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SPECULATIONS CONCERNING THE RANGE 
OF MAHLER'S MEASURE 

BY 

D A V I D W. BOYD ( 1 ) 

I would like to express my thanks to the Canadian Mathematical Society for 
inviting me to present this lecture. I would also like to express my appreciation 
to C.J. Smyth for numerous helpful conversations during his visit this year at 
the University of British Columbia. 

This paper follows reasonably closely the outline of the lecture presented in 
Ottawa. More details are given here though and a number of proofs which 
would not be otherwise accessible have been added as Appendices. The 
attentive reader will soon realize the appropriateness of the title. 

1. Lehmer's question. Our subject begins with a question of Lehmer con
cerning a certain function M(P) defined on polynomials P(z) = a0z

d + • • • + ad, 
(a0 i= 0). If P has zeros al9..., ad then the measure of P is defined by 

(1) M(P) = | a 0 | f tmax( | a e | , l ) . 
i = l 

If P has integer coefficients then M ( P ) > 1 . Furthermore, if in this case 
M(P) = 1 and adj= 0 then it is immediate that |OJ| = 1 for all i and that \a0\ = 1 
so a classical theorem of Kronecker [17], [9] tells us that the at must be roots 
of unity; so P is cyclotomic. 

Lehmer's question [19], which was motivated by the study of the sequences 

Am=n(«r-D, 
i = l 

asks how small M(P) can be in case P is not cyclotomic. Specifically, he asks 
whether, 

"Given e > 0 , are there P with integer coefficients for which 1 < M ( P ) < 
1-fe?". 

Although one might be tempted to guess that this should be possible, no 
smaller M ( P ) > 1 has yet been found than Lehmer's example: 
(2) M(P) = 01 = 1.17628... 
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where P(z) = z10 + • • • + 1 = 1 1 0 - 1 - 1 - 1 - 1 - 1 0 1 1, using an obvious nota
tion. 

The functional M{P) comes up naturally in the theory of ergodic automorph
isms of the torus STn, where log M{P) is the entropy of a mapping associated 
with P. Lind [20] has shown that an affirmative answer to Lehmer's question is 
equivalent to the existence of ergodic automorphisms of the infinite dimen
sional torus ST™ which have finite entropy. (See also section 7(1)). 

Some of the most impressive progress on the question has been the work of 
Blanksby and Montgomery [2], Stewart [30] and Dobrowolski [11] aimed at 
obtaining lower bounds on M(P) which depend on the degree d. Of course the 
existence of such bounds is not in question since the set of P of a fixed degree 
with integer coefficients and bounded M(P) is a finite set. One cannot fail to be 
impressed with Dobrowolski's result: if P is not cyclotomic, then 

( 3 ) M ( P ) 2 1 + ^ / , 

where c is an explicit constant. This interesting direction of research has been 
treated in survey articles of Stewart [31], Mignotte [23] and Waldschmidt [33] 
so we will not deal with it further in this paper. 

Instead, we take the point of view that an appropriate object of study is the 
set of numbers L = {M(P) : P has integer coefficients}. Lehmer's question then 
simply asks whether 1 is a limit point of L so an ambitious line of attack would 
be to attempt to characterize all limit points of L. 

Observe that L is a countable set of algebraic numbers contained in the 
interval [1, °°). Furthermore, L is a semigroup under multiplication since 
clearly M(PQ) = M(P)M(Q). Thus, if 1 is a limit point of L then a familiar 
argument shows that L is dense in [1, oo). in fact, all that this requires is that if 
aeL then an eL for all n > 1 (compare the argument in [24]). In this case the 
derived set L(1) of L (the set of limit points of L) would be [1, oo) and hence all 
successive derived sets L (k ) would also be [1, oo). Thus, if 1 were a limit point of 
L then L would be a rather uninteresting set. 

In order to provide a negative answer to Lehmer's question it would suffice 
to show that L is nowhere dense or just that minL ( k ) > 1 for some specific fc. 
But what possible reasons could one have for even suspecting that this might 
be true? 

2. The Pisot-Vijayaraghavan numbers. Consider for the moment a few of 
the known facts concerning a certain subset S of L called the set of Pisot-
Vijayaraghavan numbers or simply the Pisot numbers. We say that 6 > 1 is in S 
if it is the root of a monic polynomial with integer coefficients all of whose 
remaining roots lie in the unit disk \z\< 1. Clearly M(P) = 6 in this case, so we 
do have S c L. 
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The following remarkable facts about S are known: 

(a) (Salem [24]) S is closed, hence nowhere dense (since countable), hence 

minS = 0 o > l (since 1£S) . 

(b) (Siegel [27]) 0O= 1.32471... is the real zero of z 3 - z - l . 
(c) (Dufresnoy and Pisot [14]) 

min S(1) = (V5 +1)/2 - 1.61803... 

(d) (Grandet-Hugot [16]) min S(2) = 2 
(e) (Salem [24], Dufresnoy and Pisot [13], Boyd [7]). The set S(k) is 

non-empty for all finite k, but S(<o) = 0 and in fact min S (k )>Vk. 

Even more detail is known about S, but the above should be enough to 
indicate that S is an extremely remarkable set. This perhaps suggests that L 
may also have a similar interesting structure. 

A note of caution should now be sounded. The proofs of (a)-(e) depend in 
an essential way on the fact that the irreducible polynomials satisfied by 
members of S are non-reciprocal (with a few easily handled exceptions). Here, 
the reciprocal of P is P*(z) = zdP(z~l) = adz

d + • • - + a0, whose roots are the 
reciprocals of the roots of P (still assuming a d ^ 0 ) . Thus if P has one root in 
\z\ > 1 and d - 1 in \z\ < 1 then P* has d - 1 roots in \z\ > 1 and hence P ^ ±P* 
unless possibly d = 2. The proofs of all known facts about S use Salem's 
observation that the function f(z) = P(z)/P*(z) is a non-constant rational 
function which has | /(z) | = l for |z| = l and has integer coefficients in its 
expansion about z = 0. 

The set of Salem numbers T is defined in a similar way to S. A number 0 > 1 
is in T if it is the root of a monic irreducible P with integer coefficients all of 
whose other roots lie in | z |< 1 with at least one on \z\ = 1. This last condition 
forces P to be reciprocal [25]. In contrast with S, it is not even known whether 
T is dense in [1, °°). It is known that S a T(1), (Salem [25]), and the results of 
[3], [4] and [6] perhaps suggest that S U T is closed and S = T(1), but this has 
not yet been proved. Whether one believes that T is dense in [1, oo) or nowhere 
dense depends on whether one believes that proofs of results like (a)-(e) must 
use Pj:±P* or not. 

In view of the success with S as opposed to T, it is natural to single out the 
following subset of L: 

L0 = {M(P) : P is non-reciprocal}. 

And, indeed, Smyth [28] has shown that 

(4) min L0 = 60 = min S, 

thus answering Lehmer's question for non-reciprocal polynomials. We should 
observe that at = 1.17628... of (2) is a Salem number, so perhaps (4) suggests 
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that 

(5) min L = <J1 = min T (?). 

3. Mahler's measure. By analogy with S, it might seem possible that L0 or 
even L is a closed set. We shall show that this is highly unlikely and will 
propose sets Ljf and L # which may be the closures of L0 and L respectively. 
We shall need to consider Mahler's [21] definition of the measure of 
F(z1,..., zn), a polynomial in n variables. 

It is not obvious how (1) could be extended to polynomials in several 
variables until we recall Jensen's formula which states that 

f log \P(e2™e)\ de = log k l + £ log(max |o, |, 1) 

Thus 

(6) M(P) = expj [ log \P(e2™")\ do], 

so M(P) is just the geometric mean of \P(z)\ on the torus ÏÏ. Hence a natural 
candidate for M{F) is 

(7) M(F) = exp[ [ V • • • | 'log | F ( e 2 - \ . . . , e2""»)| d*,}. 

Now, even if F is a polynomial with integer coefficients it seems unlikely that 
M(F) is an algebraic number. For example, Smyth has just shown (see 
Appendix 1) that 

(8) M ( l + z1 + z2 + z3) = e x p ^ 5 f ( 3 ) J = 1.53154... , 

which is most probably transcendental although a proof of this is not immediate. 
Here, of course, £(3) ~Xn=i H~3

5 a number which Apery has recently proved is 
irrational [1], [22], [32]. 

Let us define L # = {M(F) : F has integer coefficients} and let L* be the 
corresponding set where F is non-reciprocal. Thus L # is a countable subset of 
[1, oo) which contains L and presumably also some transcendental numbers. It 
would seem bizarre to propose studying these larger sets except for the 
following fact: 

THEOREM 1. L # is contained in the closure of L. 

This is a consequence of the following results: 

(9) lim M(F(z, zn)) = M(F(Zl, z2)) 
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and 

(10) lim • • • lim M(F(z\ . . . , zr»)) = M(F(zu . . . , zn)), 

where an iterated limit is intended in (10). The proof of (9) or (10) is fairly 
elementary if F does not vanish on the torus. A proof of (9) when F{zu z2) 
may vanish on ST2 is given in [5] and that proof is reproduced here in Appendix 
3. The proof of (10) is given in Appendix 4. 

A more general result is expected to be true but has yet only been proved in 
case F does not vanish on STn. Given a vector of integers r = ( r 1 ? . . . , rn), define 

jut(r) = min{jmj : meZ n , m ̂  0 and m • r = 0}. 

Then, provided F is a continuous fuhction which does not vanish on STn, 

(11) lim M(F(z% . . . , z'*)) = M(F(Zl,..., zn)). 
jx(r)-*oo 

This easily leads to the following useful result valid for all continuous F: 

(12) lim sup M(F(z\ . . . , z^))^M(F(zl9..., zn)). 

The results (11) and (12) are proved in [9]. Lawton [18] has announced a result 
which seems to imply (11) for all polynomials, even those with zeros on STn, but 
the only copy of his paper which I have seen does not contain a proof. (For 
clarification, see section 7(2).) 

Returning now to the main theme, we see that it is unreasonable to expect 
the set L to be closed in light of Theorem 1 and examples such as (8). (One 
would of course prefer a proof that L^L^). However, it does seem plausible to 
me that: 

CONJECTURE 1. L # is a closed set. 

CONJECTURE 2. Ljf is a closed set. 

A proof of Conjecture 1 would answer Lehmer's question in the negative. 
To see this, recall that if 1 is a limit point of L, then L is dense in [1, °°) and 
hence so is L # . But if L # is closed then it cannot be dense in [1, oo) since it is 
countable. Of course this is not likely to be the easiest way to solve Lehmer's 
problem, but it does indicate that L # is a natural object of study. 

A proof of Conjecture 2 would not have the same consequences. It is 
conceivable that it might be more accessible than Conjecture 1 although the 
methods used in [28] to show that inf L0 > 0O do not seem to be immediately 
applicable. 

4. Limit points of L. Let us return now to our original problem of charac
terizing the limit points of L. Certainly some of these are of the form 
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MiFiz^ . . . , zn)), and if Conjecture 1 is correct then all limit points are of this 
form. 

However, not all such numbers need be limit points. If we concentrate on 
polynomials in two variables then (9) only shows that M(F{zx, z2)) is a limit 
point if we also have M(F(z, zn))^M(F(z1, z2)) for infinitely many n. To see 
how this might fail, consider F(zx, z2) = z\z\G{z\z^) where G is a polynomial 
in one variable and a, b, c, d are integers. Then, for any integers rx ^ 0, r2 ^ 0 
we have 

(13) M(F(zr^ zr>)) = M(G(z)) = M(F(Zl, z2)), 

so even (11) does not show M(F) is a limit point, as is to be expected since not 
all M(F) could be limit points or else L would be perfect and hence 
uncountable. 

Another example based on a different principle was suggested to me by 
Smyth. Consider F(zu z2) = 2 + z1 + z2. The polynomial F(z, zn) = 2 + z + zn 

has no zeros in | z | < l since 2 > | z + z n | for such z, so M(F(z, zn)) = 2 for all 
n > l . However, in this case if we consider instead M(F(z,z~n)) = 
M(z n + 1 + 2zn +1), we see by Rouché's theorem that z n + 1 + 2zn + 1 has n zeros 
in | z | < l and hence, one, say — 0n in | z | > l . Clearly 6n is real and 6n-^2 as 
n - ^ œ , but 0 n ^ 2 . Hence M(F(zl9 z2))^M(F(z, z~n)) for n > l , and 2eL ( 1 ) . 
Of course we already knew that 2 G S ( 2 ) C T ( 3 ) C=L ( 3 ) in this case. 

An interesting limit point which was mentioned in [8] is 

(14) 0 = M ( l + z1 + z2) = 1.38135... 

The indicated value of j3 was computed in [5] from a quickly convergent series 
for log p. Smyth has recently shown (see Appendix 1) that 

(15) log|3= — L ( 2 , x 3 ) = — Z - — -
47T 4TT n = ! \ 3 / n 

This makes it virtually inconceivable that j3 is algebraic. 
In view of the above discussion, one may question whether (3 is really a limit 

point or whether in fact j3 = M(1 + z + zn) for all n > n0. This would mean that 
/3 is algebraic, but although this seems unlikely, it is also unlikely that a proof 
will be found in the near future. Fortunately, we can show directly (Appendix 
2) that 

(16) log M{\ + z + zn) = log MiX + Zi + z2) + ̂  + 0 ( - U 
n \n 1 

where c(n) = - V37r/6 if n =2 (mod 3) and c(n) = V37r/18 if n = 0 or 1 (mod 3), 
so /3 is indeed a limit point of L. 

The interest in |3 is that it seems to be the smallest limit point of L0. 
However, we do not even know whether min L'0 >min L0 = 0o. A proof of even 
this would be extremely significant. (More is known, see section 7(3).) 
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Once one allows reciprocal polynomials, smaller limit points are to be 
expected. In fact every point in S is in T (1)c:L (1), by Salem's result quoted 
earlier. Salem's construction also shows that each element in L0 is a limit point 
of L, modulo some of the difficulties which we met in the case of 2 + z1 + z2. 
One simply observes that, by Jensen's formula, 

(17) M(wF(z 1 ? . . . , zn) + F(zï\ . . . , z~1)) = M(F(zu . . . , z j ) 

since |F (z^ \ . . . , z~^x)\F{zx,..., zn)\ = 1 on the torus. Then one applies (10) to 
vvF(z1 ? . . . , zn) + F ( z 7 \ . . . , z"1), (which is within a monomial of being a 
polynomial). If F is reciprocal then (17) expresses the trivial fact that M(w + 
z\\ . . . , z"n) = 1, but if F is non-reciprocal, one expects that (10) and (17) will 
be enough to show that M(F(zx,..., zn)) is a limit point. 

Some smaller "limit points" than 60 = min L0 were exhibited in [8], and we 
list these below along with the only other known example with M(F(zu z2))< 
60 which is not of the type (13). A result analogous to (16) is expected to be 
true but we have not carried out a calculation to rule out M(F(z, zn)) = 
M(F(zu z2)) for n > n0, so the appellation "limit point" used in [8] carries an 
element of hope: 

ax = M(xy + y + x + 1 + x - 1 + y _ 1 + x_ 1y_ 1) = 1.25542... 

a2 = M(x + y + 1 + y"1 + x - 1) = 1.28573... 

a3 = M(xy + y + x_1y + x2 + x + H - x _ 1 + x~2 + xy~1 + y - 1 + x"1y~1) = 1.31566... 

5. Polynomials with measure 1. One's attention naturally turns to 
F(zx,..., zn) for which M(F) = 1, since one might expect to be able to use 
these in (10) or (11) to answer Lehmer's question in the affirmative, unless it 
should happen that for such F, M(F(zr\ . . . , zYn)) = 1 for almost all integer 
vectors ( r l 5 . . . , rn). Fortunately for Conjecture 1, this is exactly the case. We 
have recently shown [9] that any F with M(F) = 1 is a product of a finite 
number of factors of the form z?1 • • • z ^ and ^(z^1 • * * z^), where <ï>(z) is 
cyclotomic and ai? bt are integers. Our proof uses (12) together with results of 
Schinzel [26]. (See also section 7(4).) 

Another way of seeing that lim M(F(zr\ . . . , zr-)) = 1 implies 
M(F(zr\ . . . , zr")) = 1 for jm(r) > JLL0 is to apply a recent result of Dobrowolski 
[12] which states that if g is the number of non-zero coefficients in P(z), then 
either M(P) = 1 or M ( P ) > ô ( g ) > l , where 8 is an explicit function of g only. 
Since the number of non-zero coefficients in F(zr\ . . . , zr") is bounded by the 
number in F(zu..., zn), we see from (12) that if M(F) = 1 then 
M(F(zr\ . . . , z r"))>6(g) cannot hold for arbitrarily large jUL(n). Dobrowolski's 
result generalizes a result of Schinzel [26] which is in turn a constructive 
version of a result of Lawton [18]. This latter paper should be consulted by 
anyone intending to work on the conjecture that L # is closed, since it contains 
a number of relevant ideas. (See also section 7(5).) 

https://doi.org/10.4153/CMB-1981-069-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-069-5


460 D. W. BOYD [December 

6. Restrictions on the support of polynomials with small measure. Smyth [29] 
has recently found a different and more direct proof of the characterization of 
F with M(F) = 1. His proof utilizes some nice geometric notions and an 
inequality (18) which has some interesting consequences, as we shall see. 

Represent F as a sum of monomials: 

F ( z 1 , . . . , z n ) = J ] a ( j ) z i i - • -zfc, 

where / is the subset of S£n for which a(j) ^ 0, called the support of F (or more 
reasonably, the support of the Fourier transform of F as a function on STn). 
Now let «(F) be the convex hull of J in 2frn. («(F) is what B. Clarke [10] calls 
the exponent poly tope of F). If « ' is a face of «(F) (its intersection with a 
supporting hyperplane) and / ' = J f l « ' , then we call 

F ' ( z i , . . . , z „ ) = I a ( J ) z V - - - z f r 
ieJ' 

a /ace of F If « ' , «" are intersections of «(F) with parallel supporting 
hyperplanes then we say F ' and F" are opposite faces. 

By a change of variables of the form zt = w\ii • • • w£™, where the b^ are 
integers, F ' becomes a polynomial in less than n variables multiplied by a 
monomial w\i • • • wc

n
n. This leaves M(F') unchanged. Using such a change of 

variables and applying Jensen's inequality, Smyth [29] shows that 

(18) M(F)>M(F'). 

His proof is easily modified to give the sharper result 

(19) M(F)>M(F'vF"), 

where we write a v b = max(ja|, |b|). 
The inequality (18) forms the basis of an inductive argument by which Smyth 

characterizes F with M(F) = 1 without appeal to the rather deep results of 
Schinzel which were needed in [9]. To conclude our paper, we wish to explore 
briefly some other consequences of (18) and (19). 

Let us introduce the notation 

(20) M+(F) = M ( F v l ) . 

Then Jensen's formula shows that 

(21) M(w + F(zu . . . , zn)) = M+(F). 

Let P(z) be a non-constant polynomial. Then two opposite faces of w + P(z) 
are w + ad and a0z

d so (19) shows that 

(22) M+(P(z)) = M(w+P(z)) 

> M((w + a d ) v a 0 ) > M((w +1) v 1) = M+(w +1) 
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But M+(w +1) = M(z + w +1) = jS, hence 

(23) M+(P(z)) >& = 1.38135... 

We can use (12) to extend this to 

(24) M + ( F ( z 1 ? . . . , z n ) ) ^ 0 , 

where F can be any non-constant polynomial in any number of variables. 
Turning to n = 2, if ^(F) is a polygon with an odd number of sides, then 

there must be a pair of opposite faces %\ c€" in which CS" is a single vertex but 
c€f is not. If F',F" are the corresponding faces of F then 

(25) M(F) > M{F' v F") => M(Ff v 1) = M + (F ) > ft 

by (24). 
Moving to higher dimensions, if <S(F) is a polyhedron one of whose two-

dimensional faces c€' has an odd number of vertices then, using (18) and (25) 
(as applied to F'), 

(26) M(F)>M(F')>p. 

For example the octahedron 

F(zl9 z2, z3) = z1z2z3(z1 + z2 + z3 + zï1 + Z21 + z3~
1) 

has M(F') = p for all of its two-dimensional faces, and M(F) = ft By a change 
of variables this example can be viewed as a special case of the construction 
used in (17). The equation (10) suggests that 0 is an element of L(2). Is (3 the 
smallest element of L(2)? 

For the tetrahedron F=l + z1 + z2 + z3, all of its two-dimensional faces also 
have measure ft but 

(27) M(F) = M + ( l + zx + z2) > M{\ + *i + z2) = ft 

The quantity M(F) is given explicitly in (8). 
Of course, since the inequalities (18) and (19) only use information about the 

boundary of ^ (F) , they naturally give no information about M(F) in case 
M(F'vF") = 1 for every pair of opposite faces. It is thus not surprising that the 
three examples given at the end of §4 should have this property. The reader is 
encouraged to verify this by plotting the exponent polytope ^(F) in these 
cases. 

We conclude with one final suggestion. For an irreducible F ( z 1 ? . . . , zn), 
define dim(F) to be the dimension of the convex set ^ (F) . Then a change of 
variables of the type zt = w^1 • • • wjj» reduces F to a polynomial in dim(F) 
variables multiplied by a monomial. Our characterization of F with M(F) = 1 
shows that dim(F) = 1 for such F (assuming still that F is irreducible). Can one 
show that if A(m) = min{M(F) : Fis irreducible and dim F = m}, then À (m) —> o° 
as m —» oo? Given a particular element of L, e.g. 2, this would show that there 
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is a maximum value of dim(F) for which 2 = M(F). Using the proof that 2 is in 
T(3), one can construct an irreducible F with dim(F) = 4 and M(F) = 2, namely 

F(w, x, y, z) = w + x + y + z + 2wx + 2yz + wxy + xyz + yzw + zwx. 

Is it possible to do better? 

7. Additional comments. The following facts were brought to my attention 
by W. J. Lawton, C. J. Smyth and A. Schinzel after they had read the original 
version of this paper: 

(1) The paper, "The structure of compact connected groups which admit an 
expansive automorphism", by W. J. Lawton, Lecture Notes in Mathematics, 
Volume 318, Springer-Verlag, Berlin and New York, 1973, pp. 182-196, 
contains results related to those of Lind [20]. 

(2) W. J. Lawton informs me that the Appendix referred to in [18] was never 
completed so a general proof of (11), valid for all polynomials, is still 
unavailable. 

(3) C. J. Smyth informs me that he proved inf L ^ f l o + K T 4 in his Ph.D. 
thesis, "Topics in the theory of numbers", Cambridge, 1972. Only part of this 
appears in his paper [28]. 

(4) Lawton has independently characterized those F with M(F) = 1 in "A 
generalization of a theorem of Kronecker", Journal of the Science Faculty of 
Chiangmai University (Thailand), 4 (1977), 15-23. 

(5) A. Schinzel informs me that [12], [18] and [26] have been combined into 
a joint paper, "On a problem of Lehmer", by E. Dobrowolski, W. Lawton and 
A. Schinzel, to appear in a volume of Acta Math. Acad. Sci. Hung, in memory 
of Paul Turân. 

Appendix 1. Explicit formulas for two measures (results of C. J. Smyth). Let 
0 = M( l + Zi + z2) and |82 = M( l + z1 + z2 + z3). It will be shown here that 

(15) l o g 0 = — L —T> 
4TT n = 1 n 

where x(n) = 0, 1 or - 1 according to whether n=0, 1 or 2 (mod 3), and 

(8) log 02 = ^ £ ( 3 ) 1_ 

2TT 2 

By Jensen's formula M( l + z1 + z2) = M(max(|l + z1|, 1)), so that, if z1 = ev 

1 /-2ir/3 

log ( 3 = ^ log | l + e««|dt. 
ZT7 J_2<ir/i -2-JT/3 

Now using 

(-iy log|l + e"| = Re X 
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and 

f2"73 int _, 2 . 2™ ^ , x 
eintdt = -sm — = —x(n), 

J-2W3 n 3 n 

2 î r n = 1 n 2ir lnfi n2
 n% (2n)2 ) 

which gives (15) after using x(2n) = x(2)x(n) = --x(n). 
To obtain the result (8), start again with Jensen's formula which gives 

M(az3 + &) = |a|max(|b/a|, l) = max(|a|, |fe|). Now write z2 = zz3 and then 

M(l + z1 + z2 + Z3) = M ( H - z 1 + z3(H-z)) = M(max(|l + z1 | , | l + z|)) 

so that i rir rir 
logj32 = — dt\ maxOogjl + e ^ l o g l l + e ^ d u 

^ / • IT / • IT 

= — log| l + e t t |dt du 

= - ^ f (Tr-t)log \l + eu\dt 

2 C" 
= 2- f log | l + e l t |dt, since M( l + z) = l. 

Using the expansion of log |14- e l t| as above, an integration by parts reveals that 

1Og^ = ̂ J0(2kW = ̂ (3)-
Appendix 2. Proof that P is a genuine limit point. We establish here the 

formula 

(16) logM(l + z + zw) = logM(l + z1 + z 2 ) + ^ + o(^3), 

where cin) = —V37r/6 if n = 2 (mod 3), and c(n) = 7377/18 if n = 0 or 1 (mod 3). 
Let z = eif for |t|<7r, and observe that 

o° / - i \ m —1 / n \ m 

log(l + z + zn) = log(l + z)+ £ ^ Vr— > if l 'l<2w/3 
m~x m \ l + z / 

= log(z")+ I 5_J2_ ( i l£ \ if |f |>2w/3. 
m = 1 Wl \ Z / 

Thus, if 

À n =logM( l + z + zn) = - I log | l + z + zn|df, 
7T 4 
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and 

À = l o g M ( l + z1 + z2) = - J log + | l + z|df, 

i ^ ^ + ^im)), 

then we have 

(29) 

where 
r27r/3 

Cl(m)= f e4writ(l + eft)~md*, 

and 

c2(m) = f e-^il + e'Tdt 

Now write co = exp(2Trc/3), and integrate by parts four times to obtain 

(-l)mco(n~2)m 1 (-l)m+1co (n~2)m~1 1 
inm inm2m in(nm + l) m(nm +1)2' (30) c l ( m ) = ^ £ : - f ^ + ̂ - ^ b ^ T ^ - T Z T ^ T T + e x 

where |e1 |<K/n3m. 
This last estimate requires the standard estimate 

J' 2 i r /3 

| l + c i t | - m - 3 A = 0(m"1). 
o 

Similarly, one obtains 

\m —(n—2)m / -i \m —1 —(n—2)m —1 f 1\m —(n-2)m / i \ n . ̂  

(31) c2(m)=t^ + ( 1 } , " u +e2, 
inm in{nm — l) 

where |e2 |< I£/rc3m, using 

I" | l + e f t |m-3dt = 0(m-1). 
J27T/3 

Adding, and taking real parts, the only surviving terms give 

( - l ) m / 1 \ 
(32) Re(d(m) + c2(m)) = - y — V3 cos((n - 2)m2irl3) + 0 h ~ 

n m \n m J 
and hence 

,33) >,->.-4i"«"-W>t0(J;), 

The value of cos((n-2)m27r/3) depends only on ( n - 2 ) m (mod 3), and taking 
into account the two cases n=2 or n = 0,1 (mod 3), one obtains the result 
(16). 
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Appendix 3. This appendix is devoted to the proof of 

(9) lim M(F(z, zn)) = M(F(z, w)), 
n—>°° 

if F is a polynomial. The proof is exactly as in [5] and is published here for the 
first time. Note that it is modelled on the explicit estimate obtained in 
Appendix 2 for the special polynomial F(z, w) = 1 + z + w. 

Write 
F(z, w) = a0(w)z + • • • + ad(w) 

= a0(w)(z -Zi(w)) • • • (z -z d (w)) , 

where the zk are the branches of the algebraic function defined by F(z, w) = 0. 
If we write z = el\ w = el\ we then have 

(34) f \og\F(z,zn)\dt = f \og\a0(z
n)\dt+t I "log \z - zk(z

n)\ dt, 
Jo Jo k = i h 

while, by Jensen's formula, 

(35) f " ds f "log |F(z, w)| dt 
J0 Jo r2™ ^ r2^ 

= 2TT\ log|a0(w)|ds + 27r X log+ |zk(w)| ds. 
4o k = l Jo 

Since, obviously, Jo^logkoU")! df = Jo , rl0glao(w)| ds, it suffices to show that 

/•2-n- Ç2TT 

(36) lim l o g | z - g ( z n ) | d t = log+ |g(w)| ds, 
n^>°° Jo Jo 

where g(w) is any of the algebraic functions zk(w). To prove (36), we expand 

(37) log|e£ t-g(w) | = 1 cm(w)eimt, 
m = — o o 

where c0(w) = log+ |g(w)| and 

(38) c m ( w ) = - | 2 m r g ( w ) ± m or -^ml^gOy)*" 1 if m^O, 

where the sign is such that | g (w) ± m | < l . 
Now write s = nt in the left member of (36) and we have 

^ log |e"-g(e t a ' ) |d t = n - 1 ^ log\eisl"-g(eis)\ ds 

(39) = f" jn" 1 " l log |«« '+»') /- - g(e i s) | ] ds 

. = f (co(cis)+ I cm„(eis)cims]ds, 
4o ^ m # 0 J 
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using the expansion (37). We thus will have proved (36) if we can show that 

(40) lim X c cmn(e
is)eims ds = 0 

i 

To prove (40), we observe that since g(w) is an algebraic function, it has a 
convergent expansion g(w) = g(w0) + a(w - w0)a + • • • in the neighbourhood of 
any point w0, where a is a positive rational number. 

We divide [0, 2TT) into a finite number of subintervals I so that in each we 
have | g | ^ l or | g | ^ l with equality at one endpoint at most, or else |g| = l 
throughout I. We can assume also that either g' ^ 0 throughout I or else g' = 0 
at one endpoint at most. We then can write 

(41) |2mn| f 277cmn(eis)eims ds = P g ( e i s ) d 

as a sum of integrals over the subintervals. The contribution to (41) of each 
term of this sum is one of the following: 

(i) If | g | < b < l or | g | - 1 < b < l in I, the contribution 0(b |mn|). 
(ii) If |g| = l at one endpoint only, then a change of variables gives an 

integral of the sort 

I (1 - c w a + o(ua)) |mnl du = 0(|mn|-1/ot) 

(iii) If |g| = l throughout I and g ' ^ 0 in I, then g(eis) = eih(s) where h is 
real-valued and W ̂  0 in J. An integration by parts shows that such an interval 
contributes 0(|mn|_1). 

(iv) Finally, if |g| = l throughout I and g' = 0 at an endpoint, a change of 
variables produces an integral of the type 

J einmh(u)eirnudu, 
Jo 

where h is real-valued and h{u) = cu™ + oiu") as w—»0+, and a > l . The 
integral over 0<u<|nm|~ 1 A* is 0(\nm\~1/oc) and the remaining integral can be 
treated as in (iii) to obtain an estimate 0(max(|nm|~1/c*, |m| -1)). The discussion 
of the "method of stationary phase" in [15, pp. 51-56] is relevant here. 

Combining (i)-(iv), we find that the sum in (40) is 0{n 2) if g(w) does not 
vanish at a point where |g(w)| = 1 and is 0(n~1-c) for some 0 < c < 1 otherwise. 
This completes the proof. 

Appendix 4. Here we will prove the iterated limit formula 

(10) lim • • • lim M(F(z, z \ . . . , zr-)) = M(F(Zl,. . . , zn)) 

where F is a polynomial. For this we need (9) and the 
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LEMMA. Suppose f(zl9..., zn) is a continuous function on the torus 3~n
9 then 

lim /(z, z \ ...9z
r»)dt = f(zl9..., zn) « 

rn—>oo J^- Jgrn 
(42) lim • • • lim f(z, z \ ..., zr«) dt = / ( Z l , . . . , zn) dt, 

r2—*-00 rn—>oo J^- Jgrn 

where z = e(f), z,- = e ^ ) , t = (tl9..., fn) and e(t) = e2™\ 

Proof. Using the Weierstrass approximation theorem, it suffices to prove 
(42) for a trigonometric polynomial 

/ ( e ( t i ) , . . . , e ( 0 ) = I a(m)e(m-t) 

where J is a finite set. We then have 

/(z, z ' 2 , . . . , zr-) dt = X{a(m) : mx + m2r2+ • • • + mnrn = 0} 

But if rn -> oo then m1 + m2r2- • • + m ^ = 0 implies mn = 0, so 

lim /(z, z r 2 , . . . , zr") dr= £{a(m) : m1 + m2r2 + ' ' • + mn_1rn_1 = 0, mn =0}, 

and by induction, 

lim • • • lim / ( z , . . . , zTn) dt = £ {a(m) : mx = m2 = • • • = mn = 0} 

= a(0)= f / ( Z l , . . . , zn) dt. 

Proof of (10). Write F(zu ...,zn) = F0(zu ..., zn^) n£=i (z„ - M * i , . . . , 
zn_!)), where the hk are continuous functions. By Jensen's formula, 

(43) M(F(Zl, ...,zn)) = M ( F 0 ( z 1 ; . . . , z^)) {[ M+(hk(Zl,..., zn^)). 
k = l 

By Appendix 3, and then Jensen's formula again, 

(44) lim M(F(z, z \ . . . , zr»)) = M(F(z9..., z r - s w)) 

= M(F 0 ( z , . . . , z r -0) I I M+(hk(z,..., z r - ) ) , 
k = l 

Now log+ \hk(zl9..., zn_i)| is continuous on the torus 3~n~x so, by the Lemma, 

(45) lim • • • lim M+(hk(z9..., z r - ) ) = M+(hk(zl9..., z ^ ) ) . 

Using induction, we may assume (10) for F0 , then putting together (43) 
through (45) proves (10) for F. 
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