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Quotients of Essentially Euclidean Spaces

Tadeusz Figiel and William Johnson

Abstract. A precise quantitative version of the following qualitative statement is proved: If a finite-
dimensional normed space contains approximately Euclidean subspaces of all proportional dimen-
sions, then every proportional dimensional quotient space has the same property.

1 Introduction

Given a function A from (0,1) into the positive reals, a finite-dimensional normed
space E is called A essentially Euclidean provided that for every € > 0 there is a sub-
space E. of E that has dimension at least (1 — ¢) dim E and the Euclidean distortion
c2(E¢) of E¢ is < A(e€); that is, E. is A(€)-isomorphic to the Euclidean space of its
dimension. A family J of finite-dimensional spaces is A essentially Euclidean pro-
vided that each space in F is A essentially Euclidean, and ¥ is called essentially Eu-
clidean if it is A essentially Euclidean for some function A, as above. Litwak, Mil-
man, and Tomczak-Jaegermann [LMT-J] considered the concept of essentially Eu-
clidean, but what we are calling an essentially Euclidean family they would term a
1-ess-Euclidean family. The most studied essentially Euclidean families are the class
of all finite-dimensional spaces that have cotype two constant less than some numeri-
cal constant, and the set of all finite-dimensional subspaces of a Banach space that has
weak cotype two [Pis, Chapter 10]. However, if one is interested in the proportional
subspace theory of finite-dimensional spaces, cotype two and weak cotype two are
unnecessarily strong conditions, because they are conditions on all subspaces rather
than on just subspaces of proportional dimension. For example, let 0 < & < 1and let
F, be the family {£"" @, € : n =1,2,3,...} (throughout, we use the convention,
standard in the local theory of Banach spaces, that when a specified dimension is not
a positive integer, it should be adjusted to the next larger or smaller positive integer,
depending on context). The cotype two constants of the spaces in J, are obviously un-
bounded and it is also well known that the family does not live in any weak cotype two
space. Computing that F, is A, (¢) essentially Euclidean with A, (¢) < (1/€)*/2(0=%) s
straightforward: First, when n® < en, the space £/~ @, £". has a subspace of dimen-
sion at least (1 — ¢)# that is isometrically Euclidean. On the other hand, if en < n*,
then the entire space £/~ @, £7. is n*/>-Euclidean, since that is the isomorphism
constant between €7 and £2°, and n*/? < (1/¢)*/2(-%),
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It is also simple to check that the essentially Euclidean property passes to propor-
tional dimensional subspaces. Suppose that E is an n-dimensional space that is A
essentially Euclidean, F is a subspace of E that has dimension an, and € > 0. Take a
subspace E; of E of dimension (1-ea)n with ¢;(E;) < A(ea). Thendim EynF > an—
ean = (1-¢)an, which implies that F is A essentially Euclidean with Ag(¢) < A(ea).
It is, however, not obvious that the essentially Euclidean property passes to propor-
tional dimensional quotients; the main result of this note is that it does.

We use standard notation. We just mention that if A is a set of vectors in a normed
space, [A] denotes the closed linear space of A, and e; denotes the i-th unit basis
vector in a sequence space.

2 Main Result

The main tool we use is Milman’s subspace of quotient theorem [Mil], [Pis, Chapters 7
& 8]. In [LMT-]] this theorem is not used directly, but the ingredients of its proof are.
The theorem says that there is a function M: (0,1) - R* such that for every n and
every 0 < § < 1, if dim E = n then there is a subspace F of some quotient of E so that
dimF = (1-8)n and ¢c,(F) < M(9). It is known that M(8) < (C/8)(1+|log Cd)),
as 6 — 0 [Pis, Theorem 8.4].

Theorem 2.1 Suppose that E is A essentially Euclidean, 0 < o < 1, and Q is a quotient
mapping from E onto a space F. Let n = dim E and assume that dim F = an. Then F
is y essentially Euclidean, where y(€) < A(ea/4)M(e/4); in fact, for each € > 0 there is
a subspace E, of E and operators A: €217€ *" > E, and B: QE, — €§17€)“" such that
BQA is the identity on €™ and | A| - | B| < A(ea/4) M (e/4).

Proof Setn:=dimE and fix 0 < € < 1. Let R be a quotient mapping from F onto a
space G that has a subspace G, of dimension (1-¢/4)an such that ¢;(G,) < M(e/4).
We want to find a subspace E, of E with dim E; > (1-€)an so that RQE, c G, and RQ
is a “good” isomorphism on E,, which implies that Q is also a “good” isomorphism
on E,. Since |R| = | Q| = 1, “good” means that [RQx| is bounded away from zero
for x in the unit sphere of E;. Since E is A essentially Euclidean, there is a subspace
Ey of E with dim Eg = (1- ae/4)n such that c;(Eq) < A(ae/4). Put Euclidean norms
| -]l and || - |2 on Ep and G, respectively, to satisfy for all x € Eq and all y € G, the

inequalities
21 ] < flxly < Aae/4) x| and  M(e/4) ]yl < Iylz <[yl
Define E; := Eg n (RQ)™'G; so that dim E; := m > (1 - €a/2)n.

Now take an orthonormal basis ey, €5, ..., e, for the Euclidean space (Ej, |- 1)
so that RQey, RQe,, ..., RQe,, is orthogonal in the Euclidean space (Ga, || - |2) and
ordered so that |RQe 2, [RQez2, .-, |RQen|2 is decreasing. We next compute

that |RQe;; is large for j := (1 - €)an. Now |RQe;j] is the norm of the restric-
tion to E3 := [ej, €ji1,...>€(1-ae/2)n] Of the operator RQ when it is considered as
an operator from the Euclidean space (Ej, |- [;) to the Euclidean space (G, || - |2),
and dimE; = m— j+1 > nae/2 + 1, which is strictly larger than the dimension
of the kernel of RQ, because it has dimension at most (1 — «)n + ean/4. By the
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definition of quotient norms, the norm of RQz, when RQ is considered as an op-
erator from E; to G, under their original norms is the maximum over points x
in the unit sphere of E; of the distance from x to the kernel of RQ. By a well-
known consequence of the Borsuk-Ulam antipodal mapping theorem (first observed
in [KKM]; see also [Day]), this distance is one. In view of the relationship (2.1), we
deduce that |[RQe;[, > A(ae/4)"M(e/4)". Also by (2.1), the norm of RQ is at
most one when considered as an operator from (Ej, |- ||1) to (Ga, || - |2). Finally, set
E; :=[e1, es,...,ej]andlet U, be the restriction to E; of RQ, considered as a mapping
onto RQE,. We have just shown that the identity on £} factors through U; with factor-
ization constant at most A(ae/4) M (e/4) ™", hence it factors with the same constant
through the restriction of Q to E,, considered as an operator from E; to QE,. [ |

Theorem 2.2 gives an improvement of the qualitative version of Theorem 2.1 when
E=¢5,1<p<2 ForSc{l...,n}let Ef, be the span in £} of the unit vector basis
elements {e; : i € S}.

Theorem 2.2  There is a function g: (0,1)> — (1,00) so that for all1 < p < 2, all
natural numbers n, and all € € (0,1), the following is true. If Q is a quotient mapping
Jfrom € onto a normed space F and dim F = an, then there is a subset S of 1,2,...,n

of cardinality (1 — €)an such that || (Q‘gi)_l | < g(a,€).

Sketch of proof The main point is the observation made in [JS, Theorem 2.1] that
the proof of [BKT, Theorem 2.1] by Bourgain, Kalton, and Tzafriri shows that there is
a constant ¢ > 0 so that if Q is a quotient mapping from €7, 1 < p < 2, onto a space
of dimension at least Bn, then there is a subset S of 1,2, ..., n of cardinality at least
/B n so that | (Ques)” ! < /. Given a quotient mapping Q on €% whose range has
dimension an and's given 0 < € < 1, apply the observation iteratively w1th B=(1-¢€)a.
At step one set Q; := Q and get S; ¢ {1,2,...,n} of cardinality at least c'/#n so that
II( (Ql)| e )Y < ¢7VB. At step two take the quotient mapping Q, on ¢, whose kernel
is the span of the kernel of Q; and {e; };cs, and get S, c {1,2,...,n} of cardinality at
least ¢'/Pn so that H((Qz) sz) Y < ¢™VB. Necessarily, S, and 82 are disjoint. More
importantly, from the deﬁmtlon of the norm in a quotient space we see that in Q¢%,
the norm of the projection from Q[e; ];es,us, onto Q[ e; ]ses, that annihilates Q[ e; ]ses,
is controlled by ¢ /A, which implies that the norm of (Q £,51U52 )~! is also controlled.
Then let Q5 be the quotient mapping on £j whose kernel is the span of the kernel
of Q and {e; }ies,us, and use the observation to get S;. The iteration stops once the
dimension of the kernel of Qy is larger than (1- fin), which happens after fewer than
¢ VB steps; say, after k steps. By construction you can estimate the basis constant of
(Q[e z]zesm)m ., so that Q will be a good isomorphism on [e;:i € uk-18,,], because
it is a good isomorphism on each [e;:i € S, | for 1< m < k. [ |

Remark 2.3. Tt is interesting to have the best estimates for y in Theorem 2.1 and for g
in Theorem 2.2. In Theorem 2.1 we gave the estimate for y(e) that the method gives
and we think that this might be the order of the best estimate. We did not do the
same in Theorem 2.2, because we think that a different argument is probably needed
to obtain the best estimate for g(a,¢).
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