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Quotients of Essentially Euclidean Spaces

Tadeusz Figiel andWilliam Johnson

Abstract. A precise quantitative version of the following qualitative statement is proved: If a ûnite-
dimensional normed space contains approximately Euclidean subspaces of all proportional dimen-
sions, then every proportional dimensional quotient space has the same property.

1 Introduction

Given a function λ from (0, 1) into the positive reals, a ûnite-dimensional normed
space E is called λ essentially Euclidean provided that for every є > 0 there is a sub-
space Eє of E that has dimension at least (1 − є) dim E and the Euclidean distortion
c2(Eє) of Eє is ≤ λ(є); that is, Eє is λ(є)-isomorphic to the Euclidean space of its
dimension. A family F of ûnite-dimensional spaces is λ essentially Euclidean pro-
vided that each space in F is λ essentially Euclidean, and F is called essentially Eu-
clidean if it is λ essentially Euclidean for some function λ, as above. Litwak, Mil-
man, and Tomczak-Jaegermann [LMT-J] considered the concept of essentially Eu-
clidean, but what we are calling an essentially Euclidean family they would term a
1-ess-Euclidean family. _e most studied essentially Euclidean families are the class
of all ûnite-dimensional spaces that have cotype two constant less than some numeri-
cal constant, and the set of all ûnite-dimensional subspaces of a Banach space that has
weak cotype two [Pis, Chapter 10]. However, if one is interested in the proportional
subspace theory of ûnite-dimensional spaces, cotype two and weak cotype two are
unnecessarily strong conditions, because they are conditions on all subspaces rather
than on just subspaces of proportional dimension. For example, let 0 < α < 1 and let
Fα be the family {ℓn−nα

2 ⊕2 ℓn
α

∞
∶ n = 1, 2, 3, . . .} (throughout, we use the convention,

standard in the local theory of Banach spaces, that when a speciûed dimension is not
a positive integer, it should be adjusted to the next larger or smaller positive integer,
depending on context). _e cotype two constants of the spaces inFα are obviouslyun-
bounded and it is alsowell known that the family does not live in any weak cotype two
space. Computing thatFα is λα(є) essentially Euclideanwith λα(є) ≤ (1/є)α/2(1−α) is
straightforward: First,when nα ≤ єn, the space ℓn−nα

2 ⊕2 ℓn
α

∞
has a subspace of dimen-

sion at least (1 − є)n that is isometrically Euclidean. On the other hand, if єn < nα ,
then the entire space ℓn−nα

2 ⊕2 ℓn
α

∞
is nα/2-Euclidean, since that is the isomorphism

constant between ℓn
α

∞
and ℓn

α

2 , and nα/2 ≤ (1/є)α/2(1−α).
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It is also simple to check that the essentially Euclidean property passes to propor-
tional dimensional subspaces. Suppose that E is an n-dimensional space that is λ
essentially Euclidean, F is a subspace of E that has dimension αn, and є > 0. Take a
subspace E1 of E of dimension (1−єα)n with c2(E1) ≤ λ(єα). _en dim E1∩F ≥ αn−
єαn = (1−є)αn, which implies that F is λF essentially Euclideanwith λF(є) ≤ λ(єα).
It is, however, not obvious that the essentially Euclidean property passes to propor-
tional dimensional quotients; themain result of this note is that it does.

We use standard notation. We just mention that if A is a set of vectors in a normed
space, [A] denotes the closed linear space of A, and e i denotes the i-th unit basis
vector in a sequence space.

2 Main Result

_emain toolwe use isMilman’s subspace of quotient theorem [Mil], [Pis, Chapters 7
& 8]. In [LMT-J] this theorem is not used directly, but the ingredients of its proof are.
_e theorem says that there is a function M ∶ (0, 1) → R+ such that for every n and
every 0 < δ < 1, if dim E = n then there is a subspace F of some quotient of E so that
dim F = (1 − δ)n and c2(F) ≤ M(δ). It is known that M(δ) ≤ (C/δ)(1 + ∣ logCδ∣),
as δ → 0 [Pis,_eorem 8.4].

_eorem 2.1 Suppose that E is λ essentially Euclidean, 0 < α < 1, and Q is a quotient
mapping from E onto a space F. Let n = dim E and assume that dim F = αn. _en F
is γ essentially Euclidean, where γ(є) ≤ λ(єα/4)M(є/4); in fact, for each є > 0 there is
a subspace E2 of E and operators A ∶ ℓ(1−є)αn2 → E2 and B ∶ QE2 → ℓ(1−є)αn2 such that
BQA is the identity on ℓ(1−є)αn2 and ∥A∥ ⋅ ∥B∥ ≤ λ(єα/4)M(є/4).

Proof Set n ∶= dim E and ûx 0 < є < 1. Let R be a quotient mapping from F onto a
spaceG that has a subspaceG2 of dimension (1−є/4)αn such that c2(G2) ≤ M(є/4).
Wewant to ûnd a subspace E2 of E with dim E2 ≥ (1−є)αn so that RQE2 ⊂ G2 and RQ
is a “good” isomorphism on E2, which implies that Q is also a “good” isomorphism
on E2. Since ∥R∥ = ∥Q∥ = 1, “good” means that ∥RQx∥ is bounded away from zero
for x in the unit sphere of E2. Since E is λ essentially Euclidean, there is a subspace
E0 of E with dim E0 = (1− αє/4)n such that c2(E0) ≤ λ(αє/4). Put Euclidean norms
∥ ⋅ ∥1 and ∥ ⋅ ∥2 on E0 and G2, respectively, to satisfy for all x ∈ E0 and all y ∈ G2 the
inequalities

(2.1) ∥x∥ ≤ ∥x∥1 ≤ λ(αє/4)∥x∥ and M(є/4)−1
∥y∥ ≤ ∥y∥2 ≤ ∥y∥.

Deûne E1 ∶= E0 ∩ (RQ)−1G2 so that dim E1 ∶= m ≥ (1 − єα/2)n.
Now take an orthonormal basis e1 , e2 , . . . , em for the Euclidean space (E1 , ∥ ⋅ ∥1)

so that RQe1 , RQe2 , . . . , RQem is orthogonal in the Euclidean space (G2 , ∥ ⋅ ∥2) and
ordered so that ∥RQe1∥2 , ∥RQe2∥2 , . . . , ∥RQem∥2 is decreasing. We next compute
that ∥RQe j∥2 is large for j ∶= (1 − є)αn. Now ∥RQe j∥2 is the norm of the restric-
tion to E3 ∶= [e j , e j+1 , . . . , e(1−αє/2)n] of the operator RQ when it is considered as
an operator from the Euclidean space (E1 , ∥ ⋅ ∥1) to the Euclidean space (G2 , ∥ ⋅ ∥2),
and dim E3 = m − j + 1 ≥ nαє/2 + 1, which is strictly larger than the dimension
of the kernel of RQ, because it has dimension at most (1 − α)n + єαn/4. By the
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deûnition of quotient norms, the norm of RQ∣E3 when RQ is considered as an op-
erator from E1 to G2 under their original norms is the maximum over points x
in the unit sphere of E3 of the distance from x to the kernel of RQ. By a well-
known consequence of the Borsuk–Ulam antipodal mapping theorem (ûrst observed
in [KKM]; see also [Day]), this distance is one. In view of the relationship (2.1), we
deduce that ∥RQe j∥2 ≥ λ(αє/4)−1M(є/4)−1. Also by (2.1), the norm of RQ is at
most one when considered as an operator from (E1 , ∥ ⋅ ∥1) to (G2 , ∥ ⋅ ∥2). Finally, set
E2 ∶= [e1 , e2 , . . . , e j] and letU1 be the restriction to E2 of RQ, considered as amapping
onto RQE2. We have just shown that the identity on ℓ j

2 factors throughU1 with factor-
ization constant at most λ(αє/4)−1M(є/4)−1, hence it factors with the same constant
through the restriction of Q to E2, considered as an operator from E2 to QE2.

_eorem 2.2 gives an improvement of the qualitative version of_eorem 2.1 when
E = ℓnp , 1 ≤ p < 2. For S ⊂ {1, . . . , n}, let ℓSp be the span in ℓnp of the unit vector basis
elements {e i ∶ i ∈ S}.

_eorem 2.2 _ere is a function g ∶ (0, 1)2 → (1,∞) so that for all 1 ≤ p < 2, all
natural numbers n, and all є ∈ (0, 1), the following is true. If Q is a quotient mapping
from ℓnp onto a normed space F and dim F = αn, then there is a subset S of 1, 2, . . . , n
of cardinality (1 − є)αn such that ∥(Q

∣ℓSp)
−1∥ ≤ g(α, є).

Sketch of proof _e main point is the observation made in [JS, _eorem 2.1] that
the proof of [BKT,_eorem 2.1] by Bourgain, Kalton, and Tzafriri shows that there is
a constant c > 0 so that if Q is a quotient mapping from ℓnp , 1 ≤ p < 2, onto a space
of dimension at least βn, then there is a subset S of 1, 2, . . . , n of cardinality at least
c1/βn so that ∥(Q

∣ℓSp)
−1∥ ≤ c−1/β . Given a quotient mapping Q on ℓnp whose range has

dimension αn and given 0 < є < 1, apply the observation iteratively with β ∶= (1−є)α.
At step one set Q1 ∶= Q and get S1 ⊂ {1, 2, . . . , n} of cardinality at least c1/βn so that
∥((Q1)

∣ℓS1p
)−1∥ ≤ c−1/β . At step two take the quotient mapping Q2 on ℓnp whose kernel

is the span of the kernel of Q1 and {e i}i∈S1 and get S2 ⊂ {1, 2, . . . , n} of cardinality at
least c1/βn so that ∥((Q2)

∣ℓS2p
)−1∥ ≤ c−1/β . Necessarily, S1 and S2 are disjoint. More

importantly, from the deûnition of the norm in a quotient space we see that in Qℓnp ,
the normof the projection fromQ[e i]i∈S1∪S2 ontoQ[e i]i∈S1 that annihilates Q[e i]i∈S1

is controlled by c−1/β , which implies that the norm of (Q
∣ℓp S1∪S2 )

−1 is also controlled.
_en let Q3 be the quotient mapping on ℓnp whose kernel is the span of the kernel
of Q and {e i}i∈S1∪S2 and use the observation to get S3. _e iteration stops once the
dimension of the kernel of Qk is larger than (1− βn), which happens a�er fewer than
c−1/β steps; say, a�er k steps. By construction you can estimate the basis constant of
(Q[e i]i∈Sm)

k−1
m=i , so that Q will be a good isomorphism on [e i ∶ i ∈ ∪k−1

m=1Sm], because
it is a good isomorphism on each [e i ∶ i ∈ Sm] for 1 ≤ m < k.

Remark 2.3. It is interesting to have the best estimates for γ in _eorem 2.1 and for g
in _eorem 2.2. In _eorem 2.1 we gave the estimate for γ(є) that the method gives
and we think that this might be the order of the best estimate. We did not do the
same in _eorem 2.2, because we think that a diòerent argument is probably needed
to obtain the best estimate for g(α, є).
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