'k\\ > 2~k > 2~K. For jn > k, vk appears in v"n and v'k
appears in Vj". Thus for n big enough we have \\v"n, v'j"\\ > 2~in. v"n and v'j" are two
adjacent Wjn blocks in xn. Thus the only possibility of their distance to be greater
than 2~J" is that v"n lies in i7Jn+1 and that v]n = wh(q), v'j" = wJn{q'). We have vn

k

appearing in v"k+l appearing in • • • appearing in v"n-x appearing in v]n. Thus for
k<l<jn, v" T* V'I" which implies that v" does not lie in 77/+,. (Otherwise v\" would
have also been in 17/+, in the same place which implies v" = v'"). If we look at the
definition of W/(q), this implies that there exists some number sn such that vl =
wk(snq). Since v'k lies in uj" in the same place as vk lies in vfn, we have v'k = wk(snq').
Let s = lim sn then wk(sq) = limn .̂co vl = vk and v'k = limn^oo v'k = wk(sq'). Thus, we
have

(*) x[ik, ik

(**) x'[i
As each coordinate in wk(sq) is greater than the corresponding one in wk{sq') we
have x[i]>x'[i] which proves (2).
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Let rk denote the length of r)k then i>ik + rk (because x[ik,ik + rk-l] =
x'[ik, ik + rk -1] = r)k and x[i] ¥=• x\i\) and also ik + mk-mk-l> i (because

x[ik + mk-mk_,, ik + mk-1] = x'[ik + mk-mfc_,, ik + mk-1] = wfc_,(0)).

Thus ik -> -oo and ik + mk^><x> and (**) defines x' uniquely. D

In the first example, we had N small with respect to Q. Now, we will show an

example where N = Q.

Example 5.5. Define (X, T) as in Example 5.1 changing r)k to be as follows

Vk = Wfc-i(0)wJt_1(0)Tjiwt_,(0)wt_1(0),

where r)'k is the concatenation of {wk_i(sj)wk_1(si)}tsiJ^ik, and adding to Vk the set

PROPOSITION 5.6. Let {X, T) be as in Example 5.5 and let x and x' have the same
block partition then (x, x') e N.

Proof. Let x, x'eX, x^x' have the same normalized block partition {tk}. The
sequence {tk} is not bounded, because otherwise, as x[tk, tk + rk-l] = rjk =
x'[tk,tk + rk-l] and x[tk-wfc_,, tk-l] = wk_l(0) = x'[tk-mk_l, tk-l], we would
have x = x' - a contradiction. Thus we may assume that {tk} is not bounded from
below. (Otherwise, as tk < mk/2 we have tk — mk is not bounded from below.
Replacing tk by tk - mk we have tk bounded). As tk < mk/2, tk + mk is not bounded
from above. Fix k. There exists r such that for sr, \\x[tk, tk + mk-l~\, wk(sr)\\ <2~k

and r' such that for sr., \\x'[tk, tk + mk-l], wk(sr.)\\ <2~k.
Let yeX. wk(sr)wk(sr') appears in r)k+l thus there exists n such that

Tn(y)[tk, /k + m t - l ] = wk(sr) and T"+m"y[tk, tk + mk-l] = wk(sr.). Define xk = T"y.
As tk is not bounded from below and tk + mk is not bounded from above, we have
xk ^ x and Tm"xk -» x'. D

Example 5.7. We will use the notations of Example 5.1. Let q", q, q'e I q"> q> q'.
Let st,s2- • • stk be as in Example 5.1 and such that there exist r"> r> r' with v = q",
sr = q, sr' = q'. Define

• • • wk(sr)wk(sr)wk(sr-+1)

and define

wk+i(r) = T7)[+iWk(s1r) • • • wk(0),

Wk+1={wk+i(t)\te[0,l]},

,+l), re[O, lih-i^v{wk(tl+lt)wk(t,t), te[O,

PROPOSITION 5.8. Let (X, T) be as in Example 5.7 then the relation N (with respect
to mk) is not an equivalence relation.

Proof. We will only sketch the proof. We will find x, x', x" such that (x, x') e N,
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(x\ x") e N. But (x, x") £ N. Let x, x', x" be such that for every k their central Wk

block are wk(q), wk(q'), wk(q") respectively.
In a similar way to the proof of Proposition 5.4, one can show the following

Lemmas:
(1) Let x'k be a sequence such that xk->x" then Tmkxk -»• x".
(2) Let xk be a sequence such that xk -» z and such that for a subsequence m'k of

mfc 7 " " ^ -> x" then z = x' or z = x".
From (1) and (2) it follows that (x, x")&N. But clearly from Lemma 3.7, we have
(x,x')eNcN and (x',x")eNdN. •

6. Miscellaneous results
LEMMA 6.1. (X, T) is weakly rigid iff the identity map e is a limit point of the enveloping

semigroup E(X) of (X, T).

Proof. Follows directly from the definition of weak rigidity. •

COROLLARY 6.2. Every minimal distal flow is weakly rigid.
Proof. By [£] (X, T) is distal iff E(X) is a group. If e is isolated in E(X) then X
is finite, hence rigid. •

Consider the distal minimal flow on T2 defined by T(x, y) — (x + a, y + x), where
T = [0,1], a an irrational number in T and addition is mod 1. We claim that this
flow is not rigid. In fact if T"k tend pointwise to the identity for some sequence
{nk}, then since T"(x, y) = (x + na, y + nx + [n(n - l)/2]a) we have nkx -» 0 for every
x e T, an obvious absurdity. Thus, in general, weak rigidity does not imply rigidity.

PROPOSITION 6.3. The topological entropy of a rigid flow is zero.

Proof. Let (X, T) be rigid with respect to the sequence {nk}. Then T"kx-*x for every
xeX and by the dominated convergence theorem we have for every invariant
probability measure i j o n X and every feL2(ri). lim T"kf=f in L2(rf). Thus the
measure preserving system (X, TJ, T) is rigid in the measure theoretical sense. It
follows from [FW] that it has zero entropy. Thus the variational principle implies
that the topological entropy of (X, T) is zero as well. •

One consequence of Furstenberg's structure theorem for distal flows is that the
topological entropy of such flow vanishes [Ke]. Since every minimal distal flow is
weakly rigid, this suggests the possibility that weak rigidity is a sufficient condition
for zero entropy. We do not know whether this is true.

Considering the second question posed in the introduction, we observe that since
an equicontinuous flow is uniformly rigid, a counter example to this question should
be looked for among the weakly mixing flows. Recall that (X, T) is (strongly) mixing
if for every two non-empty open subsets U, V of X the set N(U,V) =
{neZ: T"Un V # 0 } has a finite complement.

PROPOSITION 6.4. A strongly mixing minimal flow admits only trivial rigid factors.
Proof. Suppose (X, T) is minimal and strongly mixing; then every factor of (X, T)
have these same properties. Thus in order to prove our proposition, it suffices to
show that (X, T) is trivial if in addition to the above it is also rigid. Assume therefore
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that (X, T) is rigid with respect to {nk}. Let (x, x') e X x X and U and V neighbour-
hoods of x and x' respectively. By strong mixing there is feo such that T"k U n V ? i 0
for fc>fco. Thus it is possible to find a subsequence {nJJ of {nk} and a sequence
Xfc -> x for which T"*xt -* x'. In other words X x X c N. But by Proposition 2.2
Nc Lc P. Since for every x e X T x ^ x implies (x, Tx) £ P we conclude that X has
only one point. •

We next show the existence of plenty of minimal, uniformly rigid, weakly mixing
flows. Let (Z, a) be a minimal flow rigid with respect to a sequence {nk}. Let Y be
a compact metric space. Let X = ZxY and let $?(X) be the group of homeomorph-
isms of X. Put

0(a) = {G"1 o a- ° G: G e f ( X ) }

(we identify <r with o- x id), and let

V^.={Te6(<r):3k*ko d(Tk,id)<e}.
Clearly V ,̂, is an open dense subset of €(a), and 5?, = (~)k VKl/k is a residual subset
of C(a-). For each Te <%,, (X, T) is uniformly rigid w.r.t. some subsequence of {nk}.
If we assume that the identity path component of $f( Y) acts minimally on Y we
get from [GW, Th. 1] the existence of a residual subset £%2

C O(o-) such that each
member of £%2 acts minimally on X. Finally assuming further that Z = T and <r = Ra,
an irrational rotation, we get from [GW, Th. 5] a residual subset £%3 of C(<r) every
member of which acts weak mixingly on X. Taking in the latter case i = i i n i 2 n 3 t 3

we have:

PROPOSITION 6.5. Let Z = T, <r = Ra an irrational rotation. Let Y be a non-trivial
compact metric space, let X = Zx Y and let 3€0( Y) be the identity path component of
$f( Y). If the action of 3V0( Y) on Y is minimal then there exists a residual subset 01
of €(o~) such that for each Te0l the flow (X, T) is uniformly rigid, minimal and
weakly mixing. •

We conclude by showing that weak rigidity implies equicontinuity in zero
dimensional flows.

LEMMA 6.6. Let Y <= {0,1}Z = fl be a T-invariant closed subset of the two shift (SI, T).
If (Y,T) is infinite then there exist points y0, yt, z0, zx e Y such that yo(O) = zo(0) = 0,
y}(0) = 2,(0) = 1, yo(i) = yx(i) for i <0 and zo(i) = z(i) for i > 0.

Proof. Let k be the minimal length such that for every block B of length k whenever
B appears in ye Y say, y[n, M + fc-l] = B, then always y(n + k) = 0 (or always
y(n + k) = l).

If fe < oo then each y e Y is periodic of period < L, where L is the number of
fc-blocks appearing in Y. This implies that Y is finite contradicting our assumption.
Thus fe = oo; let |B,-| = fcj, a sequence «, and points y['\ y^e Y be chosen with
/; ' [«, , n, + fc,-l] = B,, 8 = 0, 1 and yP(ni + k,) = 0, y\l)(n, + kl) = l. We can
assume the existence of the limits yo = lim r~(n'+*<)j>o\ >»i = lim r~("'+fc')3'(1

0. Then
yo(0) = 0, _vx(0) = l and >'o(0 = J'i(0 for /<0. The existence of zo and zx follows
similarly. D
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PROPOSITION 6.7. Let (Y, T) be a minimal weakly rigid flow.
(i) / / (Y, T) is a subshift then Y is finite.
(ii) If Y is zero dimensional then (Y, T) is equicontinuous.

Proof, (i) Let {T"a} be a net converging to the identity pointwise on Y. We can
assume that na>0Va. If Y is infinite, there exist y0, yt& Y as in Lemma 6.6.
However lim T"°y0 = lim T"«yl contradicting our assumption that lim Tn« = id.

(ii) Let Vc Y be a clopen set then the map TTV: Y-*(l, vv(y) = {lv(T
ny)}nsZ is

a homomorphism of (Y, T) into (Cl, T). Since the image {ir{Y), T) is a weakly
rigid subshift, (i) implies it is finite. Since by assumption the maps TTV, V clopen
in Y, separate points in Y, we have (Y, T) = lim^(irv(Y), T). This implies the
equicontinuity of (Y, T). •
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