
JFP 16 (3): 269–280, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005782 First published online 17 November 2005 Printed in the United Kingdom

269

T H E O R E T I C A L P E A R L

A simple proof of a folklore theorem
about delimited control

DARIUSZ BIERNACKI and OLIVIER DANVY

BRICS�, Department of Computer Science, University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

(e-mail: {dabi,danvy}@brics.dk)

Abstract

We formalize and prove the folklore theorem that the static delimited-control operators shift

and reset can be simulated in terms of the dynamic delimited-control operators control

and prompt. The proof is based on small-step operational semantics.

1 Introduction

In the recent upsurge of interest in delimited continuations (Ariola et al., 2004;

Dybvig et al., 2005; Gasbichler & Sperber, 2002; Shan, 2004; Kiselyov, 2005) it

appears to be taken for granted that dynamic delimited continuations can simulate

static delimited continuations by delimiting the context of their resumption. And

indeed this property has been mentioned early in the literature about delimited

continuations (Danvy & Filinski, 1990, section 5). We are, however, not aware

of any proof of this folklore theorem, and our goal here is to provide such a

proof. To this end, we present two abstract machines – one for static delimited

continuations as provided by the control operators shift and reset (Danvy &

Filinski, 1990) and inducing a partial evaluation function eval sr, and one for

dynamic delimited continuations as provided by the control operators control and

prompt (Felleisen et al., 1988) and inducing a partial evaluation function eval cp – and

one compositional mapping [[·]] from programs using shift and reset to programs

using control and prompt. We then prove that the following diagram commutes:

Expsr

eval sr ��

[[·]]

��

Valsr��

�v

���
�
�
�
�

Expcp
eval cp

�� Valcp

where the value equivalence �v, for ground values, is defined as equality.

� Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research
Foundation.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

270 D. Biernacki and O. Danvy

2 The formalization

Figures 1 and 2 display two abstract machines, one for the λ-calculus extended with

shift and reset, and one for the λ-calculus extended with control and prompt. These

two machines only differ in the application of captured contexts (which represent

delimited continuations in the course of executing source programs).

For simplicity, in the source syntax, we distinguish between λ-bound variables (x)

and shift- or control-bound variables (k). We use the same meta-variables (e, n, i,

x , k , v, ρ, C1 and C2) ranging over the components of the two abstract machines

whenever it does not lead to ambiguity. Programs are closed terms.

2.1 A definitional abstract machine for shift and reset

In our earlier work (Biernacka et al., 2005), we derived a definitional abstract

machine for shift and reset by defunctionalizing the continuation and meta-

continuation of Danvy and Filinski’s definitional evaluator (Danvy & Filinski, 1990).

This definitional abstract machine is displayed in Figure 1; it is a straightforward

extension of Felleisen et al.’s CEK machine (Felleisen & Friedman, 1986) with a

meta-context. The source language is the untyped λ-calculus extended with integers,

the successor function, shift (noted S), and reset (noted 〈〈〈·〉〉〉). The machine is an

extension of the CEK machine because when given a program that does not use

shift and reset, it operates in lock step with the CEK machine. When delimiting

control with reset, the machine pushes the current context on the current meta-

context, and proceeds with an empty context. When abstracting control with shift,

the machine captures the current context and proceeds with an empty context. When

applying a captured context, the machine pushes the current context on the current

meta-context, and proceeds with the captured context.

Definition 1

The partial evaluation function eval sr mapping programs to values is defined as

follows: eval sr (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+
sr 〈nil, v〉cont2 .

We could define the function eval sr in terms of the initial and final transition, but

they play only an administrative role, i.e., to load an input term to the machine and

to unload the computed value from the machine.

2.2 A definitional abstract machine for control and prompt

In our earlier work (Biernacka et al., 2005), we also showed how to modify the

abstract machine for shift and reset to obtain a definitional abstract machine for

control and prompt (Felleisen et al., 1988; Felleisen, 1988). This abstract machine is

displayed in Figure 2. The source language is the λ-calculus extended with integers,

the successor function, control (noted F) and prompt (noted #). The machine is an

extension of the CEK machine because when given a program that does not use

control and prompt, it operates in lock step with the CEK machine. When delimiting

control with prompt, the machine pushes the current context on the current meta-

context, and proceeds with an empty context. When abstracting control with control,

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

Theoretical pearl 271

• Terms and identifiers: e ::= �n� | i | λx .e | e0 e1 | succ e | 〈〈〈e〉〉〉 | Sk .e

i ::= x | k

• Values (integers, closures, and captured contexts): v ::= n | [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{i �→ v}

• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1) | SUCC (C1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒sr 〈e, ρmt , END, nil〉eval

〈�n�, ρ, C1, C2〉eval ⇒sr 〈C1, n, C2〉cont1

〈i, ρ, C1, C2〉eval ⇒sr 〈C1, ρ(i), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒sr 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒sr 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval

〈succ e, ρ, C1, C2〉eval ⇒sr 〈e, ρ, SUCC (C1), C2〉eval

〈〈〈〈e〉〉〉, ρ, C1, C2〉eval ⇒sr 〈e, ρ, END, C1 :: C2〉eval

〈Sk .e, ρ, C1, C2〉eval ⇒sr 〈e, ρ{k �→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒sr 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒sr 〈e, ρ, FUN (v, C1), C2〉eval

〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒sr 〈e, ρ{x �→ v}, C1, C2〉eval

〈FUN (C ′
1, C1), v, C2〉cont1 ⇒sr 〈C ′

1, v, C1 :: C2〉cont1

〈SUCC (C1), n, C2〉cont1 ⇒sr 〈C1, n + 1, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒sr 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒sr v

Fig. 1. A definitional abstract machine for shift and reset.

the machine captures the current context and proceeds with an empty context. When

applying a captured context, the machine concatenates the captured context to the

current context and proceeds with the resulting context.

Definition 2

The partial evaluation function eval cp mapping programs to values is defined as

follows: eval cp (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+
cp 〈nil, v〉cont2 .

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

272 D. Biernacki and O. Danvy

• Terms and identifiers: e ::= �n� | i | λx .e | e0 e1 | succ e | #e | Fk .e

i ::= x | k

• Values (integers, closures, and captured contexts): v ::= n | [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{i �→ v}

• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1) | SUCC (C1)

• Concatenation of contexts:

END � C ′
1

def
= C ′

1

(ARG ((e, ρ), C1)) � C ′
1

def
= ARG ((e, ρ), C1 � C

′
1)

(FUN (v, C1)) � C ′
1

def
= FUN (v, C1 � C

′
1)

(SUCC (C1)) � C ′
1

def
= SUCC (C1 � C

′
1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒cp 〈e, ρmt , END, nil〉eval

〈�n�, ρ, C1, C2〉eval ⇒cp 〈C1, n, C2〉cont1

〈i, ρ, C1, C2〉eval ⇒cp 〈C1, ρ(i), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒cp 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒cp 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval

〈succ e, ρ, C1, C2〉eval ⇒cp 〈e, ρ, SUCC (C1), C2〉eval

〈#e, ρ, C1, C2〉eval ⇒cp 〈e, ρ, END, C1 :: C2〉eval

〈Fk .e, ρ, C1, C2〉eval ⇒cp 〈e, ρ{k �→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒cp 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒cp 〈e, ρ, FUN (v, C1), C2〉eval

〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒cp 〈e, ρ{x �→ v}, C1, C2〉eval

〈FUN (C ′
1, C1), v, C2〉cont1 ⇒cp 〈C ′

1 � C1, v, C2〉cont1

〈SUCC (C1), n, C2〉cont1 ⇒cp 〈C1, n + 1, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒cp 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒cp v

Fig. 2. A definitional abstract machine for control and prompt.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

Theoretical pearl 273

2.3 Static vs. dynamic delimited continuations

In Figure 1, shift and reset are said to be static because the application of a de-

limited continuation (represented as a captured context) does not depend on the

current context. It is implemented by pushing the current context on the stack of

contexts and installing the captured context as the new current context, as shown

by the following transition:

〈FUN (C ′
1, C1), v, C2〉cont1 ⇒sr 〈C ′

1, v, C1 :: C2〉cont1

A subsequent shift operation will therefore capture the remainder of the reinstated

context, statically.

In Figure 2, control and prompt are said to be dynamic because the application

of a delimited continuation (also represented as a captured context) depends on

the current context. It is implemented by concatenating the captured context to the

current context, as shown by the following transition:

〈FUN (C ′
1, C1), v, C2〉cont1 ⇒cp 〈C ′

1 � C1, v, C2〉cont1

A subsequent control operation will therefore capture the remainder of the reinstated

context together with the then-current context, dynamically.

The two abstract machines differ only in this single transition. Because of this

single transition, programs using shift and reset are compatible with the traditional

notion of continuation-passing style (Biernacka et al., 2005; Danvy & Filinski, 1990;

Plotkin, 1975) whereas programs using control and prompt give rise to a more

complex notion of continuation-passing style that threads a dynamic state (Biernacki

et al., 2005; Dybvig et al., 2005; Shan, 2004). This difference in the semantics of

shift and control also induces distinct computational behaviors, as illustrated in

the following example.

Copying vs. reversing a list: Using call-with-current-delimited-continuation (in-

stead of shift or control) and delimit-continuation (instead of reset or prompt),

let us consider the following function that traverses a given list and returns another

list (Biernacka et al., 2005, section 4.5); this function is written in the syntax of

Scheme (Kelsey et al., 1998):

(define traverse

(lambda (xs)

(letrec ([visit

(lambda (xs)

(if (null? xs)

’()

(visit (call-with-current-delimited-continuation

(lambda (k)

(cons (car xs) (k (cdr xs))))))))])

(delimit-continuation

(lambda ()

(visit xs))))))

• The function copies its input list if shift and reset are used instead of call-

with-current-delimited-continuation and delimit-continuation. The reason

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

274 D. Biernacki and O. Danvy

why is that reinstating a shift-abstracted context keeps it distinct from the cur-

rent context. Here, shift successively abstracts a delimited context that solely

consists of the call to visit. Intuitively, this delimited context reads as follows:

(lambda (v)

(delimit-continuation

(lambda ()

(visit v))))

• The function reverses its input list if control and prompt are used instead of

call-with-current-delimited-continuation and delimit-continuation. The

reason why is that reinstating a control-abstracted context grafts it to the cur-

rent context. Here, control successively abstracts a context that consists of

the call to visit followed by the construction of a reversed prefix of the

input list. Intuitively, when the input list is (1 2 3), the successive contexts

read as follows:

(lambda (v) (visit v))

(lambda (v) (cons 1 (visit v))

(lambda (v) (cons 2 (cons 1 (visit v))))

Programming folklore: To obtain the effect of shift and reset using control and

prompt, one should replace every occurrence of a shift-bound variable k by its η-

expanded and delimited version λx .#(k x). (As a βv-optimization, every application of

k to a trivial expression e (typically a value) can be replaced by #(k e).)

And indeed, replacing

(cons (car xs) (k (cdr xs)))

by

(cons (car xs) (delimit-continuation

(lambda ()

(k (cdr xs)))))

in the definition of traverse above makes it copy its input list, no matter whether

shift and reset or control and prompt are used.

We formalize the replacement above with the following compositional translation

from the language with shift and reset to the language with control and prompt.

Definition 3

The translation [[·]] is defined as follows:

[[�n�]] = �n�
[[x]] = x

[[k]] = λx .#(k x), where x is fresh

[[λx .e]] = λx .[[e]]

[[e0 e1]] = [[e0]] [[e1]]

[[〈〈〈e〉〉〉]] = #[[e]]

[[Sk .e]] = Fk .[[e]]

In the next section, we prove that for any program e, eval sr (e) and eval cp ([[e]]) are

equivalent (in the sense of Definition 5 below) and, in particular, equal for ground

values.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

Theoretical pearl 275

3 The folklore theorem and its formal proof

We first define an auxiliary abstract machine for control and prompt that implements

the application of an η-expanded and delimited continuation in one step. By

construction, this auxiliary abstract machine is equivalent to the definitional one

of Figure 2. We then show that the auxiliary machine operates in lock step with

the definitional abstract machine of Figure 1. To this end, we define a family of

relations between the abstract machine for shift and reset and the auxiliary abstract

machine. The folklore theorem follows.

3.1 An auxiliary abstract machine for control and prompt

Definition 4

The auxiliary abstract machine for control and prompt is defined as follows:

1. All the components, including configurations δ, of the auxiliary abstract

machine are identical to the components of the definitional abstract machine

of Figure 2.

2. The transitions of the auxiliary abstract machine, denoted δ ⇒aux δ′, are

defined as follows:

• if δ = 〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1

then δ′ = 〈C ′
1, v, C1 :: C2〉cont1 , where C ′

1 = ρ(k);

• otherwise, δ′ is the configuration such that δ ⇒cp δ′, if it exists.

3. The partial evaluation function evalaux is defined in the usual way: evalaux (e) =

v if and only if 〈e, ρmt , END, nil〉eval ⇒+
aux 〈nil, v〉cont2 .

The following lemma shows that the definitional abstract machine for control

and prompt simulates the single step of the auxiliary abstract machine in several

steps.

Lemma 1

For all v, C1, C ′
1 and C2,

〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1 ⇒+
cp 〈C ′

1, v, C1 :: C2〉cont1 , where C ′
1 = ρ(k).

Proof

From the definition of the abstract machine for control and prompt in Figure 2:

〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1 ⇒cp

〈#(k x), ρ{x �→ v}, C1, C2〉eval ⇒cp

〈k x , ρ{x �→ v}, END, C1 :: C2〉eval ⇒cp

〈k , ρ{x �→ v}, ARG ((x , ρ{x �→ v}), END), C1 :: C2〉eval ⇒cp

〈ARG ((x , ρ{x �→ v}), END), C ′
1, C1 :: C2〉cont1 ⇒cp

〈x , ρ{x �→ v}, FUN (C ′
1, END), C1 :: C2〉eval ⇒cp

〈FUN (C ′
1, END), v, C1 :: C2〉cont1 ⇒cp

〈C ′
1, v, C1 :: C2〉cont1

�

Proposition 1

For any program e and for any value v, eval cp (e) = v if and only if evalaux (e) = v.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

276 D. Biernacki and O. Danvy

Proof

Follows directly from Definition 4 and Lemma 1. �

3.2 A family of relations

We now define a family of relations between the abstract machine for shift and

reset and the auxiliary abstract machine for control and prompt. To distinguish

between the two machines, as a diacritical convention (Milne & Strachey, 1976), we

annotate the components of the machine for shift and reset with a hat.

Definition 5

The relations between the components of the abstract machine for shift and reset

and the auxiliary abstract machine for control and prompt are defined as follows:

1. Terms: ê �e e iff [[̂e]] = e

2. Values:

(a) n̂ �v n iff n̂ = n

(b) [x̂ , ê, ρ̂] �v [x , e, ρ] iff x̂ = x , ê �e e and ρ̂ �env ρ

(c) Ĉ1 �v [x , #(k x), ρ] iff Ĉ1 �c ρ(k)

3. Environments:

(a) ρ̂mt �env ρmt

(b) ρ̂{x �→ v̂} �env ρ{x �→ v} iff v̂ �v v and ρ̂ \ {x} �env ρ \ {x}, where ρ \ {i}
denotes the restriction of ρ to its domain excluding i

(c) ρ̂{k �→ Ĉ1} �env ρ{k �→ C1} iff Ĉ1 �c C1 and ρ̂ \ {k} �env ρ \ {k}
4. Contexts:

(a) ÊND �c END

(b) ÂRG ((̂e, ρ̂), Ĉ1) �c ARG ((e, ρ), C1) iff ê �e e, ρ̂ �env ρ, and Ĉ1 �c C1

(c) F̂UN (̂v, Ĉ1) �c FUN (v, C1) iff v̂ �v v and Ĉ1 �c C1

(d) ŜUCC (Ĉ1) �c SUCC (C1) iff Ĉ1 �c C1

5. Meta-contexts:

(a) n̂il �mc nil

(b) Ĉ1 :: Ĉ2 �mc C1 :: C2 iff Ĉ1 �c C1 and Ĉ2 �mc C2

6. Configurations:

(a) 〈̂e, ρ̂, Ĉ1, Ĉ2〉
êval

� 〈e, ρ, C1, C2〉eval iff

ê �e e, ρ̂ �env ρ, Ĉ1 �c C1, and Ĉ2 �mc C2

(b) 〈Ĉ1, v̂, Ĉ2〉cont1 � 〈C1, v, C2〉cont1 iff

Ĉ1 �c C1, v̂ �v v, and Ĉ2 �mc C2

(c) 〈Ĉ2, v̂〉cont2 � 〈C2, v〉cont2 iff

Ĉ2 �mc C2 and v̂ �v v

The relations are intended to capture the equivalence of the abstract machine

for shift and reset and the auxiliary abstract machine for control and prompt

when run on a term ê and on its translation [[̂e]], respectively. Most of the cases

are homomorphic on the structure of a component. The critical cases are: 1. – a

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

Theoretical pearl 277

formalization of the programming folklore formulated in section 2.3, and 2. (c) – a

formalization of the fact that a control-abstracted continuation is applied by

concatenating its representation to the current context whereas when a shift-

abstracted continuation is applied, its representation is kept separate from the

current context.

3.3 The formal proof

We first show that indeed, running the abstract machine for shift and reset on a

program ê and running the auxiliary abstract machine for control and prompt on

a program [[̂e]] yield results that are equivalent in the sense of the above relations.

Then by Proposition 1, we obtain the equivalence result of the abstract machine for

shift and reset and the definitional abstract machine for control and prompt, as

summarized in the following diagram:

Expsr

eval sr ��

[[·]]

��

Valsr��

�v

���
�
�
�
�

Expcp

eval cp

��
evalaux ��

Valcp

More precisely, we show that the abstract machine for shift and reset and the

auxiliary abstract machine for control and prompt operate in lock-step with respect

to the relations. To this end, we need to prove the following lemmas.

Lemma 2

For all configurations δ̂, δ, δ̂′ and δ′, if δ̂ � δ then

δ̂ ⇒sr δ̂′ if and only if δ ⇒aux δ′ and δ̂′ � δ′.

Proof

By case inspection of δ̂ � δ. All cases follow directly from the definition of the

relation � and the definitions of the abstract machines. We present two crucial

cases:

Case: δ̂ = 〈k , ρ̂, Ĉ1, Ĉ2〉
êval

and δ = 〈λx .#(k x), ρ, C1, C2〉eval .

From the definition of the abstract machine for shift and reset, δ̂ ⇒sr δ̂′,

where δ̂′ = 〈Ĉ1, ρ̂(k), Ĉ2〉cont1 .

From the definition of the auxiliary abstract machine for control and prompt,

δ ⇒aux δ′, where δ′ = 〈C1, [x , #(k x), ρ], C2〉cont1 .

By assumption, ρ̂(k) �c ρ(k), Ĉ1 �c C1 and Ĉ2 �mc C2. Hence, δ̂′ � δ′.

Case: δ̂ = 〈F̂UN (Ĉ1

′
, Ĉ1), v̂, Ĉ2〉

êval
and δ = 〈FUN ([x , #(k x), ρ], C1), v, C2〉eval .

From the definition of the abstract machine for shift and reset, δ̂ ⇒sr δ̂′,

where δ̂′ = 〈Ĉ1

′
, v̂, Ĉ1 :: Ĉ2〉cont1 .

From the definition of the auxiliary abstract machine for control and prompt,

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

278 D. Biernacki and O. Danvy

δ ⇒aux δ′, where δ′ = 〈C ′
1, v, C1 :: C2〉cont1 , and C ′

1 = ρ(k).

By assumption, Ĉ1

′
�c C

′
1, v̂ �v v, Ĉ1 �c C1 and Ĉ2 �mc C2. Hence, δ̂′ � δ′.

�

Lemma 3

For all configurations δ̂, δ, δ̂′ and δ′, and for any n � 1, if δ̂ � δ then

δ̂ ⇒n
sr δ̂′ if and only if δ ⇒n

aux δ′ and δ̂′ � δ′.

Proof

By induction on n, using Lemma 2. �

We are now in position to prove the formal statement of the equivalence between

the two abstract machines:

Proposition 2

For any program ê, either both eval sr (̂e) and evalaux ([[̂e]]) are undefined or there

exist values v̂ and v such that eval sr (̂e) = v̂, evalaux ([[̂e]]) = v, and v̂ �v v.

Proof

Since the initial configurations 〈̂e, ρ̂mt , ÊND, n̂il〉
êval

and 〈[[̂e]], ρmt , END, nil〉eval are

in the relation �, then by Lemma 3 both abstract machines reach their final

configurations 〈n̂il, v̂〉cont2 and 〈nil, v〉cont2 after the same number of transitions and

with v̂ �v v, or both diverge. �

Theorem 1

For any program ê, either both eval sr (̂e) and eval cp ([[̂e]]) are undefined or there exist

values v̂ and v such that eval sr (̂e) = v̂, eval cp ([[̂e]]) = v, and v̂ �v v.

Proof

Follows directly from Proposition 1 and Proposition 2. �

Corollary 1 (Folklore)

For any program ê, and for any integer n, eval sr (̂e) = n if and only if eval cp ([[̂e]]) = n.

Extending the source language with more syntactic constructs (other ground

values and primitive operations, conditional expressions, recursive definitions, etc.)

is straightforward. It is equally simple to extend the proof.

Our simple proof is based on the original (operational) specification of static and

dynamic delimited continuations. An alternative proof could be based, for example,

on equational reasoning (Felleisen, 1988; Kameyama & Hasegawa, 2003).

4 Conclusion

We have formalized and proved that the dynamic delimited-control operators

control and prompt can simulate the static delimited-control operators shift and

reset by delimiting the context of the resumption of captured continuations. Several

converse simulations have been presented recently (Shan, 2004; Biernacki et al.,

2005; Kiselyov, 2005). These converse simulations are considerably more involved

than the present one, and have not been formalized and proved yet.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

Theoretical pearl 279

Acknowledgments

We are grateful to Mads Sig Ager, Ma�lgorzata Biernacka, Julia Lawall, Kevin

Millikin, and Kristian Støvring for their comments. Special thanks to the anonymous

reviewers for an insightful e-mail exchange. This work is partially supported by the

ESPRIT Working Group APPSEM II (http://www.appsem.org) and by the Danish

Natural Science Research Council, Grant no. 21-03-0545.

References

Ariola, Z. M., Herbelin, H. and Sabry, A. (2004) A type-theoretic foundation of continuations

and prompts. In: Fisher, K. (editor), Proceedings of the 2004 ACM SIGPLAN International

Conference on Functional Programming, pp. 40–53. ACM Press.

Biernacka, M., Biernacki, D. and Danvy, O. (2005) An operational foundation for delimited

continuations in the CPS hierarchy. Research Report BRICS RS-05-24. DAIMI, Department

of Computer Science, University of Aarhus, Denmark. (To appear in Logical Methods in

Computer Science. A preliminary version was presented at the Fourth ACM SIGPLAN

Workshop on Continuations (CW 2004).)

Biernacki, D., Danvy, O. and Millikin, K. (2005) A dynamic continuation-passing style for

dynamic delimited continuations. Research Report BRICS RS-05-16. DAIMI, Department

of Computer Science, University of Aarhus, Denmark.

Danvy, O. and Filinski, A. (1990) Abstracting control. In: Wand, M. (editor), Proceedings of

the 1990 ACM Conference on Lisp and Functional Programming, pp. 151–160. Nice, France.

ACM Press.

Dybvig, R. K., Peyton-Jones, S. and Sabry, A. (2005) A monadic framework for subcontinuations.

Technical Report 615. Computer Science Department, Indiana University, Bloomington,

Indiana.

Felleisen, M. (1988) The theory and practice of first-class prompts. In: Ferrante, J. and Mager,

P. (editors), Proceedings of the 15th Annual ACM Symposium on Principles of Programming

Languages, pp. 180–190. San Diego, CA. ACM Press.

Felleisen, M. and Friedman, D. P. (1986) Control operators, the SECD machine, and

the λ-calculus. In: Wirsing, M. (editor), Formal Description of Programming Concepts III,

pp. 193–217. North-Holland.

Felleisen, M., Wand, M., Friedman, D. P. and Duba, B. F. (1988) Abstract continuations:

A mathematical semantics for handling full functional jumps. In: Cartwright, R. (Corky)

(editor), Proceedings of the 1988 ACM Conference on Lisp and Functional Programming,

pp. 52–62. Snowbird, UT. ACM Press.

Gasbichler, M. and Sperber, M. (2002) Final shift for call/cc: direct implementation of

shift and reset. In: Peyton Jones, S. (editor), Proceedings of the 2002 ACM SIGPLAN

International Conference on Functional Programming, pp. 271–282. Pittsburgh, PA. ACM

Press. (SIGPLAN Notices, 37(9).)

Kameyama, Y. and Hasegawa, M. (2003) A sound and complete axiomatization of delimited

continuations. In: Shivers, O. (editor), Proceedings of the 2003 ACM SIGPLAN International

Conference on Functional Programming, pp. 177–188. Uppsala, Sweden. ACM Press.

Kelsey, R., Clinger, W. and Rees, J. (editors) (1998) Revised5 report on the algorithmic

language Scheme. Higher-order & Symbolic Computation, 11(1), 7–105.

Kiselyov, O. (2005) How to remove a dynamic prompt: Static and dynamic delimited continuation

operators are equally expressible. Technical Report 611. Computer Science Department,

Indiana University, Bloomington, Indiana.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

280 D. Biernacki and O. Danvy

Milne, R. E. and Strachey, C. (1976) A Theory of Programming Language Semantics.

Chapman & Hall, London, and John Wiley, New York.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1,

125–159.

Shan, C.-c. (2004) Shift to control. In: Shivers, O. and Waddell, O. (editors), Proceedings of the

2004 ACM SIGPLAN Workshop on Scheme and Functional Programming. Technical report

TR600, Computer Science Department, Indiana University.

https://doi.org/10.1017/S0956796805005782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005782

