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Abstract.—Cambrian strata of the Laurentian craton contain numerous examples of Burgess Shale–type faunas. Although
displaying a more or less concentric distribution around the cratonal margin, most faunal occurrences are in present-day
western North America, extending from the Northwest Territories to California. Nevertheless, the soft-bodied and lightly
skeletalized fossils in most of these Lagerstätten are highly sporadic. Here, we extend knowledge of such Middle Cambrian
occurrences in Utah with reports of four taxa. An arthropod from the Marjum Formation, Dytikosicula desmatae gen. et sp.
nov., is a putative megacheiran. It is most similar to Dicranocaris guntherorum, best known from the younger Wheeler
Formation, but differs primarily in the arrangement of pleurae and overall size. Along with a specimen of ?Yohoia sp, a new
species of Yohoia, Y. utahana sp. nov., is described. It differs from the type and only known species, Y. tenuis, principally
in its larger size and shorter exopods; it is the first description of this genus from outside the Burgess Shale. A new species
of a stem-group lophotrochozoan from the Spence Shale, Wiwaxia herka sp. nov., possesses a palisade of dorso-lateral
spines that are more robust and numerous than the type species of Wiwaxia, W. corrugata. Another notable taxon is
Eldonia ludwigi from the Marjum Formation, which is interpreted as a primitive ambulacrarian (assigned to the
cambroernids) and a new specimen of the ?cnidarian Cambrorhytium from the Wheeler Shale is illustrated.

Introduction

The soft-bodied and lightly skeletalized fossils of the Burgess
Shale–type biotas have had a profound impact on our under-
standing of the major radiations of the early metazoans, an event
colloquially referred to as the Cambrian “explosion” (e.g.,
Conway Morris, 1998; Marshall, 2006). To date, only three
occurrences are especially prolific. These are the type locality in
British Columbia, Canada (and adjacent outcrops, see Collins
et al., 1983), the Chengjiang localities around Kunming, Yun-
nan, China (e.g., Chen and Zhou, 1997; Zhang et al., 2008), and
Sirius Passet, Peary Land, North Greenland (e.g., Conway
Morris and Peel, 1995, 2008; 2010; Budd, 2011; Daley and
Peel, 2010; Ineson and Peel, 2011; Peel and Ineson, 2011). This
is not to say that other localities do not have very considerable
potential: most notable in this respect are faunas from the Emu
Bay Shale of South Australia (e.g., Paterson et al., 2010, 2011;
Edgecombe et al., 2011) and in South China both the Kaili
deposits from Guizhou, (e.g., Zhao et al., 2003, 2005; Lin, 2006;
Yang et al., 2011) and new assemblages (Guanshan, Xiaoshiba)
adjacent to Kunming (e.g. Hu et al., 2010; Yang et al., 2013).

Although these localities rightly enjoy the lion’s share of
attention, in terms of present-day geography, the lower and
middle Cambrian Burgess Shale-type faunas (broadly construed:
Conway Morris, 1989; Butterfield, 1995) are widely distributed,
with records from western Canada (e.g., Copeland, 1993;

Butterfield and Nicholas, 1996; Randell et al., 2005; Johnston
et al., 2009; Caron et al., 2010; Kimmig and Pratt, 2015), eastern
United States (e.g., Skinner, 2005; Schwimmer and Montante,
2007; Conway Morris and Peel, 2010), Russia (e.g., Repina and
Okuneva, 1969; Friend et al., 2002; Ivantsov et al., 2005),
Australia (e.g., Jago and Anderson, 2004; Ortega-Hernandez
et al., 2010), Europe (e.g., Conway Morris and Robison, 1986;
Chlupáč and Kordule, 2002; García-Bellido et al., 2011; Gámes
Vintaned et al., 2011), and China (e.g., Steiner et al., 2012; Xiao
et al., 2005; Zhang and Hua, 2005; Liu, 2013; Sun et al., 2013).

It remains the case, however, that in a significant number of
these latter Burgess Shale–type localities, the quality of pre-
servation may be impressive, but the range of material is rela-
tively limited and has only been obtained as the result of
intensive and protracted seasons of collecting. This applies, for
example, to a series of localities in the western United States,
most of which are in Utah. Outcrops in the Latham Shale
(Gaines and Droser, 2002), Poleta Formation (English and
Babcock, 2010), Pioche Formation (e.g., Webster et al., 2008),
Spence Shale (e.g., Conway Morris and Robison, 1988; Liddell
et al., 1997; Gaines and Droser, 2005; Garson et al., 2012),
Wheeler Formation (e.g., Conway Morris and Robison, 1986;
Gaines et al., 2005; Halgedahl et al., 2009; Stein et al., 2011),
Marjum Formation (e.g., Gaines and Droser, 2010), and
Weeks Formation (e.g., Bonino and Kier, 2010; Robison and
Babcock, 2011; Lerosey-Aubril et al., 2013) have yielded a
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series of Burgess Shale-type fossils. These include non-trilobite
arthropods, priapulids, sponges and chancelloriids, as well as
several taxa, notably the medusiform Eldonia and cataphract
Wiwaxia, whose systematic positions have been more con-
tentious. To the existing literature on these localities scattered
across the Great Basin (e.g., Rigby, 1983; Gunther and Gunther,
1981; Briggs and Robison 1984; Robison, 1991; Conway
Morris and Robison, 1986, 1988; Rigby et al., 1997; Waggoner
and Hagadorn 2004; Briggs et al., 2005; Cartwright et al., 2007;
Halgedahl et al., 2009; Moore and Lieberman, 2009; Conway
Morris and Peel, 2010; Gaines and Droser, 2010) we now add
some significant new finds. These include an articulated speci-
men of a new species ofWiwaxia (Spence Shale), arthropods in
the form of Dytikosicula desmatae gen. et sp. nov. (Marjum
Formation), as well as specimens of ?Yohoia sp. and Yohoia
utahana sp. nov. (Spence Shale), and a large specimen of
Eldonia (Marjum Formation). In passing, we also draw attention
to a specimen of the questionable cnidarian Cambrorhytium
(Wheeler Formation).

Methods

Specimens were photographed with Canon 5D MkII and MkIII
cameras (Canon U.S.A. Inc., Melville, NY) mounted on Leica
MZ12.5 and MZ16 stereomicroscopes, either dry or under 70%
ethanol, and in cross-polarized light using a ring light and/or
low-angle illumination with polarizing filters, and a polarizing
filter in front of the objective lens. For each specimen, several
photographs were taken at different levels of focus and then
stacked using Adobe Photoshop CS6 (Adobe Systems Inc., San
Jose, CA) to ensure all parts of each specimen were in focus. For
some larger specimens, a mosaic of photographs was taken and
these were then merged using Photoshop (see Selden, 2014 for
further details). Drawings were made using camera lucida
attachments to the microscopes and digitized using iDraw 2.4
(www.indeeo.com).

Systematic paleontology

Specimens are housed in the University of Kansas Natural
History Museum, Lawrence, Kansas (KUMIP prefix) and the
Sedgwick Museum, University of Cambridge (SM prefix).

Phylum Arthropoda von Siebold, 1848
Family Yohoiidae Henriksen, 1928

Genus Yohoia Walcott, 1912

Type species.—Yohoia tenuis Walcott, 1912.

Yohoia utahana new species
Figure 1.1–1.4

Diagnosis.—Relatively large (approximately 30 mm), tergites
10–13 bear tergopleurae, expods short with large spines, and
mostly covered by tergopleurae.

Description.—Large Yohoia, body length 30.9 mm (including
telson, excluding great appendage); straight trunk; head shield
with median smooth portion, and large lateral area with strongly

curved margins divided into three regions. Anterior border of
median part of head shield expanded slightly anteriorly, beyond
procurved line (Fig. 1.1, 1.2). Pair of eyes situated anteriorly
beyond anterior margin of head shield. Great appendage
consisting of proximal element emerging from beneath anterior
head shield between eyes, extending downwards not beyond
lateral edges of head shield, followed by distal element
extending upwards. Trunk of 13 segments, increasing in length
from approximately 1.0 mm (1), through approximately 1.5 mm
(5–9) to approximately 2.0 mm (11–13), and telson. Tergites
show slight posterior imbrication. Tergopleura of tergite
1 lobate, narrower (transversely) than other tergites, partly
covered by posterior margin of head shield. Tergopleurae
2–9 lobate, with recurved anterior margin, curved tip, procurved
posterior margin (Fig. 1.1, 1.2). Curvature of anterior and
posterior margins increases posteriorly, so tergopleurae of
more posterior tergites appear more swept back. Tergopleura 10
with recurved anterior margin, short pointed posterior angle.
Tergopleurae 11–13 narrower (transversely), with short
sharply pointed posterior angles. Trunk limbs with exopod and
endopodal rami. At least 6 endopods, associated with trunk
segments 1–5, 8 (Fig. 1.3, 1.4); exopods on trunk segments
1–9, not seen on segments 10–13. Endopods slender, at
least distally where seen protruding from beneath head shield
or tergopleurae, tapering distally. Exopods appear as fan of
stout bristles, connected by organic material (?setules),
curving backwards and downwards, extending only slightly
beyond margins of tergopleurae. Telson spatulate, lineations on
surface, straight posterior margin bearing zigzag pattern of short
spines.

Holotype.—KUMIP 357406, only known specimen (collected
by PMJ), part and counterpart.

Etymology.—After Utah, the state in which the specimen
was found.

Occurrence.—Spence Shale Member, Langston Formation
(Hintze, 1988, Chart 15), lower Middle Cambrian, polymerid
Glossopleura Zone (Robison, 1976). Locality is about 35 m
above base of Spence Shale, Miner’s Hollow, Wellsville
Mountain, Box Elder County, Utah.

Remarks.—Terminology follows Haug et al. (2012). It is not
straightforward differentiating morphology from abiogenic
marks in the matrix, such as with a scattering of darker patches,
particularly near the anterior of the specimen. A suboval patch
near the apex of the head shield resembles an eye. However, in
cross-polarized light, the putative eye shows a slightly different
coloration, indicating that the suboval patch is matrix. Similarly,
matrix patches align with the endopods but these, too, are not
thought to be part of the animal.

The body is laterally compressed. Anteriorly, however, the
head region has rotated longitudinally. Previous reconstructions
of Yohoia (Whittington, 1974; Haug et al., 2012) show the eyes
to be near the top of the head shield, adjacent to the base of the
lateral area of the head shield. In this specimen, the eye position
is similarly adjacent to the base of the lateral area of the head
shield, but the head shield extends further dorsally from the eye
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than would be the case if it were strictly a lateral compression.
At the opposite end of the animal, the telson also presents a
dorso-ventral aspect, similarly suggesting a degree of rotation.

The body is straight with neither curvature nor a distinct
bend which would indicate a tail region. In life, however, it was
clearly flexible because adjacent tergites imbricate. Cephalic

Figure 1. Yohoia utahana sp. nov., holotype, KUMIP 357406. (1) photograph of part; (2) interpretative camera-lucida drawing of part; (3) photograph of
counterpart; (4) interpretative camera-lucida drawing of counterpart. e, eye; ex1, ex2, etc. exopods; en1, en2, etc., endopods; ga, great appendage; tp, tergopleura.
Grey areas indicate possible gut trace; black shows black particles within possible gut (Fig. 1.2). Dashed lines on Figure 1.4 indicate outline of darker color
representing organic material between exopod spines. Scale bars represent 5 mm.
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appendages include a poorly preserved great appendage and a
pair of eyes. With respect to the former the great appendage is
poorly preserved, but appears to show a downward part
emerging from the anterior of the head between the eyes, and
beyond this an upward-sweeping part (the claw element). In the
case of the eyes one is located between the great appendage and
the head shield; the other eye is less obvious but on the part is
superimposed on the base of the great appendage (Fig. 1.1, 1.2).
Scattered black patches along the trunk (most obvious on
segments 3–9) may be remains of the gut; the line of these
coincides with the junction between the main part of each tergite
and its tergopleura (Fig. 1.1, 1.2). A similar line of dark patches
can be seen in the Yohoia specimens figured by Haug et al.
(2012; fig. 3).

Interpretation of the tergopleurae and exopods is proble-
matic. The part (Fig. 1.1, 1.2) shows lateral tergopleurae which
extend at least the same distance from their junction with main
tergite as the width of the latter. In contrast, in the type species
the tergopleurae are relatively shorter than the large, flap-like
structures that extend beyond the tergite edges and have been
interpreted as exopods (Whittington, 1974; Haug et al., 2012).
On the counterpart (Fig. 1.3, 1.4) radiating lines resemble the
fringing setae of the exopods, but they are much sparser and
stouter. Moreover, rather than forming a fringe they are almost
completely covered by the tergopleurae. Thus, in the new
species, the exopods are shorter than in Y. tenuis (see Haug et al.,
2012, fig. 9). In Y. utahana, the tips of the tergopleurae do not
extend beyond the lateral edge of the head shield, as do the ends
of the radiating lines. The tergopleurae (in the part; Fig. 1.1, 1.2)
seem, therefore, to be real, whereas the underlying radiating
lines (in the counterpart, Fig. 1.3, 1.4) likely represent exopodal
spines. On the counterpart (Fig. 1.3, 1.4), the matrix shows a
darker hue between the exopodal spines (outlined in dashed lines
on the drawing), which possibly represents organic material—
perhaps masses of setules—connecting the exopodal spines.

Compared with the type and only known species of Yohoia
(Y. tenuis Walcott, 1912), this is larger, with a body length of
30.9 mm. Length of tergites 3–5 (l1 of Haug et al., 2012) is
4.2 mm, length of the head shield (l2 of Haug et al., 2012) is
4.6 mm. Plotting l1/l2 (Fig. 2) on the graph of similar
measurements for Y. tenuis (Haug et al., 2012, fig. 2) shows Y.
utahana to lie well beyond the scatter of points, at more than
twice the mean for both measurements of the type species. The
lateral areas of the head shield show strongly curved margins, in
which respect it differs from the type species, in which these
lateral areas are subquadrate (Whittington, 1974, text-fig. 2;
Haug et al., 2012). As in Y. tenuis, the lateral area is divided into
three parts, and the trunk consist of 13 segments and a telson
which is almost indistinguishable from that of Y. tenuis
(Whittington, 1974).

Related genera (Stein et al., 2013) from the Lower
Cambrian Chengiang biota of China include Fortiforceps Hou
and Bergström, 1997, which has somewhat similar exopods but
lacks tergopleurae and has 20 tergites, and Jianfengia Hou,
1987, which has even more (22) tergites. On the other hand
Haikoucaris Chen, Waloszek and Maas, 2004 has the same
number of postcephalic tergites as Yohoia (13) and possibly
similar exopods (albeit on all trunk segments), but lacks
tergopleurae and has a distinct telson. Yohoia differs from all

of these related genera in its distinctive head shield with the
large, tripartite, lateral area, and spatulate telson composed of a
single plate.

?Yohoia species indeterminate
Figure 3

Description.—Single specimen occurs in dorso-ventral aspect.
Most obvious feature is trunk, with at least nine segments, and
prominent tergopleurae (Fig. 3). Largest of these at mid-point,
and decrease markedly in size toward the presumed posterior.
Broad central strand may represent gut trace. It has slight relief,
and may be sediment-filled. Alternatively (considering Yohoia
is not known to have a sediment-filled gut), the specimen may
have split at level of tergopleurae but below level of arched
dorsum, revealing matrix beneath. Both ends of specimen
indistinct, but presumed anterior (head shield) approximately
quadrate. Opposite end smaller and appears to be approximately
circular. No appendages preserved.

Figure 2. Scatterplot of lengths of tergites three to five (l1) versus length of
head shield (l2) of: ● Yohoia tenuis Walcott, 1912, and ★ Yohoia utahana sp.
nov. Yohoia tenuis data from Haug et al. (2012, fig. 2).

Figure 3. ?Yohoia sp., SM X.50206; photograph under ethanol. Scale bar
represents 5 mm.
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Material.—SM X.50206, collected by PMJ, part only.

Occurrence.—Spence Shale Member, Langston Formation,
(Hintze, 1988, Chart 15), lower middle Cambrian, polymerid
Glossopleura Zone (Robison, 1976). Locality is
approximately16 m above base of Spence Shale, as float,
Miner’s Hollow, Wellsville Mountain, Box Elder County, Utah.

Remarks.—Attribution to Yohoia (see Whittington, 1974) is
provisional. Apart from size, its principal similarities are the
prominent tergopleurae, and possibly the head-shield. Unlike
Yohoia, however, the tergopleurae are prominent to the last
(visible) trunk segment

Genus Dytikosicula new genus

Diagnosis.—As for the species.

Type species.—Dytikosicula desmatae new species.

Etymology.—Based on the Greek west (dytikos) and small
dagger (sicula), and is a combined reference to both the geo-
graphical area and the recurved paratergal extensions.

Remarks.—This new taxon is similar to Dicranocaris (Briggs
et al., 2008). Phylogenetic relationships of Cambrian arthropods

are not fully resolved but Dicranocaris appears to be a mega-
cheiran (Ortega-Hernández et al., 2013; see also Hendricks and
Lieberman, 2008).

Dytikosicula desmatae new species
Figures 4.1–4.2, 5.1–5.2

1981 ?Molaria-like trilobitomorph, Gunther and Gunther,
pl. 48B.

1991 ?Alalcomenaeus cf. cambricus (Simonetta); Robison,
p. 86, fig. 7.10.

2008 ?Dicranocaris guntherorum Briggs et al., p. 245,
figs 5.4–9 [non figs. 5.1–3].

Diagnosis.—Subcircular head shield and trunk with at least six
tergites, all with prominent pleurae. It differs from Dicranocaris
by trunk segment one bearing pleura, and pleurae more arcuate.
Head shield similar, but dorsal outline more circular.

Description.—Single specimen (Figs. 4, 5) preserved in dorsal
aspect, lacks posterior section. Head shield suboval in outline,
with smooth margins and gently concave posterior margin
abutting first thoracic segment. No evidence for eyes. Trunk
undifferentiated, but bears six rather prominent pleural

Figure 4. Dytikosicula desmatae gen. et sp. nov., holotype, SM X.50203. (1) photograph dry in low-angle light; (2) photograph under ethanol. Scale bars
represent 5 mm.
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extensions, quite strongly recurved posteriorly and well sepa-
rated. Posterior end incomplete. No appendages preserved.

Holotype.—SM X.50203, holotype and only known specimen,
part only. Specimen originally collected by Robert Drachuk,
and donated by Charlie Magovern.

Etymology.—Refers to the proposed link (Greek, desmos, bond
or chain) to other Cambrian megacheirans.

Occurrence.—Marjum Formation, middle Cambrian. Locality
is west of Delta, House Range, Utah.

Remarks.—Specimen shows characteristic Burgess Shale-type
preservation (e.g. Briggs et al., 2008). Otherwise parts of the
fossil have a brownish mineral adhering which may represent
the original skeleton, apparently uncalcified. Associated with
part of the thorax are granular areas, probably representing
diagenetic mineral growth (?pyrite). These are not obviously

consistent with any soft-part anatomy, but may have resulted
from decaying tissue.

This new taxon is most similar to the megacheiran
Dicranocaris guntherorum Briggs et al., 2008, best known
from the Wheeler Formation but is also recorded from the
Marjum Formation. Detailed comparisons are hindered because
the best preserved specimen of D. guntherorum is more
complete than the sole specimen of D. desmatae, and is buried
at an oblique angle in comparison to the dorso-ventral attitude of
the specimen described here. The most obvious difference is that
whereas in D. guntherorum the pleural extensions of the trunk
are limited to segments 2 to 5, in D. desmatae each of the
preserved segments bears pleura. In addition and making
allowances for the different angles of burial, the head of
D. desmatae appears to be somewhat more circular. Deciding
whether Dytikosicula desmatae is a distinct taxon, or better
interpreted as another species of Dicranocaris is to some extent
a matter of judgement. Generic distinction, however, is
warranted not only by the differences noted, but also the
conspicuously larger size of the holotype. In this context it is
tentatively suggested that other material (albeit from theWheeler
Formation) and attributed questionably to D. guntherorum by
Briggs et al. (2008; figure 5.4–9; see also Gunther and Gunther,
1981; Robison, 1991) not only falls into the same size range of
D. desmatae but may be better accommodated in this taxon.
Thus despite poor preservation these specimens (all in lateral
view) show some evidence for a pleuron on the first trunk
segment (see also Gunther and Gunther, 1981, pl. 48; the precise
interpretation of these structures diverged amongst the authors
contributing to Briggs et al. (2008)).

It is also worth noting a possible relationship to the arthropod
Serracaris lineata Briggs, 1978, which is known only from the
Lower Cambrian Kinzers Formation of Pennsylvania. All speci-
mens of this taxon are incomplete, but available material consists of
an elongate trunk consisting of at least fifteen tergites with recurved
extensions. The most obvious differences are that in Serracaris
these tergal extensions on either side appear to be double. In
addition, one segment towards the anterior end has conspicuously
larger extensions, although there they appear to have been single.
Briggs (1978, Pl. 1, fig. 4) drew attention to a possible anterior
carapace. Because of its unique occurrence he regarded it,
however, as probably fortuitous. It does, however, have some
similarity to the head shield of Dytikosicula, but in Serracaris it
appears proportionally larger and possibly wider. Although the
posterior end of the unique specimen of D. desmatae is not
preserved, Briggs et al. (2008) drew attention inD. guntherorum to
“the unique morphology of the telson” (p. 245) with its terminal
bifurcation. Although these authors made no comparison,
Serracaris also possesses a bifurcate telson (Briggs, 1978).
Serracaris is, of course, stratigraphically somewhat older than
Dytikosicula. From the Eldon Formation of British Columbia
Briggs (1978, text fig. 2a, b) described a more nearly
contemporaneous form toD. desmatae as Serracaris?. The unique
specimen is poorly preserved, and appears to have had more
spinose tergal projections.

Stem-group Lophotrochozoa

Remarks.—Current consensus regards the wiwaxiids as having a
molluscan affinity (e.g. Yang et al., 2014). Our material throws no

Figure 5. Interpretative camera-lucida drawing of Dytikosicula desmatae
gen. et sp. nov., compare Figure 4. hd, head shield; pl 1, pl 2, etc., pleurae
1–6. Scale bar represents 5 mm.

416 Journal of Paleontology 89(3):411–423

https://doi.org/10.1017/jpa.2015.26 Published online by Cambridge University Press

https://doi.org/10.1017/jpa.2015.26


further light on this question, andwe prefer to take a more agnostic
view of their wider relationships, placing them within the lopho-
trochozoans but not shoe-horning them into a specific phylum.

Family Wiwaxiidae Walcott, 1911a;

Remarks.—Wiwaxiids are best known from articulated material
ofWiwaxia corrugata (Matthew, 1899) from the Phyllopod Bed
of the Burgess Shale (Conway Morris, 1985). Also occurring in
this deposit in moderate abundance are isolated sclerites (and
rarely partial associations), detached from the cataphract scler-
itome either by deciduous action or upon death and post-mortem
scattering (see also Butterfield, 1990; Mankiewicz, 1992).
Sclerites are also known from the Lower and Middle Cambrian
of northwestern Canada (e.g. Butterfield and Nicholas, 1996),
South China (e.g. Y-L. Zhao et al., 1994, 2005; Harvey et al.,
2012; Sun et al., 2014; Yang et al., 2014; F-C. Zhao et al., 2015),
Utah (Conway Morris and Robison, 1988), Australia (Porter,
2004), Czech Republic (Fatka et al., 2011) and Siberia (Ivantsov
et al., 2005). These records collectively indicate that the indi-
vidual sclerites were probably robust and relatively resistant to
decay. In contrast, articulated wiwaxiids are very rare. Apart
from the Burgess Shale examples (Conway Morris, 1985) and
recent discoveries from the Xiaoshiba Lagerstätte (Yang et al.,
2014) and the Kaili Formation (Zhao et al., 1994, 2005, Pl. II,
fig. 2; also Sun et al., 2013, fig. 6) in China, our report is the only
known occurrence of an articulated specimen from Laurentia.

Genus Wiwaxia Walcott, 1911a

Type species.—Wiwaxia corrugata (Matthew, 1899).
Wiwaxia herka new species

Figure 6.1–6.8

Diagnosis.—A wiwaxiid with a prominent palisade of recurved
and stout dorso-lateral spines. Differs from type species in larger
number of spines and their degree of robustness.

Description.—Single articulated specimen (Fig. 6.1, 6.2) pre-
served in approximately lateral view, shows a fairly pronounced
dorso-ventral curvature (cf., Conway Morris, 1985, figs. 82, 83,
88). Most obvious feature is palisade of dorso-lateral spines.
These are quite stout, posteriorly recurved, closely spaced.
Those on the right-hand side (in the part) are clearest, with a
total of 13 visible. Near the anterior end, a few spines of the
opposite side are visible at a lower level. Three anterior-most
spines are somewhat shorter (about half the length of others),
whereas remainder longer and sub-equal length, except at
posterior where again last one or two shorter. Remaining
sclerites, that mantled dorsal and lateral regions of the body,
only moderately well preserved, but components of the lateral
and ventro-lateral series are identifiable. In addition to the
articulated specimen, six isolated sclerites are available. Based
on the characteristic recurved shape, three (KUMIP 286300,
286302) are identified as ventro-lateral (equivalent to siculate;
see Conway Morris and Peel, 1995 [Fig. 6.3, 6.7, 6.8]). Another
two sclerites (KUMIP 286300, 286301), one of which is poorly
preserved, are more elongate and probably represent lateral
( = cultrate) sclerites (Fig. 6.4, 6.5). Finally, one sclerite
(KUMIP 286301) may be from the dorsal region (Fig. 6.6).

Holotype.—KUMIP 287449, holotype, part and counterpart
(Fig. 6.1, 6.2), collected by Glade Gunther. Paratypes, KUMIP
286300 (part with two sclerites, counterpart with opposite side
of ?lateral sclerite only) (Fig. 6.3–6.5), 286301 (Fig. 6.6),
286302 (part and counterpart) (Fig. 6.7, 6.8), donated by Lloyd
Gunther.

Etymology.—From herka (Greek, fence), in reference to the
palisade of spines.

Occurrence.—Spence Shale Member, Langston Formation
(Hintze, 1988, Chart 15), lower Middle Cambrian, polymerid
Glossopleura Zone (Robison, 1976). Locality is approximately
3 m below top of Spence Shale, south side of Antimony Canyon
on west side of Wellsville Mountain; NW¼ sec. 31, T. 10 N.,
R. 1 W.; approximately 4 km north of Brigham City, Box Elder
County, Utah. Other biota from the same locality, mostly
collected by members of the Lloyd Gunther family, include
trilobites Amecephalus idahoense (Resser, 1939a), Athabaskia
wasatchensis (Resser, 1939b), Glossopleura gigantea ? Resser,
1939a, Glossopleura sp., Kootenia mendosa Resser, 1939a,
and Zacanthoides idahoensis Walcott, 1908; other arthropods
Meristosoma paradoxum Robison and Wiley, 1995, Hurdia
indet. sp. (Daley et al., 2013) and an undetermined taxon with
large axial spine on rear shield; undetermined articulate
brachiopods; echinoderms Ctenocystis utahensis Robison and
Sprinkle, 1969, andGogia sp. nov.; a hemichordate (see Loduca
et al., 2013) Yuknessia simplexWalcott, 1919; hyolith Hyolithes
carinatus Babcock and Robison, 1988; sponge Vauxia
gracilenta? Walcott, 1920; worms Ottoia prolifica Walcott,
1911a, and Selkirkia sp.; other animal taxa, Eldonia ludwigi
Walcott, 1911b, and Scenella sp.; large coprolites (cf. Conway
Morris and Robison, 1988, fig. 32); and algae Marpolia spissa
Walcott, 1919.

Remarks.—Erection of new species Wiwaxia herka is based
on a single articulated specimen, seems justified on account of
the distinctiveness of its dorso-lateral spines. In contrast to
W. corrugata (Conway Morris, 1985) spines are more densely
arrayed (approximately 12 versus an average of approximately
8) and less elongate. On the unproven assumption that the iso-
lated sclerites (Fig. 6.3–6.8) derive from the same species, the
ventro-lateral ones appear similar to those of W. corrugata,
whereas the ?lateral and ?dorsal sclerites appear to be more
elongate. W. herka is evidently closely related to W. corrugata,
but differs more obviously from other lower Cambrian taxa
from China (Zhao et al., 1994; Yang et al., 2014) in being
substantially larger and possessing spines (also absent in juvenile
W. corrugata: Conway Morris 1985).

This new species confirms the basic arrangement of the
wiwaxiid scleritome, but does not throw further light on their
phylogenetic position within the lophotrochozoans. One
approach is to treat wiwaxiids as stem-group annelids. This is
on the dual supposition of the similarities of the sclerite
microstructure to annelidan chaetae (Butterfield, 1990; see also
Conway Morris and Peel, 1995) and the inferred transformation
of the scleritome into parapodial bundles capable of locomotion
and defense (Conway Morris and Peel, 1995; Struck, 2011).
Arguments, especially on the nature of the radula-like mouth-
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parts (Smith, 2012) and similarities to Odontogriphus (Caron
et al., 2006) on the other hand point to a molluscan affinity (see
also Smith, 2014). By itself, W. herka can add nothing material
to this discussion, but it is worth emphasizing that if the
wiwaxiids belong to a stem-group identified as the halwaxiids
(Conway Morris and Caron, 2007) then shoe-horning them into
a given phylum may serve to obscure how crucial anatomical
transitions were achieved among which end-results are the setae
of annelids (and brachiopods) or radula of mollusks.

Superphylum Ambulacraria Metschnikoff 1881
Stem-group Cambroernids

Remarks.—The cambroernids is an un-ranked informal stem
group (Caron et al., 2010).

Family Eldoniidae Walcott, 1911b
Genus Eldonia Walcott, 1911b

Type species.—Eldonia ludwigi Walcott, 1911b.

Eldonia ludwigi Walcott, 1911b
Figure 7.1–7.2

Description.—New specimen, part and counterpart, incomplete
with slightly more than half disc preserved. Maximum width
approximately 80 mm. Principal features (Fig. 7) visible are part
of gut (and associated coelomic cavity) and disc. Latter consists
of two fairly distinct regions. Inner zone traversed by series of
widely spaced radial lines, which are probably on surface of
disc. Outer region bears semi-continuous groove (in part) and

Figure 6. Wiwaxia herka sp. nov. (1) holotype, KUMIP 287449; (2) holotype, interpretative camera-lucida drawing, compare Figure 6.1 Fine lines represent
striations on sclerites; other lines partial outlines of compressed sclerites. Hachure on lower side is edge of excavated sediment. ant, anterior; l sl, lateral sclerites;
v-l sl, ventro-lateral sclerites. Dorso-lateral spines numbered consecutively from anterior; numbers with asterisks refer to left side, others more complete series on
right side; (3–5) KUMIP 286300: (3) isolated ventro-lateral sclerite (part only); (4) isolated ?lateral sclerite, part; (5) isolated ?lateral sclerite, counterpart; (6)
KUMIP 286301 isolated ?dorsal sclerite (part only); (7) KUMIP 286302 isolated ventro-lateral sclerite, part; (8) KUMIP 286302, isolated ventro-lateral sclerite,
counterpart. All photographs taken dry under cross-polarized illumination. Scale bars represents 5 mm (1, 2), 1 mm (3–8).
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otherwise subdued concentric wrinkles. Half of disc, which
might have shown the feeding apparatus, not preserved.

Material.—SM X.50204.1 (part) and SM X.50204.2 (counter-
part), collected by Paul Jamison.

Occurrence.—Middle part of Marjum Formation, mid-middle
Cambrian, Ptychagnostus punctuosus Zone. Locality is Marjum
Pass, House Range, Millard County, Utah.

Remarks.—Specimen from the same stratigraphic horizon was
described by Conway Morris and Robison (1988, figs. 28, 29).
To first approximation new specimen is similar, but preserves
outer parts of the disc more clearly.

The medusiform eldoniids (and rotadiscids) are a char-
acteristic component of Burgess Shale-type faunas. In addition
to their type occurrence in the Burgess Shale (Walcott, 1911b;
Durham, 1974; Friend, 1995), this group is recorded from other
Lower (e.g., Chen et al., 1995; Chen and Zhou, 1997) and
Middle Cambrian localities in China (Zhao and Zhu, 1994; Dzik
et al., 1997), Siberia (Friend et al., 2002), Poland (Masiak and
Zylińska, 1994), and Utah (Conway Morris and Robison, 1988)
Taxonomic affinities of the eldoniids have remained controver-
sial (e.g., Zhu et al., 2002). One suggestion has been to link them
to the lophophorates (e.g., Dzik et al., 1997). More popular has
been to pursue a relationship either to the echinoderms (e.g.,
Friend, 1995) or a more specific proposal that they are actual
holothurians, an idea that stems back to the time of C.D. Walcott
(e.g., Clark, 1912) and has received recurrent support (e.g.,
Durham, 1974; Hou and Bergström, 2003). The description of
the related Herpetogaster collinsi from British Columbia
(Caron, Conway Morris and Shu, 2010; see also Caron et al.,
2010) suggests, however, that this taxon, along with Eldonia
and Phlogites, are stem-group ambulacrarians forming an
informal group known as the cambroernids that lies close to
the echinoderm-hemichordate divergence.

Wider significance

While these finds augment existing knowledge of otherwise rare
taxa, it is worth reviewing some wider implications of this work.
First, as noted,Dytikosicula desmatae gen. et sp. nov. appears to
be a megacheiran, closely related toDicranocaris guntherorum.
In the wider context of Cambrian arthropod evolution (e.g.,
Budd and Telford, 2009; Edgecombe, 2010) the overall diver-
sity of known taxa is striking, and reports of more poorly
preserved material (e.g., Halgedahl et al., 2009; Johnston et al.,
2009; Caron et al., 2010) that in at least some cases represent
new forms (e.g. Legg, 2013) suggest that our documentation of
arthropod morphospace is incomplete. Thus, in the context of
the description ofDytikosicula and its phylogenetic proximity to
Dicranocaris, this indicates a relatively densely occupied area
of morphospace, but a cursory glance at other Cambrian
megacheirans (see Hendricks and Liebermann, 2008) suggests
otherwise a considerable disparity. So too the identification of a
new species of Yohoia hints at another more densely populated
area of arthropod morphospace.

While the collection of Burgess Shale-type fossils from
Middle Cambrian localities in the western United States has
proved to be a relatively slow process, these new finds serve two
useful purposes. First, they confirm that the diversity of these
faunas remains incompletely documented. Second, they rein-
force the notion of a Burgess Shale–type fauna that arguably is
typical of Cambrian shelf seas, although this is not to dispute
environmental controls on the make-up of particular assem-
blages. In general, however, the Burgess Shale-type faunas
differ more in the details rather than general aspect. Although
the majority of assemblages were deposited in offshore, even
deeper water, and in conditions of low oxygen (e.g., Gaines and
Droser, 2010), shallower water locales are also known (e.g.,
Copeland, 1993; Schwimmer and Montante, 2007; Gehling
et al., 2011; see also Masiak and Zylińska, 1994). Collectively,
these confirm a broad faunal identity characterized by arthro-
pods, sponges, priapulids as well as eldoniids (and less frequently
groups such as chordates, polychaetes and vetulicolians), along
with a variety of typical Cambrian shelly taxa (trilobites, hyoliths,

Figure 7. Eldonia cf ludwigi Walcott 1911, SM X.50204.1; (1) photographed dry in low-angle light; (2) photographed under ethanol. Scale bars represent
10 mm.
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brachiopods). Despite this common identity, subtle distinctions
may ultimately reveal paleoenvironmental controls that may in
turn refine our understanding of the ecological preferences of
at least some taxa. A useful test case involves the arthropod
Marrella. Known from an incomplete specimen from the Lower
Cambrian Balang Formation of Hunan (Liu, 2013) and slightly
more abundantly from the lower Middle Cambrian Kaili Fossil-
Lagerstätte of Guizhou (Zhao et al., 2003), prior to these reports
Marrella was effectively known only from the Phyllopod bed of
the Burgess Shale (Whittington, 1971) and immediately adjacent
areas (García-Bellido and Collins, 2006), where it occurs in
extraordinary abundance (e.g. García-Bellido and Collins, 2006;
Caron and Jackson, 2008). It remains conjectural what specific
environmental conditions favor the occurrences of Marrella, or
indeed other highly sporadic occurrences in the Burgess Shale-
type faunas, such as the annelids, chordates, or halkieriids.

Conclusions

This report augments our knowledge of Cambrian arthropods,
notably in the form of Yohoia utahana sp. nov. andDytikosicula
desmatae gen. et sp. nov., and illustrates a new species of
Wiwaxia. It also amplifies the occurrences of Eldonia. Finally,
we also note briefly a specimen (collected by PMJ) of the

tubicolous ?cnidarian Cambrorhytium (see Conway Morris and
Robison, 1988) from the upper Wheeler Shale (Fig. 8) of the
Drum Mountains, Millard County, Utah. The specimen (part
and counterpart) is relatively small (approximately 1 cm) and at
its proximal end shows relatively coarse growth lines (Fig. 8).
No associated soft parts are evident.
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