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Abstract

Reduced-order models (ROMs) are computationally inexpensive simplifications of high-fidelity complex ones. Such
models can be found in computational fluid dynamics where they can be used to predict the characteristics of
multiphase flows. In previous work, we presented a ROM analysis framework that coupled compression techniques,
such as autoencoders, with Gaussian process regression in the latent space. This pairing has significant advantages
over the standard encoding–decoding routine, such as the ability to interpolate or extrapolate in the initial conditions’
space, which can provide predictions evenwhen simulation data are not available. In this work, we focus on thismajor
advantage and show its effectiveness by performing the pipeline on three multiphase flow applications. We also
extend the methodology by using deep Gaussian processes as the interpolation algorithm and compare the
performance of our two variations, as well as another variation from the literature that uses long short-term memory
networks, for the interpolation.

Impact Statement

Reduced-order models are popular in various engineering fields since they replicate the behavior of their
complex counterparts using minimal computational resources. By combining machine learning
(ML) algorithms we can not only construct these models but also extend them in such a way that they incorporate
knowledge from physical parameters, among other advantages. One advantage is that we can use these hybrid
models to provide predictions from physical parameters even where data are not available, bypassing the
standard expensive procedure of running new (physical and/or numerical) experiments. In the present study, we
use one such combination in order to illustrate how this framework can be used in thismanner and compare it with
variations of other ML algorithms.
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1. Introduction

Reduced-order models (ROMs) are widely applicable to various fields of science and engineering
involving partial differential equations (PDEs), since they can speed up analyses and reduce computa-
tional requirements. ROMs are of particular interest to computational fluid dynamics (CFD), where they
can be used to predict the characteristics of multiphase flows. For this work, we construct the main
frameworkwith CFD-related challenges inmind, such as computational complexity and need for physical
parameter estimation. Machine learning and deep learning techniques are amongst the most popular
choices employed in order to solve dimensionality reduction-related problems, including ROMs. Thus,
algorithms such as autoencoders have been used in this manner (Kim et al., 2019) and are now considered
an established and attractive choice. In our previous work (Maulik et al., 2021a), we introduced a hybrid
version of ROMs where we coupled three dimensionality reduction techniques, namely principal
component analysis (PCA), convolutional autoencoders (CAE), and variational convolutional autoenco-
ders (VAEs) with interpolation in the latent space using Gaussian process (GP) regression and focused on
the various advantages of our methodology; these include uncertainty quantification (due to the deploy-
ment of GPs), the derivation of a finer temporal resolution, and enhanced interpretability.

In the present study, we focus on another major, and unexplored until now, advantage of the
methodology developed in our previous paper (Maulik et al., 2021a), which involves the ability to
interpolate in parameter space. In practice, the nature of the interpolation, along with its attachment to
physical parameters, gives us the ability to predict flow regimes even when data are not available. This is
particularly significant for multiple engineering domains where small changes in parameter values can
lead to significant differences in the temporal progression of the system, and running a simulator for all the
required parameter values can be computationally intractable.

Similar methods that substitute GPs for long–short term memory recurrent neural networks (LSTMs)
have recently emerged in Gonzalez and Balajewicz (2018),Mohan and Gaitonde (2018), Hu et al. (2019),
andMaulik et al. (2021b). We focus on the latter, which follows same principles as our methodology, and
compare the performance of the GP- and LSTM-based interpolation techniques on the same data-sets and
comment on the reasons underlying the differences observed. Finally, we extend the GP-based method-
ology by replacing the GPs with deep Gaussian processes (DGPs), anMLmethod that has gained traction
in recent years and can be perceived as an extension of standard GPs in the same manner that a neural
network is an extension of the generalized linear model.

To summarize, the main novelties of this article are:

• examination of the performance of parameter interpolation in the latent space; something that has
already been done for the LSTMvariations (Maulik et al., 2021b), but not for theGP variations of the
ROM-with-interpolation models;

• extension of the methodology by the introduction and incorporation of DGPs;
• comparison of the GP-based methods with each other and with the method that uses LSTMs for
interpolation;

• application of all methodologies to three new multiphase flow data-sets of different nature and
complexity.

The remainder of this paper is organized as follows. In Section 2, we present the general methodology and
we briefly introduce all of the algorithms involved. In Section 3, we demonstrate and compare the
different variations of the methodology applied to three multiphase flow data-sets with increasing
complexity. Finally, in Section 4, we summarize the main takeaways from our work and discuss the
focus of our future research.

e20-2 Themistoklis Botsas et al.

https://doi.org/10.1017/dce.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.19


2. Methodology

The main pipeline that we will use for the remainder of this article is similar to the one introduced in our
previous paper (Maulik et al., 2021a). It combines twoML algorithms: a compression algorithm that takes
a simulation in the form of time-related snapshots as input and outputs a latent space, and an interpolation
algorithm, that is used as a regression model upon this space.

2.1. Compression algorithms

We focus on three different compression algorithms: PCA, CAE, and VAEs. In the context of CFD, a
simulation involves the numerical solution of a set of differential equations that usually requires
considerable computational resources (particularly if the simulations are spatio-temporal and solved in
3D space). A set of simulations is fed into one of the aforementionedML algorithms in the form of images
(frames that correspond to simulation timestamps). The information from the simulations is compressed
and summarized in the form of the latent space, where it can be further manipulated and analyzed.
Subsequently, the decompression portion of the algorithm can be used to reconstruct the original space.
The whole process is shown in Figure 1.

2.1.1. Principal component analysis
The PCA is a numerical method used to decompose a random vector field u d, tð Þ (in which d and t denote
space, which in turn can be represented by an appropriate coordinate system, and time, respectively).
Following the decomposition step, a new basis is created where the new variables are linear combinations
of the originals such that the explainable systemvariance ismaximized. The nr-dimensional latent space is
created by selecting the nr first components and discarding the rest.

To carry out a PCA, we first take p temporal snapshots of the field s, which for n spatial elements yields
the matrix S:

S¼
u d1, t1ð Þ ⋯ u dn, t1ð Þ

⋯ ⋯ ⋯
u d1, tp
� �

⋯ u dn, tp
� �

2
64

3
75:

Then, we compute the covariance matrix C of S as:

C¼ 1
p�1

UTU,

Figure 1. Schematic of reduced-order modeling. Spatio-temporal outputs of a simulation (left) are being
fed into an encoder and output a latent space (middle). The reconstruction of the original system (right) is
the output of the decoder that uses as input the aforementioned latent space. Lower panel shows the

interpolation and forecasting in the latent space for reconstruction.
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where U is an orthogonal matrix and consequently the eigenvalue diagonal matrix Λ¼ diag λ1,…,λnf g,
where λ1≤…≤λn and the corresponding eigenvector matrix W are derived from:

CW¼WΛ:

Finally, the PCA basis is given by:

θ¼UW,

and choosing the first nr columns of θ results in the creation of an nr-dimensional latent space. The main
advantage of the PCA is its simplicity and ease of computation, but the quality of the results is not
necessarily equivalent to that of more sophisticated methods.

2.1.2. Convolutional autoencoders
Autoencoders are classes of neural network algorithms used primarily for unsupervised learning pur-
poses, such as dimensionality reduction, data generation, and feature learning. Their structure is based on
a bottleneck that combines two individual components: the encoder, which is a neural network that passes
the input through layers that consist of a decreasing number of neurons, up until the bottleneck, where it
outputs the latent space; and the decoder, which has the opposite architecture, uses the latent space as
input and aims to reconstruct the original data by minimizing the reconstruction error. For this work, we
use CAE, which is a class of autoencoders that includes layers with convolutions (LeCun et al., 1995), that
is, a set of filters that extract specific features from images. The output yijk of a typical neuron in a
convolutional layer has the form:

yijk ¼ φ f i�pjkþbi
� �

,

where φ is an activation function, f i is a single filter, pjk is a patch of data that shifts according to the
dimensions j and k, and bi is a bias term. In practice, the convolutional layers learn different features and
patterns from the original data, particularly useful in image processing.

Another type of layer found in a convolutional neural network (CNN) is a pooling layer, which
generally follows one (or more than one) convolutional layer with the aim of subsampling and summar-
izing the information from the filters. In a typical CNN, the continuous alternation of convolutional and
pooling layers is how a neural network can extract high- and low-level features. In CAEs, the decoder
comprises the opposite structure to that of the encoder. Instead of the convolutional and pooling layers, it
consists of upsampling and unpooling layers respectively, where it produces an output of the same size as
the input data using nearest-neighbor interpolation. A loss function such as the mean squared error (MSE)
is then used during training in order to update the neural network’s weights in amanner that minimizes the
reconstruction error between the input and the output. The general structure of the CAE with all the
components described above is shown in Figure 2.

Figure 2. Architecture of a convolutional autoencoder (CAE). The input frames are fed into the encoder,
where convolutional (convolve) and pooling (pool) layers are used, in order to produce the latent space.
The reverse scheme is used for the decoder, where unpooling (unpool) and upsampling (upsample) layers

are used to produce an output as similar as possible to the original input.
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2.1.3. Variational convolutional autoencoders
A similar class of algorithms is VAEs (Kingma and Welling, 2013). The main difference between these
and their conventional convolutional counterparts is that the latent space is provided in the form of a
probability distribution, usually a Gaussian. In practice this representation acts as regularization for the
latent space, which can be particularly beneficial when quality of the data is poor. In order to reconstruct
the input, a sample is drawn from the latent space distribution.

The encoder and decoder of a VAE can be described as the functions q zjxð Þ and p x0jzð Þ respectively,
where x is the input, z is the latent space and x0 is the output. The latent space follows a Gaussian
distribution z�N μ,σ2ð Þ due to the Kullback–Leibler divergence (KL divergence)DKL q zjxið Þkp zjxið Þð Þ.
The VAE loss has two components: the reconstruction loss (similar to the CAE) and the KL loss,

Eq zjxið Þ logp xijzð Þ½ ��DKL q zjxið Þkp zjxið Þð Þ,
which ensure that the output is as similar as possible to the input and that the distribution of z is Gaussian,
respectively. The practical difference between a CAE and a VAE is that, as shown in Figure 3, the output
of the VAE encoder consists of two vectors μ and σ. Given ε�N 0, Ið Þ, where I is the identity matrix we
can use the reparameterization trick (Kingma andWelling, 2013) and write the latent space as z¼ μþσε,
which is a form suitable for training. For the implementation of the autoencoders we use the TensorFlow
package (Abadi et al., 2016).

2.2. Interpolation algorithms

The enhanced ROM methodology that includes the interpolation step is shown in Figure 4. After we
derive the latent space (in the same manner as in Section 2.1), we use it as input for an interpolation
algorithm. The newmodel can be used for predictions with new sets of parameters, while the output can be
further assessed and transformed back to the original space through the decoder.

There are various advantages underlying latent space interpolation. Specifically, the one that we
primarily focus on in this work is the ability to interpolate and extrapolate in the parameters of interest.
This is an important advantage for multiphase flow applications since new simulations can be compu-
tationally costly, and, therefore, the ability to relocate this problem into the low-dimensional latent space,
where predictions are easily performed, can allow for predictions, based on sets of parameters, even when
data are not available. Other advantages that were explored byMaulik et al. (2021a) include interpolation
in time, which can lead to finer temporal resolutions, increased interpretablility since the interpolation
algorithm provides valuable visualizations of the latent space that can show the quality of the compres-
sion; and, finally, in the case where the interpolation algorithm is a GP, uncertainty quantification is also
possible.

2.2.1. Gaussian processes
GPs (Rasmussen and Williams, 2006) are generalizations of multivariate Gaussian distributions with
infinite-dimensional space and a popular choice for regression (Williams and Rasmussen, 1996) due to

Figure 3. Architecture of a VAE. It is similar to the CAE equivalent, with the additional assumption that
the latent space is a set of multivariate Gaussian distributions, and can be described as z�N μ,σ2ð Þ.
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their versatility; the method is known as Gaussian process regression (GPR). We mainly focus on the
mean prediction of a GP that corresponds to themaximum a posteriori estimate and use this as the decoder
input.

Considering a mean function m xð Þ equal to 0, a GP can be completely specified by its second-order
statistics; therefore, a positive definite covariance function (otherwise known as a kernel) k x,x0ð Þ is the
only requirement. For a GPR model, we considered a GP f and noisy training observations y of n
datapoints x derived from the true values f xð Þ with additive i.i.d. Gaussian noise ε with variance σ2n:

y¼ f xð Þþ ε,

ε�N 0,σ2n
� �

,

f xð Þ�GP 0,k x,x0ð Þð Þ,
(1)

where k �, �ð Þ is the kernel. We obtain the complete GP specification by maximizing the marginal
likelihood, which we can acquire by integrating the product of the Gaussian likelihood and the GP prior
over f :

p yjxð Þ¼
Z
f
p yjf ,xð Þp f jxð Þdf : (2)

For testing input x⋆ and output f⋆, we derive the joint marginal likelihood:

y

f⋆

� �
�N

0

0

� �
,
k x,xð Þþσ2nI k x,x⋆ð Þ
k x⋆,xð Þ k x⋆,x⋆ð Þ

� �� 	
,

Figure 4. Schematic of the enhanced reduced-order modeling which features additional steps to Figure 1
involving interpolation of the latent space and (if required) prediction for new parameters. The outputs

are fed into the decoder for transformation back to the original space.

e20-6 Themistoklis Botsas et al.

https://doi.org/10.1017/dce.2022.19 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.19


where I is the identity matrix. Finally, by conditioning the joint distribution on the training data and the
testing inputs, we derive the predictive distribution

f⋆∣x,x⋆,y�N f⋆,cov f⋆ð Þ� �
, (3)

where f⋆ and cov f⋆ð Þ are given by

f⋆¼ k x⋆,xð Þ k x,xð Þþσ2nI

 ��1

y

cov f⋆ð Þ¼ k x⋆,x⋆ð Þ� k x⋆,xð Þ k x,xð Þþσ2nI

 ��1

k x,x⋆ð Þ:
(4)

Wechose a singleMatérn 3/2 kernel with lengthscale l due to its versatility, flexibility, and smoothness.
Specifically, we used the automatic relevance determination (ARD) extension Bishop (2006), which
incorporates a separate parameter for each input variable:

k x,x0ð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x�x0ð Þ2

q
l

0
@

1
Aexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x�x0ð Þp

l

 !
: (5)

Substitution of Equation (5) into Equation (4) yields:

f⋆ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x⋆�xð Þ2

q
l

0
@

1
Aexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x⋆�xð Þp

l

 !
1þσ2n
� �

I

 ��1

y,

cov f⋆ð Þ¼ 1� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x⋆�xð Þ2

q
l

0
@

1
Aexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x⋆�xð Þp

l

 !
1þσ2n
� �

I

 ��1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x�x⋆ð Þ2

q
l

0
@

1
Aexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 x�x⋆ð Þp

l

 !
:

(6)

During the reconstruction phase, we focus on the predictions that correspond to f⋆.

2.2.2. Deep Gaussian processes
A DGP (Damianou and Lawrence, 2013) is a hierarchical composition of conventional GPs. In a DGP
model, the data ismodeled as the output of amultivariate GP, the inputs to that GP are governed by another
GP and so on. In practice, DGPs are multilayer generalizations of GPs. For the purposes of this work, we
will use the doubly stochastic variational inference variant of the DGP (Salimbeni and Deisenroth, 2017),
according to which for L layers we derive the joint density:

p y, Fl,ul
 �L

l¼1

� �
¼
YN
i¼1

p yijf Li
� �YL

l¼1

p Fljul;Fl�1,zl�1
� �

p ul;zl�1
� �

, (7)

where F0 ¼ x. In Equation (7), x and y are the n-dimensional data (inputs and outputs respectively), Fi are
stochastic functions with GPs as priors, f Li is the output of the last layer, z

i is a set of inducing points at
layer i, and ui the corresponding inducing function values. Note that in this parameterization each of the
GPs has a zero mean and the Gaussian noise is absorbed into the kernel. By assuming that the posterior q
of ui is factorized between layers and q uið Þ�N mi,Si

� �
, and after marginalizing the inducing variables of

each layer, the marginal likelihood becomes:

q Fl
 �L

i¼1

� �
¼
YL
i¼1

q Fljml,Sl;Fl�1,Zl�1
� �¼YL

i¼1

N Fljμl,Σl
� �

: (8)
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For new predictions the following equation applies:

q f L∗
� �¼ 1

V

XV
v¼1

q f L∗jmL,SL; f vð Þ L�1ð Þ
∗ ,ZL�1

� �
,

where f vð Þ L�1ð Þ
∗ are V samples from Equation (8). For the implementation of GPs and DGPs we used the

GPyTorch library (Gardner et al., 2018).

2.2.3. Long short-term memory networks
The long short-term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are a special case
of recurrent neural networks (RNNs), a class of neural networks that account for sequential data, thus
being particularly useful for problems with temporal components. LSTMs, specifically, use gated cells
that allow information transfer from both the recent past (short-term memory) and the distant past (long-
term memory). This is an advantage of LSTMs compared to other RNN variations in terms of the results
quality and also presents a solution to practical problems such as vanishing gradients (very small gradients
during backpropagation that can render neurons inactive). A typical LSTM cell consists of:

forget gate : f t ¼ σg Wf xtþUf ht�1þbf
� �

input gate : it ¼ σg WixtþUiht�1þbið Þ
output gate : ot ¼ σg WoxtþUoht�1þboð Þ
cell input : ct ¼ σc WcxtþUcht�1þbcð Þ
cell state : ct ¼ f t⊙ct�1þ it⊙ct

hidden state : ht ¼ ot⊙ct,

where t denotes the time, xt is the input, W∗, U∗, and b∗ are the weights of the input and recurrent
connection matrices and bias terms of the quantity ∗ respectively,⊙ is the element-wise product, σg is the
sigmoid function and σc is the hyperbolic tangent function.

2.3. Methodology summary

The main steps of the methodology are:

1. Create realistic synthetic data-sets for different parameter values and time-steps.
2. Feed the data into the dimensionality reduction techniques (PCA, CAE, andVAE) in order to derive

a latent space (reduced order).
3. Train an interpolation (regression) algorithm (GP, DGP, and LSTM) using the latent space, the

associated parameters and time steps.
4. Given the trained interpolation algorithm, we make predictions for new sets of parameters, that

were not included in the original data creation. This leads to new values of the latent space.
5. Feed the newly predicted latent space values into the inverse component of the dimensionality

reduction algorithm (decoding part). The result gives an approximation of a simulation for the
parameters that were used in step 4 (and were omitted from step 1).

Note that the whole procedure described here is presented visually in Figure 4.

3. Applications

We apply the ROM analysis pipeline to three fluid-dynamic simulation applications with increasing
complexity: (a) an advection–diffusion equation, (b) a falling film flow, and (c) multicomponent polymer
precipitation governed by a Cahn–Hilliard equation. We demonstrate how the methodology variants
perform on simulation data-sets via appropriate visualizations and metrics.
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3.1. Advection–diffusion

Advection–diffusion equations expressed as

∂c
∂t
þ v!�∇!c¼D∇2c (9)

describe physical phenomena where mass, momentum, and energy are transported within a physical
domain advectively by bulkmotion and diffusively in response to differences in chemical potential and/or
temperature. Here, c is a concentration, D is a constant diffusion coefficient, v!¼ vx x,yð Þ,vy x,yð Þ� �

is the
velocity field, and ∇

!
denotes the gradient operator. Note that for a constant velocity, Uc, and an

appropriate characteristic length scale, Lc, one can scale space and time on Lc and Lc=Uc, respectively,
to arrive at

∂c
∂t
þ∂c
∂x

þ∂c
∂y

¼ 1
Pe

∂
2c
∂x2

þ∂
2c
∂y2

� 	
, (10)

where Pe¼UcLc=D is a Péclet number.
To generate a characteristic advection–diffusion simulation data-set, we implement and solve Equation

(10) using the framework of Bar-Sinai et al. (2019) and Zhuang et al. (2020). For training purposes, we
generate 20 simulations for different values ofPe�1 ranging between 0.05 and 0.15, representing a blob of
inert tracer placed in a constant-velocity fluid field. For each simulation, 50 evenly spaced time-snapshots
with 64�64 resolution are obtained to construct the full data-set.We split the simulations into 19 cases for
training and 1 for testing, focusing on the extrapolation problem. The data are fed into the three algorithms
presented in Section 2.1. We train the different compression algorithms for four degrees of freedom
(DOF). For an extensive analysis on how different DOF affect the result, we refer the reader to the
experiment section in Maulik et al. (2021a). For the encoders of the CAE and VAE we use five
convolutional and pooling layers and an equal number of unpooling and upsampling layers for the
decoders.We also train the data inmini-batches of four, andwe use 1,000 epochs and early stopping based
on a validation set that consists of 10% of the training data. We use TensorFlow (Abadi et al., 2016) for
autoencoder implementations. For the GPs we use an ARD Matérn 3/2 kernel with two-dimensional
lengthscale (one dimension corresponds to the diffusion coefficient and the other to the temporal
parameter). For the DGPs we use 128 inducing points, two layers, each of which comprises of a single
GP with a Matérn 3/2 kernel. Finally, for the LSTM architecture, we use three cells with 50 neurons in
each cell, mini-batches of size 32, early stopping based on 10% of the training data that are set aside, and a
time window of 10 points for the forecasts, following a similar approach to Maulik et al. (2021b). All the
interpolation algorithms use the Pe value as an additional input to perform the latent space interpolation.

To assess the different methods, we use two metrics: the MSE and the mean absolute error (MAE). We
remind the reader that output frames derived directly from the compression algorithms (in a typical ROM
assessment fashion) are not possible to derive, since we make predictions for Pe values outside the
training set. It is clear from Table 1 that PCA and DGP are consistently the worst performing of the
compression and interpolation algorithms, respectively (with a few exceptions, such as DGP outper-
forming LSTM for the PCA case); the conclusion associated with PCAwas one also reached by Maulik
et al. (2021a). As for the DGP conclusion, it appears that the additional complexity of using the DGP is
unwarranted when applied to relatively small and simple data-sets, and that the corresponding model may
become over-parameterized. Instead, the standard GP is flexible enough to capture the variability of the
data obviating the need for a DGP. It is also unclear based on the results presented which of the two
autoencoders and remaining interpolation algorithms performs better. The MAE favors all the LSTM
variations, and specifically the CAE–LSTM combination, while the MSE is lower for the GP variations
and especially VAE–GP, indicating that the LSTM offers lower average error and the GP fewer error
spikes. The error values, however, are very small signifying the overall effectiveness of the methodology.

In Figures 5 and 6, we show indicative input frames (from top to bottom: 11, 21, 31, 41, and 50), along
with the different VAE-based reconstructions and the corresponding residual plots, respectively.
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Specifically, the first column in Figure 5 corresponds to the true frames, the second to the GP
reconstruction, the third to the DGP reconstruction, and the final to the LSTM reconstruction. Typically
the true frames (left column) would not be available (nor required for the production of the two other
columns), but here they are included for reference and model validation. The scaling is common for each
row. Figure 6 uses the last three cases for the corresponding residuals. In order to show the differences
among these plots we use flexible scaling. In terms of the actual frames we can see that the reconstruction
is successful and it is hard to detect differences from the originals, even in the case of theDGP,which is the
interpolation algorithm that performed more poorly, with some minor exceptions in the bottom frames.
Regarding the residuals, we can see the similar error patterns generated, though, the scale makes it clear
that the average error is larger for some of the frames in theGP andmost in theDGP cases, when compared
to the LSTM column.

In Figure 7,we gain insights into the practical differences between the three interpolation algorithms by
showing the corresponding representations of the first dimension of the latent space. The blue line shows
the actual first dimension from the VAE latent space, the red line themean for the GP-based algorithms for
the first two and the output of the LSTM for the third, and the light red shading the confidence intervals
around 2 standard deviations from the mean. Starting from the GP (Figure 7a) we can see a very good fit
and an inconsistent uncertainty level. Generally, the uncertainty is narrower close to the times where data
are available and wider everywhere else. The DGP case (Figure 7b) shows a very similar mean result, but
the over-parameterization resulted to a wide uniform credible interval along the time axis. Finally, the
LSTM (Figure 7c) shows an almost perfect fit to the latent space. The missing line before t¼ 0:2 of the
plot corresponds to the timewindow of 10 points that is required for the forecast.

The computational cost for all the algorithms examined in this section is shown in Table 2. The
compression algorithm is run first and its cost is common for all relative pipelines regardless of the choice
of the interpolation. PCA is almost instantaneous, while the autoencoders require a similar amount of time
with each other. The time to solution for the interpolation algorithms differ based on the compression
algorithm they follow, but the scale remains approximately the same. Specifically, LSTMs are consist-
ently the fastest, followed by GPs, while DGPs are the slowest. It is worth noting that different
parameterizations of the algorithms can potentially lead to significant differences with respect to
computational costs, within each class of compression and interpolation.

Table 1. Evaluation metrics for the PCA, CAE, and VAE models for the advection–diffusion problem.

Metric/Modelt

PCA

GP DGP LSTM

MAE 2.51355 � 10�5 4.32963 � 10�5 0.00203
MSE 0.00264 0.00292 0.01594

Metric/Modelt CAE

GP DGP LSTM

MAE 7.20011 � 10�7 1.28770 � 10�6 4.83279 � 10�7

MSE 4.48591 � 10�5 6.12765 � 10�5 4.98987 � 10�5

Metric/Modelt VAE

GP DGP LSTM

MAE 6.31853 � 10�7 1.22549 � 10�6 4.87542 � 10�7

MSE 4.27802 � 10�5 6.30656 � 10�5 4.57708 � 10�5

Note. The best performance for each metric (i.e., MAE and MSE) is highlighted in bold.
Abbreviations: CAE, convolutional autoencoder; DGP, deep Gaussian processes; GP, Gaussian process; LSTM, long short-termmemory;MAE,mean
absolute error; MSE, mean squared error; PCA, principal component analysis; VAE, variational convolutional autoencoders.
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3.2. Falling films

We focus in this application on two-dimensional falling film flows, of importance to engineering
applications including separation and heat removal units (Rohlfs et al., 2018). We apply the modeling
framework of Scheid et al. (2006), which uses an averaged version of the Navier–Stokes equations
together with Pade approximants; this yields a three-field equation system for the film thickness, h, and
flow rates in the streamwise direction x, qx, and spanwise one y, qy, expressed by

Figure 5. True and reconstructed frames for the concentration profiles of the VAE-related methods
applied to the advection–diffusion problem. The rows correspond to time-steps 11, 21, 31, 41, and

50, respectively.
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Figure 6. Residual concentration profile plots of the VAE-related methods applied to the advection–
diffusion problem. The rows correspond to time-steps 11, 21, 31, 41, and 50, respectively.
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where G¼ 1� δ=70ð Þh3 ∂h
∂x


 ��1
, I and D represent a collection of terms related to inertia and viscous

dissipation, defined in equations (B1b) and (B1c) in Scheid et al. (2006), and P¼�ζhþh ∂
2h
∂x2 þ ∂

2h
∂y2

� �
represents contributions to the pressure due to gravity and capillarity. The parameters δ, η, and ζ
respectively represent the relative significance of inertia, gravity, and capillarity namely equations
(2.9) and (2.10) in Scheid et al. (2006); the parameter δ is referred to as a reduced Reynolds number.

Data were obtained from numerical solutions of Equations (11)–(13) simulated using a custom port of
WaveMaker (Rohlfs et al., 2018) implemented in the Julia language (Bezanson et al., 2017). The general

Table 2. Computational cost (in seconds) for all compression and interpolation algorithms.

PCA

GP DGP LSTM

9.1 � 101 5.96 � 102 4.2 � 101

CAE

GP DGP LSTM

1.46 � 102 6.19 � 102 3.9 � 101

VAE

GP DGP LSTM

1.14 � 102 4.3 � 102 5.6 � 101

Abbreviations: CAE, convolutional autoencoder; DGP, deep Gaussian processes; GP, Gaussian process; LSTM, long short-term memory; PCA,
principal component analysis; VAE, variational convolutional autoencoder.

Figure 7. Comparison of the interpolation techniques; GP in (a), DGP in (b), and LSTM in (c), in the
latent space for advection–diffusion.
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structure for this application has a significant degree of similarity with the one applied in Section 3.1, but
with a few key differences: first, the simulations are generated based on the reduced Reynolds number δ
that takes 20 equi-spaced values in the range of 1–69. This is also the parameter used for the interpolation
algorithms. Second, in this application we focus on the interpolation problem. Specifically, we use the
sixth simulation (that corresponds to δ¼ 25:5) for testing and the rest for training. Finally, we use
five DOF.

Themetrics for all the results are shown in Table 3. Similar to the first advection–diffusion application,
the PCA and the DGP underperform when compared to the other methods. For this data-set the
combination of CAE and LSTM was the best performing based on both the MAE and the MSE metrics.
As with the advection–diffusion application, finding differences between the frames for the interpolation
algorithms pairedwith theCAE compression, and the true frames, which are included for reference, on the
leftmost column of Figure 8 is difficult, regardless of the significant differences shown by themetrics. The
only notable exception is theDGP reconstruction that shows slight deviations from the true film thickness.
It is interesting to note that for all methods in Figure 9, and particularly the LSTM, the error structure in the
upper frames (early times) seems random, whereas in the bottom frames (late times) we can clearly see the
general structure of the film thickness. This indicates that it is easier for the methodology to reconstruct
the frames from the beginning of the simulations (where all training simulations are similar) rather than the
ending (where deviations among simulations are visibly different from each other due to the effect of the
different reduced Reynolds numbers).

3.3. Multicomponent polymer precipitation

We now apply the analysis pipeline to polymer precipitation dynamics, of importance to engineering
design problems in high-performance plastics and membrane systems. The complex dynamics and rich
pattern formation were considered recently by Inguva et al. (2020, 2021) (see also references therein) who
used Cahn–Hilliard theory to model and simulate the spatio-temporal evolution of the emergent phase
separation patterns; the relevant equations for a binary polymer blend are expressed by

∂ϕ
∂t

�∇ � M∇μð Þ¼ 0, (14)

Table 3. Evaluation metrics for the PCA, CAE, and VAE models.

Metric/Model

PCA

GP DGP LSTM

MAE 0.04865 0.04819 0.04055
MSE 0.17284 0.15188 0.16617

Metric/Model

CAE

GP DGP LSTM

MAE 5.45812 � 10�5 3.28181 � 10�4 1.90501 � 10�5

MSE 0.00056 0.00149 0.00036

Metric/Model

VAE

GP DGP LSTM

MAE 0.00013 0.00069 5.46090 � 10�5

MSE 0.00079 0.00229 0.00079

Note. The best performance for each metric (i.e., MAE, MSE) is highlighted in bold.
Abbreviations: CAE, convolutional autoencoder; DGP, deep Gaussian processes; GP, Gaussian process; LSTM, long short-termmemory;MAE,mean
absolute error; MSE, mean squared error; PCA, principal component analysis; VAE, variational convolutional autoencoders.
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where ϕ represents the volume fraction of one of the polymers in the blend, M is a constant mobility
parameter, and μ is a generalized chemical potential, which can be derived from the variational derivative
of the Gibbs free energy functional:

μ¼ df

dϕ
� λ∇2ϕ; (15)

Figure 8. True and reconstructed frames of the film thickness for the CAE-related methods employed in
the falling film problem. The rows correspond to time-steps 11, 21, 31, 41, and 50, respectively.
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Figure 9. Residual plots of the film thickness associated with the CAE-related methods used in the falling
film problem. The rows correspond to time-steps 11, 21, 31, 41, and 50, respectively.
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here, f denotes the homogeneous contribution to the Gibbs free energy per monomer, which is a
nonconvex function of ϕ, and λ is a gradient free energy parameter. Numerical solutions of the above
equations are obtained subject to Neumann conditions:

∇μ �n¼ 0,

∇c �n¼ 0,

in which n is the outward-directed boundary normal.
For training purposes, we generate 20 simulations based on values of λ within the range 0.01–0.0575,

which is also the parameter used for the interpolation algorithms. We use the python API of the FEniCS
project Alnæs et al. (2015) for the simulations. An interesting complication comes from the fact that the
simulator provides results in the form of 97�97 frames, which is not convenient for the standard structure
of the autoencoders, since 97 is not a number that can be achieved with the up-sampling layers. This gives
us the opportunity to examine how to address the issue of arbitrarily-shaped data. We tackle this with a
zero padding that transforms the inputs to 128�128 frames. Once again, we are concerned with
extrapolation, attempting to reconstruct the frames that correspond to the last λ value, and use five
DOF. All the hyper-parameters of the compression and interpolation algorithms remain the same.

According to the results presented in Table 4, the best performing combination is the CAE paired with
the GP. Both the MAE and the MSE indicate significant improvement from the other compression and
interpolation algorithms. The zero padding seems to affect the VAE negatively, which struggles to deal
with the abrupt transitions between the zero-padded sections and the actual frames possibly due to the
distributional aspect of the algorithm. The unusual structure of the data is not easy to capture as shown in
Figure 10, where all the interpolation algorithms are shown for the CAE case. Note that the true volume
fraction frames are included for reference. It is hard to distinguish anything in the earlier frames, mainly
due to the common scaling and the fact that the DGP seems to be deviating significantly. In the frames that
correspond to late times, we can observe the GP-reconstructed frames having someminor deviations from
their true counterparts, but generally being able to capture the correct space of the circular features, while
the other two methods deviate significantly.

Table 4. Evaluation metrics for the PCA, CAE, and VAE models.

Metric/Model

PCA

GP DGP LSTM

MAE 0.00756 0.00808 0.03973
MSE 0.06581 0.06553 0.15826

Metric/Model

CAE

GP DGP LSTM

MAE 7.50197 � 10�5 0.02313 0.00082
MSE 0.00084 0.01698 0.00277

Metric/Model

VAE

GP DGP LSTM

MAE 0.00081 0.02814 0.00111
MSE 0.00317 0.01871 0.00414

Note. The best performance for each metric (i.e., MAE and MSE) is highlighted in bold.
Abbreviations: CAE, convolutional autoencoder; DGP, deep Gaussian processes; GP, Gaussian process; LSTM, long short-termmemory;MAE,mean
absolute error; MSE, mean squared error; PCA, principal component analysis; VAE, variational convolutional autoencoders.
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Finally, in Figure 11 we do not observe any specific pattern in the errors, which is expected from the
structure of the data, but we can clearly see that the level of the errors is considerably lower for the late time
frames in the GP case when compared to the other two.

4. Conclusion

In this study, we used the ROM interpolation framework from our previous paper (Maulik et al., 2021a)
with themain purpose of showing a previously overlooked advantage, that is, the ability to emulate results

Figure 10. True and reconstructed frames for the volume fraction of the CAE-related methods used in the
polymer precipitation problems. The rows correspond to time-steps 11, 21, 31, 41, and 50, respectively.
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Figure 11. Residual volume fraction plots of the CAE-related methods in the polymer precipitation
problems. The rows correspond to time-steps 11, 21, 31, 41, and 50, respectively.
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for parameter values with the help of the GP interpolation, where data are not available. The effectiveness
of this method is presented with three realistic multiphase flow applications with different levels of
complexity and results are compared with two other interpolation techniques; the newly introduced
DGPs, which are complex algorithms that use the GPs as building blocks, and the LSTMs, which have
been used recently in literature (Maulik et al., 2021b) and have been found to work well for a class of flow
problems. The results show that the choice of the best type of autoencoder is problem dependent, although
CAE has a slight edge and is more versatile. In terms of the interpolation algorithms the GP provided good
results that were on the same level as those of the LSTMmethod, which exists in the literature. The choice
between the two is data-dependent. We believe that the main reason for the under-performance of the
DGPs was over-parameterization, with respect to the complexity of the generated flow patterns. In future
work, we plan on replicating the same comparison for larger and more complex data-sets, in order to
address this issue, though we expect to be confronted with new challenges, such as the choice of hyper-
parameters, especially for the LSTM and DGP.
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