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B. NOONAN 

Introduction. This paper considers the properties of the representation 
of a Lie algebra when restricted to an ideal, the subduced* representation of 
the ideal. This point of view leads to new forms for irreducible representations 
of Lie algebras, once the concept of matrices of invariance is developed. This 
concept permits us to show that irreducible representations of a Lie algebra, 
over an algebraically closed field, can be expressed as a Lie-Kronecker product 
whose factors are associated with the representation subduced on an ideal. 
Conversely, if one has such factors, it is shown that they can be put together 
to give an irreducible representation of the Lie algebra. A valuable guide to 
this work was supplied by a paper of Clifford (1). 

1. Matrices of invariance. Let an ideal T, of a Lie algebra L over a field 
F, have the representation Q, that is, t —» Q(t) is a representation of T by 
matrices with elements in F. If there is a matrix C(a), corresponding to an 
element a of L, such that 

[C(a),Q{t)\ = Q ( o o O , t 

for all elements / in T, then we shall call C(a) a matrix of invariance relative 
to Q. If a matrix of invariance relative to Q exists for each a Ç L, a matrix of 
invariance C(a) can be constructed so that 

C(a +b) = C(a) + C(b) (b G L) 

(1.0) C(ka) = kC(a) (k e F) 

C(f) = Q(t) (t e T). 

Let eu e2, . . . , er be a basis of T, which extended by er+h er+2, . . . , en 

gives a basis of L over the field F. From the matrices of invariance of eT+u 
er+2, . . . , en select any particular set C(er+i), C(^r+2),. . . , C(em) and define 
C(et) = Q(et)y i = 1, 2, . . . , r. For any a G L we have 
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of a and / in the Lie algebra L. 
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2 = 1 

and setting 

C(a) = S kiC{et) 

gives the required construction. 

THEOREM 1.1. Le£ jf &e an idea/ of a Lie algebra L. Let Q be an irreducible 
representation of T over an algebraically closed field F. Let C(a), a G L, be a 
matrix of invariance relative to Q, then 

C{a ob) = [C(a), C(b)\ + c(a, b)I, (b G L) 

where c(a, b) G F, and I is the unit matrix of the dimensions of C(a). 

Proof. By the Jacobi identity, 

{a o b) o t = a o (6 o t) — b o (a o t), (t G T). 

Since JH is an ideal, (aob) ot, aot, bot, are elements of T; we have therefore 

Q((a ob)ot) = Q(a o (b o /)) - (2(6 o (a o 0) , 

[C(aob),Q(t)] = [C(a),Q(6o/)] - [C(&), Q{a o *)], 
= [C(a),[C(b),Q(t)]\ - [C(b), [C(a),Q(t)]\ , 

= [[C{a), C{b)l Ç(0] , 

since the commutators of matrices satisfy the Jacobi identity. Thus 

[(C(aob) - [C(a),C(b)]),Q(t)] = 0 , 

or 

(C(aob) - [C(a),C(6)])Ç(0 = Q(t)(C(aob) - [C(a), C(b)]). 

By Schur's lemma* (5), 

C(a ob) = [C(a), C(b)] + c(a, b)I, 

where c(a, b) G F, and I is the unit matrix of the dimensions of C(a). 

COROLLARY. / / the matrices of invariance are chosen to satisfy (1.0) the scalar s 
c(a, b) of the theorem have the properties 

(i) c(a, / ) = 0 , (a £L,t £ T) 

(ii) c(a, a) = 0, 

(hi) c(a, b) = — c(b, a), (b G L) 

(iv) c(a, & o d) + c(6, d o a) + c(d, a o b) = 0 (d £ L) 

*In an algebraically closed field, the only matrices commuting with an irreducible set of 
matrices are scalar multiples of the unit matrix. 
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(v) c(a + s,b + t) = c(a, b) (s Ç T) 

(vi) c(a + b, d) = c(a, d) + c(b, d) 

(vii) c(a, b + d) = c(a, b) + c(a, d), 

(viii) c(ka, b) = c(a, kb) = kc(a, b). 

Proof. The proofs of these properties are trivial with the exception of that 
for property (iv), which follows. We have 

C(a o(bo d)) = [C(a), C(b o d)] + c(a, b o d)I, 

= [C{a), [C(b), C(d)]] + c(b, d) [C(a), I] + c(a, bod)I, 

= [C(a), [C(b), C(d)]] + c(a,bod)I. 

Permuting a, 6, and d, cyclically, adding the corresponding equations, then 
applying the Jacobi identity, we have 

(2(0) = 0 + (c(a, bod) + c(b, doa) + c(d, aob))I, 

0 = c(a, bod) + c(b, doa) + c(d, aob), giving (iv). 

The elements c(a, b) of F, satisfying the properties (i) to (viii), form a 
factor set. 

It follows from Theorem 1.1 and its corollary that if Q is an irreducible 
representation of an ideal T of L over an algebraically closed field F and there 
exist matrices of invariance then we can construct matrices of invariance 
C(a) satisfying (1.0), a Ç L, and the correspondence 

a —> C(a) 

is almost a representation of L. Let us call such a correspondence C an L-pro-
jective representation (L for Lie, and projective because of the analogy with 
group theory). If we have such an L-projective representation C of L, given by 

a -> C(a) = (Cij(a)), (i,j = 1, 2, . . . , n) 

where Ctj(a) Ç F, we can define 
n 

auj = C(a)Uj = X Cij(a)ui, (j = 1, 2, . . . , n) 
i=l 

for an 7^-module with the basic elements ui, u2, . . . , un to form an L-projective 
representation module. It is easily verified that 

(i) a(u + v) = au + av, (a G L) 

(ii) (a + b)u = au + bu, (b G L) 

(hi) (ka)u = a(ku) = k(au), (k Ç F) 

(iv) (a o b)u = a(bu) — b{au) + c(a, b)u 

= ([a, b] + c(a, b))u. 

Conversely, if there is an T^-module M for which there is defined a unique 
product au in M for a Ç L, a Lie algebra, u (z M, such that properties (i) to 
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(iv) are satisfied, then M assigns an L-projective representation to L. We can 
define irreducibility and reducibility in the usual way. 

If C (a) and C(a), a G L, are two matrices of invariance relative to an 
irreducible representation Q of an ideal T of L over an algebraically closed 
field F, then Schur's lemma gives 

C (a) = C{a) + c(a)L (c(a) G F). 

If C (a) and C(a) satisfy (1.0) then 

c(a + 6) = c(a) + c(b) 

c(ka) = kc(a) 

c(t) = 0. 

Furthermore, if c'(a, b) and c(a, b) are the factor sets corresponding to the 
L-projective representations C and C, respectively, then it is easily shown that 

c'(a, b) = c(a, b) + c(aob). 

A sufficient condition for the existence of matrices of invariance. 

THEOREM 1.2. Let T be an ideal of a Lie algebra L over an arbitrary field F. 
Let M be an L-F-module and M\ and if2, T-F- submodules of M. If M = 
Mi + M2, then each a G L can be assigned a matrix of invariance C(a), such that 

[C(a),Q{t)\ =Q(aot), (t G T) 

where Q is the representation of T assigned by M\. 

Proof. For any u G M, we have u — ui + u2, where u± G AIi and u2 G M2. 
The components u\ and u2 are unique since the sum of M\ and M2 is direct. 
Thus the correspondences 

CL\\ U —> III = Oi-lU, 

a2\ u —> u2 = a2u, 

are homomorphisms of M onto Mi and M2 respectively. We can then write 

u = OL\U + a2u. 

In particular, for v G M\ 

av = aiav + oc2av, {a G L) 

then the operator a\a is clearly a linear transformation of M\. For t G F, 

(aot)v = a(tv) — t(av), 

= aid(tv) + a2a(tv) — t{a\av + a2av). 

Equating components, 

(aot)v — 0L\a{tv) — t{oL\av). 
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Setting the linear transformation a±a = S (a) and replacing t by its linear 
transformation Q(£) of Mi, we have 

€X(aot)v = S(a)(Q(0») - Q ( 0 ( S ( a » , 

or for the corresponding matrices of these linear transformations 

Q(aot) = C(a)Q(t) - Q(t)C(a) = [C(a),Q(t)l 

DEFINITION. If to every element a of L there corresponds a matrix of invariance 
relative to a representation Q of an ideal T of L then Q will be called invariant 
under L. 

2. Subduced representations 

THEOREM 2.1. Let A be an irreducible representation of a Lie algebra L. If the 
irreducible components of the representation subduced by A on an ideal T of L 
are invariant under L, then the subduced representation is fully reducible to 
equivalent irreducible components and conversely. 

Proof. Let M be an irreducible Z-T^-module leading to the representation A 
of L by matrices. Select any irreducible T'-^-module Mi C M. Let Mi assign 
to T the representation Q, invariant under L. 

If Mi = M the theorem follows, so take Mi ^ M, then there is an a £ L, 
such that a Mi <Z Mi, otherwise M is reducible. Since Q is invariant under L, 
there is a matrix of invariance C(a) corresponding to a and, consequently, 
a corresponding linear transformation g (a) of Mi. From a Mi + Mi, form the 
set M2 of the elements 

au — &(a)u, (u 6 Mi). 

It is easily verified that M2 is an ^-module. Further 

t(au — (&(a)u) = $&(toa)u + atu — Q,(t o a)u — d{a)(tu) 
= a{tu) - &(a)(tu) 6 M2. 

Thus M2 is a T-F-modu\e. The correspondence 

u —> au — S(a)w 

is then an operator homomorphism over F and T of Mi onto M2. But Mi is 
irreducible, hence the homomorphism is an isomorphism. Since Mi 9e M2, 
we have 

Mi + aMi = Mi + M2 = Mi + M2. 

If Mi + M2 = M, the theorem is proved. If Mi + M2 ^ M, there exists 
b G L such that either 

bM1 + Mi ^ Mi + M2, 
or 

bM2 + M2 (£ Mi + M2. 
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Otherwise M is reducible. Hence we can continue our construction of iso­
morphic T-F-modules. 

Since M is finite and each additional module is non-zero, a finite number of 
such constructions will exhaust M. Hence A subduces on the ideal T a repre­
sentation which is completely reducible into equivalent irreducible components. 

Proof of the converse. Since A subduces on T a representation which is fully 
reducible, the corresponding representation module M, considered as a 
T-F-module, can be written in the form 

M = M, + (M1 + . . . + M M + Mi+1 + . . . + Mr). 

Theorem 1.2 then assures us of the existence of matrices of invariance for the 
representation assigned to T by Mt. 

In order to consider the nature of subduced representations in greater 
detail, we turn to the Lie-Kronecker product of matrices, namely, if A and 
B are any square matrices, not necessarily of the same dimensions, their 
Lie-Kronecker product, designated by .1 ® B, is defined by the equation 

A ® B = A X IB + IAXB, 

where X is the Kronecker product of matrices, and IA, IB are the unit matrices 
with the dimensions of A and B, respectively. This product is derived in a 
natural way by a consideration of the product of representation modules 
(8, p. 26). 

For our purposes, we extend this concept to L-projective representation 
modules. 

Let M and N be L-projective representation modules of L. We can then 
define a linear transformation 31(a) of the product module MN by the equations 

$L(a)(uv) = (au)v + u{av), (a Ç L) 
h h h 

21(a) X) ± ^ < = 1 ] =ti (aui)vi+ ^ ±ut(avt). 
i=l i=\ i= 1 

The linear transformation 21(a) is uniquely determined by a, so we define the 
product a(uv) by 

a(uv) = %(a)(uv). 

THEOREM 2.2. Let M and N assign L-projective representations to the Lie algebra 
L, whose factor sets are c(a, b) and d(a, b), respectively. Then the product module 
MN, for which there is defined a left multiplication by elements of L as above, 
assigns an L-projective representation to L with the factor set c(a, b) + d(a, b). 

Proof. 

(a o b){uv) = ((a o b)u)v + u((a o b)v) 

= ([a, b]u)v + u([a, b]v) + (c(a, b) + d(a, b))uv 

= ([a, b] + c(a, b) + d(a, b))uv. 
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T h a t MN has the remaining properties of an L-projective representation 
module is easily verified. 

T H E O R E M 2.3. Let A be an irreducible representation of a Lie algebra L in an 
algebraically closed field F. Let A subduce on an ideal T of L a representation 
completely reducible to r irreducible components equivalent to a representation G. 
A is then the Lie-Kronecker product of two irreducible L-projective representations 
C and U of L, where C has the degree of G; U, the degree r, and their factor sets 
differ only in sign. U is actually an L-projective representation of the residue 
class algebra L/T. 

Proof. Let M and Mi be the representat ion modules assigning the represen­
tat ions A and G to L and T, respectively, then 

M = Mt + M2 + • • . + Mr, 

and 

M i ^ Mit i = 2, 3, . . . , r 

over T. Let at be the operator isomorphism between Mi and Mi} t ha t is, the 
isomorphism Mi = Mt is accomplished by the correspondence 

u —> otiU, (u G Mi, atu G Mi) 

such tha t for t G T, k G F, tu —» attu = tatii, ku —> atku = katu, 

then 
r 

aaju = X) 3 Ï ^ ( « ) « ^ , (w 6 Mû j = 1,2, . . . ,r\a G L) 

where 21 w (a) is a linear transformation of M%. Let its corresponding matrix 

be A aia). 
Since T is an ideal, act G T, hence 

(a o 0 a / ^ = aj((Q o t)u), (u G Mi) 

a(toijU) — t(aaju) = ad ((a o /)w), 

r 

a (a j (tu)) — t 2Z yiij(a)(XiU = a}((aot)u), 

T r r 

] £ <$iij(a)ai(tu) - X) ^(2Io-(a)a#) = Yl 8ijai((aot)u) 
i=l i=l i=l 

where ôtj is the Kronecker delta. Thus 
r r 

X) (<Hij(a)ai(tu) - t(%ij(a)aiU)) = ^ àijOti((a o t)u). 
i=l i=l 

Replacing the element t of T by its linear transformation ®(t), assigned by 
Mi, we have 

T r 

£ [%ij(a),&(t)]atu= X) (8</S(aoO)a<«-
1 = 1 1=1 
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Since M = Mt + (M2 + . . • + Mr), Theorem 1.2 assures us of the 
invariance of G under L. Hence we can construct matrices of invariance C(a), 
a £ L, with properties (1.0) and then the correspondence a —> C(a) is an 
L-projective representation. Let (S(a) be the linear transformation corres­
ponding to C(a), then we can write our last equation in the form 

E ([(»<*(*), ®(0] ~ ««[£(«), ®(0D«iW = 0. 
1=1 

Consequently 

[Atj(a) - ^ - C ( a ) ) , G ( 0 ] = 0 , 

where Gif) is the matrix corresponding to &(t), is a valid matrix equation for 
all £ G T and i, j = 1, 2, . . . , r. Applying Schur's lemma, we have 

Atj(a) - bijC{a) = Uij(a)IG, (Utj(a) G F) 

IG being the unit matrix with the dimensions of G, thus 

A via) = 8tjC(a) + Uij(a)IGj 

and so 

A (a) = (Atj(a)) = C{a) X Iv + Ic X U(a), 

= C(a) ® 17(a), 
- C ® 17(a), 

where U(a) = (U^a)) and since Ic = IG-
Observing that C ® U is a representation and C is an L-projective represen­

tation it is easily shown that U is an L-projective representation of L with a 
factor set differing only in sign from that of C. 

For t £ T, we have .4(/) = Qif) = G(£) X / n where 7r is the unit matrix 
of degree r. Also 

,4(0 = C(t) Xlu+lcX U(t), 

= Gif) XIT + IcX Uif), 

thus 

0 = Ic X Uif), 
giving 

£/(/) = 0. 

Hence Z7 gives an L-projective representation of the residue class algebra 
L / T. 

C and U are irreducible L-projective representations of L since otherwise 
A is reducible. 

77z£ imbedding of irreducible representations. 

THEOREM 2.4. Let T be an ideal of a Lie algebra L. Let Q be an irreducible 
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representation of T invariant under L. Let c(a, b), (a, b £ L), be a factor set of the 
corresponding L-projective representation C of L. Then a necessary and sufficient 
condition that Q can be imbedded in an irreducible representation of L is that the 
factor set —c(a, b) can be realized by an L-projective representation U* of L / T. 

Proof. The necessity of the condition is shown by Theorem 2.3. The condition 
is also sufficient. For, taking an irreducible component U of the representat ion 
£/*, we set A = C (8) U. By Theorem 2.2, A is certainly a representation. T o 
show A is irreducible we require the following lemma. 

LEMMA 2.1. Let L have the equivalent representations C ® U and C ® U', 
formed according to the theorem from an irreducible representation Q of T. If 
C and C are equivalent, then U and U' are equivalent. 

Proof. For a £ L, we have 

X(C'(a) ® Uf{a))X~l = C{a) ® U(a), 

Y~lC\a)Y = C{a). 

Consequently, 

X({YC(a)Y~l) (8) Uf(a))X-1 = C(a) (g) U(a), 

X(YC(a) F - 1 X Iu> + IcX U'(a))X-i = C ( a ) g> rj(a)j 

X(YX Iu>)(C(a) 0 U\a))(Y~i x Iv,)X-i = c(a) 0 U(a) (1). 

Sett ing X( Y X lu') = Z> and replacing a by t G T, this equation becomes 

Z(Q(t) X Iu)Z~i = Q{t) X / 

or 

Z(Q(t) X /c/) = (Q(t) X / ^ Z for all / £ T. 

Applying Schur 's lemma gives Z the form IQ X W, where W is non-singular. 
Subst i tu t ing this form of Z in (1) gives 

C(a) X lu* + IcX WU'{a)W-i = C(a) X Iv + Ic X U{a) 

WU\a)W~1 = U(a), 

proving the lemma. 

Returning to the theorem, we can now prove t h a t the representation 
A = C (g) U is irreducible. Let Mc and Mu be the modules assigning the 
L-projective representations C and U to L. By Theorem 2.2, M = MCMU 

assigns the ordinary representation C ® U to L. Fur ther , since 

A(t) = C(t) Xlu + IcX U(t), (t e T). 

= Q(t) X IUt 

M, considered as a r-T^-module is the direct sum of irreducible T-/^-modules 
operator isomorphic to MCJ t h a t is, 
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M = M1 + M2 + . . . + M» Mi = Met Mx S Mt over T. 

This form of M is then a Remak decomposition (9). 
Let us assume that M is reducible, then M properly contains an L-.F-module 

M'. With suitably chosen subscripts we then have 

M = M' + Mr+1 + . . . + Ms. 

Since any submodule of a module with a Remak decomposition has a Remak 
decomposition and, furthermore, since different Remak decompositions of the 
same module are equal in length, and the components are operator isomorphic 
in some order, we have 

M = Mi + Mi + • • • + M'r + Mr+1 + . . . + M„ 

where Mi' = M/ ^ Mh i = 1, 2, . . . , r, j = 1, 2, . . . , s. These operator iso­
morphisms assure us of the irreducibility of the M'i. Let at be the operator 
isomorphism of Mi onto M/, or Mt if i > r + 1. Then for u Ç Mz-, 

r 

aagu = Y^ $Lig(a)a<u, (a Ç i , g < r) 

since Af' is invariant under L. Also 

aahu = ^2 yiih{a)oLiU, (s > h > r). 
i=i 

As in Theorem 2.3, these equations lead to the matrix equations 

A'ik{a) = C'(a)8ik+ IcUik(a), 

but with the further property that 

IcU'ijc(a) = 0, for k < r,i > r, 

giving 

Uik(a) = 0, for k < r,i > r. 

Thus U'(a) = ( [TV(a)) is a reducible representation, making A '(a) = Cr(^) ® 
Uf(a) also reducible. Since there is an operator isomorphism between the two 
Remak decompositions of M and also between M\ and M\ it follows that the 
representation C ® V is equivalent to C ® U and C is equivalent to C. By 
the lemma U is equivalent to U', contrary to U being irreducible. Thus the 
assumption that M is reducible is contradicted. 
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