
2
Quick Start

Replicate Error Basics

Our first topic is random error, a subject intimately tied to statistics.
When we make an experimental determination of a quantity, one of the

questions we ask about our result is, if someone else came along and did the
same measurement on similar equipment, would they get the same value as
we did? We would like to think that they would, but there are many slight,
random differences between what is done in any two laboratories and in
how two similar apparatuses perform, so we accept that a colleague’s answer
might be a little different from our answer. A non-laboratory example of this
would be weighing oneself on the same kind of scale at home and at the
gym—these two numbers might differ by a kilogram or two. Even if you
weigh yourself repeatedly throughout the day on the same bathroom scale,
you may see some variation due to what you have eaten recently, whether you
have exercised, or if your clothing is a bit different for each measurement.
Quantities that have this characteristic of variability are called stochastic
variables.

To identify a good value for a measured variable that is subject to a variety
of influences, we turn to statistics. If effects are random, statistics tells us the
probability distribution of the effect happening (random statistics), and we
can rigorously express both a best estimate for the quantity and error limits
on the best estimate [5, 38]. The mean of replicated measurements expresses
the expected value of the measured quantity, and the variance of replicated
measurements can be used to quantify the effect of random events on the
reproducibility of the measurements, allowing us to construct error limits. We
discuss these topics now. Additional background on the statistics of stochastic
variables may be found in the literature [5, 38].
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2.1 Introduction

When we repeatedly determine a quantity from measurements of some sort, the
measured numbers often vary a bit, preventing us from knowing that number
with absolute precision. Consider, for example, the time it takes to go from
your home to your workplace. You may know, roughly, that it takes 30 min,
but that number changes a bit from day to day and may vary with what time of
day you make the trip, with the type of weather encountered, and with traffic
conditions.

To determine a good estimate of the time it takes to make the trip from
your home to your workplace, you might measure it several times and take
the average of your measurements. Repeated measurements of a stochastic
variable are called replicates. From replicates we can calculate an average or
mean; the mean of a set of replicates is a good estimate of the value of the
variable. In replicate analysis we use the following terms:

x stochastic or random variable (2.1)

xi an observation of x (collectively, the sample set) (2.2)

n number of observations in a sample set (sample size) (2.3)

x̄ mean value of the observations of x (2.4)

s2 variance of the observations of x (2.5)

s standard deviation of the observations of x (2.6)

We define these terms in the paragraphs that follow.
Repeated measurements of a quantity such as commuting time may be

thought of as observations of a stochastic variable. When we identify a quantity
as a stochastic variable, we are saying that the value is subject to influences that
are random. These random influences serve both to increase the variable (heavy
traffic due to a visiting dignitary slows you down and increases commuting
time) and to decrease the variable (leaving earlier in the morning before there
is too much traffic decreases your commuting time). Because the influences are
random, they average out, leaving a mean value that stays constant throughout
the random effects. The definition of the mean of n observations xi of a
stochastic variable x is

Sample mean x̄ ≡
(

x1 + x2 + · · · + xn

n

)
(2.7)

= 1

n

n∑
i=1

xi (2.8)
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This formula is the familiar arithmetic average. In the spreadsheet program
Microsoft Excel,1 the mean of a range of numbers is calculated with the
function AVERAGE(range); all Excel functions mentioned in the text are
listed for reference in Appendix C. In the MATLAB computing environment,2

the mean is calculated with the built-in function mean(array); all MATLAB
functions or commands mentioned in the text are listed for reference in
Appendix D. Appendix D also contains a table comparing equivalent Excel
and MATLAB commands.

The list of terms given earlier includes two quantities that assess the
variability of replicates: the sample variance s2 and the sample standard
deviation s. The definitions of these are [52]:

Sample variance s2 ≡
(∑n

i=1 (xi − x̄)2

n − 1

)
(2.9)

Sample standard deviation s =
√

s2 (2.10)

Looking at the definition of variance in Equation 2.9, we see that it is a
modified average of the squared differences between the individual measure-
ments xi and the sample mean x̄. The use of squared differences ensures that
both positive and negative deviations count as deviations and do not cancel
out when the sum is taken. The sample variance is not quite the average of
squared differences – the average of the squared differences would have n in
the denominator instead of (n−1) – but this difference is not significant for our
purposes. The variance turns out to be a very useful measure of variability of
stochastic quantities. The presence of (n−1) in the denominator of the equation
defining sample variance (Equation 2.9) rather than n is called for by statistical
reasoning.3 Sample variance and its square root, sample standard deviation,
are widely used to express the variability or spread among observations xi of
stochastic variables.

In Excel, the variance of a sample set is calculated with the function
VAR.S(range) and the standard deviation of a sample set with STDEV.S(range)
or SQRT(VAR.S(range)); in MATLAB, these commands are var(array) and

1
We used Microsoft Excel 2013, www.microsoft.com, Redmond, WA.

2
We used MATLAB r2018a, www.mathworks.com/products/matlab.html, Natick, MA.

3
In short, we use s2 as an estimate of the population variance σ 2, but when we use n instead of
(n − 1) in Equation 2.9, the expected value of s2 is not σ 2 but rather the quantity(
σ 2 − σ 2/n

)
. Knowing this, and with a little algebra, we arrive at the conclusion that, if we

use the definition of sample variance in Equation 2.9, the expected value of sample variance s2

will be σ 2 as we desire. This is called Bessel’s correction; see [38, 52].
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Figure 2.1 When n data replicates are available for a measured variable, the
average of the measurements is a good estimate for the value of the measured
variable, and the sample variance s2 and sample standard deviation s are
associated with the variability of the measurements. As we see later in the chapter,
these quantities allow us to determine standard replicate error es,random = s/

√
n,

as well as error limits for the quantity of interest. The replicate error worksheet in
Appendix A organizes this calculation.

std(array).4 In Example 2.1 we show a calculation of sample mean, variance,
and standard deviation using spreadsheet software. A worksheet in Appendix
A (an excerpt is shown in Figure 2.1) organizes these types of calculations.

Example 2.1: A good estimate of the time to commute from home to
workplace. Over the course of a year, Eun Young takes 10 measurements
of her commuting time under all kinds of conditions (Table 2.1). Calculate
a good estimate of her time to commute. Calculate also the variance and
the standard deviation of the dataset. What is your estimate of Eun Young’s
typical commuting time? What is your estimate of Eun Young’s commuting
time tomorrow?

4
The sample variance s2 and the sample standard deviation s are different from the population
variance σ 2 and population standard deviation σ , respectively. We calculate the sample
variance from n measurements, which is just a sample of the entire population of all possible
measurements. We cannot take all possible measurements, so we cannot know the population
variance, but s2 is a good estimate of the population variance in most cases. These issues are
considered further in the statistics literature [5, 38].
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24 2 Quick Start

Table 2.1. Data for Example 2.1: ten
replicate measurements of commuting time.

Index, i Commuting time, min

1 23
2 45
3 32
4 15
5 25
6 28
7 18
8 50
9 26
10 19

Figure 2.2 The replicate error worksheet can organize the calculations for the
commuting-time example. We have not yet introduced the replicate standard error
es,random; see the discussion surrounding Equation 2.26.

Solution: The data vary from 15 to 50 min, indicating that some factors
significantly influence the time it takes to make this trip. We are asked
to calculate the sample mean (Equation 2.8), variance (Equation 2.9), and
standard deviation (Equation 2.10) of commuting time, x. Using the Excel
functions AVERAGE(), VAR.S(), and STDEV.S(), and the data in Table 2.1,
we calculate (see Figures 2.2 and 2.3):
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Figure 2.3 We use the spreadsheet software Excel to carry out the calculation of
the mean and standard deviation of the data provided in Table 2.1.

x̄ = 28 min

s2 = 131 min2

s = 11 min

Note the units on the quantities.
The meaning of the statistic x̄ or “mean commuting time” is straightfor-

ward: on average, for the data available, the commute took 28 min. The other
two statistics, s2 and s, have been calculated with the help of the formulas and
Excel, but as yet we do not know the meaning of these numbers. We know
them simply as measures of the variability of the data; we address this topic
next. Based on the calculations just performed, we estimate that, typically, it
would take about 28 min (give or take) for Eun Young to make the commute.

In Example 2.1 we calculated the mean of a sample set, which is also the
expected value of the variable we are measuring, the commuting time. At any
given time, all things being equal, we expect that if Eun Young made her
commuting trip, it would take about 28 min.
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26 2 Quick Start

Perhaps you feel some unease with this prediction. If you were going to
make that trip, would you allow exactly 28 min, or would you allow more
or less time? After all, one time that Eun Young recorded her commute it
took 50 min, and one time she made it in 15 min. Although we expect that,
on average, the trip takes about 28 min, intuitively we know that it will take
28 min, give or take some minutes. We do not know how many minutes we
should “give and take,” however.

To explore this issue of how much to “give and take,” consider the
following. When we take sets of replicates, we can calculate the mean of the
replicates x̄ and may use that sample mean as the expected value of the variable
x. Imagine we do this entire process – the sampling and the calculating – six
times: take n measurements and calculate the means of each set. Will we get
the same sample mean for all six sets of n replicates? We explore this question
in Example 2.2.

Example 2.2: A second estimate of the mean time to commute from home.
Over the course of a year, Eun Young took 20 measurements of her commuting
time under all kinds of conditions. Ten of her observations are shown in
Table 2.1 and have already been discussed. Ten other measurements were
recorded as well, using the same stopwatch and the same timing protocols;
this second sample of 10 commuting times is shown in Table 2.2. Calculate
a good estimate of Eun Young’s time-to-commute from the second set of 10
observations. Calculate also the variance and the standard deviation of the

Table 2.2. Data for Example 2.2: ten
replicate measurements of commuting
time (second dataset).

Index, i Commuting time, min

1 27
2 40
3 25
4 22
5 45
6 22
7 28
8 35
9 32
10 41
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second dataset. Compare your results to those obtained from the first dataset
and discuss any differences.

Solution: The procedure for calculating the sample mean, variance, and
standard deviation for this second set is identical to that used with the first set.
The results are:

x̄ = 32 min

s2 = 68 min2

s = 8 min

These numbers are different from those we obtained from the first set: the mean
was 28 min in the first set, and it is 32 min in the second set. The variance is
twice as big in the first set (131 min2) as in the second set (68 min2). It seems
that taking the second dataset has only made things less clear, rather than more
clear.

Although the numbers for the estimates of sample mean and standard devia-
tion differ between the two datasets, this is not automatically cause for concern.
Remember that we are sampling a population (all possible commuting times),
and observations vary. It is because of this type of variation from sample
to sample that the field of statistics has developed good methods (described
here) to allow us to draw appropriate conclusions from data samples. The
results in both Examples 2.1 and 2.2 are reasonable estimates of the mean
commuting time, given the number and reproducibility of measurements used
in calculating x̄ and s each time. What we lack, as yet, is a way to express any
single estimate of the mean commuting time x̄ with its error limits. In addition,
we would benefit from being able to express and defend how confident we are
in the estimate that we calculate.

Before we acquired the second dataset, we thought we knew the average
commuting time to be 28 min; then, the second dataset gave an average that
was 4 min longer. Example 2.2 showed us that we need to exercise care when
interpreting results drawn from a single dataset. If we obtain a second dataset,
we may well get (indeed, will most likely get) different values for the mean
and the standard deviation.

One positive aspect of the two measurements discussed in Examples 2.1 and
2.2 is that the two calculated means are not too different. If we took a third,
fourth, fifth, and sixth sets of data, we expect we would get different numbers
for x̄ and s each time, but, as we saw earlier, we would expect the means of all
sets to be reasonably close to each other.

The near reproducibility of sample means is a phenomenon that is well
understood [5, 38]. When we repeatedly measure a quantity that is subject to
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stochastic variations, we do not get the same value every time. However, if we
repeatedly sample the variable and calculate the average for each sample of
size n, the values of the sample mean we obtain will be grouped around the
true value of the mean (which we call μ) and will be symmetrically distributed
around the true value. We can use these facts to develop error limits around the
estimate of the sample mean.

We began with the question of determining a good estimate of Eun Young’s
commuting time, and this question has led us into the topic of how to
quantify things that vary a bit each time we observe them. The uncertainty
problem is not unique to commuting time: whenever we make an experi-
mental measurement, we encounter stochastic variations and other sources of
uncertainty.

Taking stock of the situation thus far:

1. In the course of our work, we often find that there is a stochastic variable x

that interests us: in Examples 2.1 and 2.2, the variable is the commuting
time; in a future example, it is the measured value of density for a liquid;
or it could be any other measured quantity.

2. Due to random effects, individual observations xi of the variable x are not
identical.

3. If we average a set of n observations xi of the stoichiometric variable x,
we can obtain the average value x̄ and the standard deviation s of the
sample set. The average of the sample set is a good estimate of the value of
the variable, and the standard deviation is an indication of the magnitude
of stochastic effects observed in the sample set.

4. If we have one such sample of size n, mean x̄, and standard deviation s,
we would like to estimate how close (the “give and take”) the sample mean
x̄ is to the true value of the mean of the distribution of x. The true value of
the mean is given the symbol μ. A mathematical way of expressing our
question is to ask, what is a range around a sample mean x̄ within which
there is a high probability that we will capture μ, the true value of the
mean of x?

μ = estimate ± (error limits)

μ = x̄ ± (error limits)

5. The wider the error limits placed on a quantity, the higher the probability
that we will capture the true value between the limits. Unfortunately, while
expanding the error limits increases certainty, it also decreases the
usefulness of the answer – it is not so helpful to say that the commuting
time is somewhere between zero and a million hours. We need to establish

https://doi.org/10.1017/9781108777513.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.003
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a reasonable middle ground between answers that are highly precise but
uncertain (narrow error limits) and imprecise but certain (wide error
limits).

We have taken important steps toward our goal of quantifying uncertainty.
To understand and communicate quantities determined from measurements,
we classify them as stochastic variables and apply the methods of statistics.
We use statistical reasoning based on sampling to obtain a good estimate of
the measured quantity, and statistics also allows us to obtain error limits and
the associated probability of capturing the true value of the quantity within the
error limits. Our goal in this chapter is to explain the basics of how all this is
accomplished.5

2.2 Data Sampling

We have a single purpose, which is to identify appropriate error limits for
a quantity we measure. Quantities we measure are continuous stochastic
variables.

Goal: to determine a
plausible value

of a measured quantity
in the form

Answer = (value) ± (error limits) (2.11)

We seek to address this purpose by taking samples of the stochastic variable of
interest. To explain the role of sampling in uncertainty analysis, we begin with
a discussion of the mathematics of continuous stochastic variables. Taking an
experimental data point is, in a statistical sense, “making an observation of” or
“sampling” a continuous stochastic variable.

A key tool that characterizes a continuous stochastic variable is its prob-
ability density function (pdf). The pdf of a stochastic variable is a function
that encodes the nature of the variable – what values the variable takes on and
with what frequency or probability. A stochastic variable has its own inherent,
underlying pdf called the population distribution. As we discuss in this section
(see Equation 2.12), the probability of a continuous stochastic variable taking
on a value within a range is expressed as an integral of its pdf across that range.

5
Once the basics are established, we finish the consideration of Eun Young’s commuting time in
Example 2.7, where we determine the error range for mean commuting time based on the 95%
confidence level.
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We sample stochastic variables to learn about their probability density
functions. When we sample a stochastic variable and calculate a statistic such
as the sample mean or the sample variance, the value obtained for the chosen
statistic likely will be different every time we draw a sample, as we saw
in the previous section. The chosen statistic (i.e., the sample mean x̄ or the
sample variance s2) is itself a continuous stochastic variable, and it has its own
probability density function separate from that of the underlying distribution
associated with x. It turns out that the pdf of the statistic “sample mean” allows
us to quantify the probabilities we need to establish sensible error limits for
measured data.

The pdf of the statistic sample mean
allows us to quantify the probabilities we need

to establish sensible error limits for measured data.

We discuss this in Section 2.2.3.
Finally, the probability density function of sample means is quite reasonably

taken to be a well-known distribution called the Student’s t distribution. We
discuss why this is the case and show how Excel and MATLAB can facilitate
determinations of error limits with the Student’s t distribution.

To recap, this section contains (1) an introduction to the topic of continuous
stochastic variables and their pdfs; (2) information on how to determine
probabilities from probability density functions; and (3) discussion of deter-
mining error limits for stochastic variables using sampling and the Student’s t

distribution. These topics advance our goal of learning to quantify uncertainty
in experimental measurements. For some readers, it may serve your purposes
to skip ahead to Section 2.3, which shows how the methods discussed here are
applied to practical problems. After reviewing the examples, a reader who has
skipped ahead may wish to return here to explore why, when, and how these
methods work.

2.2.1 Continuous Stochastic Variables

When flipping a coin, what is the probability (Pr) that the result comes up
heads? This is a first question in the study of probability. The answer is Pr = 1

2 ,
since there are two possible states of the system – heads and tails – and each
is equally likely. Thus, we expect that half the time, on average, the result of a
coin toss will yield heads and half the time the result will be tails. The outcome
of a coin toss is a discrete random variable. When a stochastic variable is
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discrete, meaning the variable has a finite set of outcomes, it is straightforward
to calculate probabilities: probability of an outcome equals the number of
ways the outcome may be produced divided by the total number of possible
outcomes.

When measuring commuting time (Example 2.1), what is the probability
that it will take Eun Young 29.6241 min to make her commute? This
probability is not at all obvious. In addition, perhaps we can agree that it would
be highly unlikely that she would ever take exactly 29.6241 min to make her
commute. Commuting time is a continuous variable, and this type of variable
requires a different type of probability question.

Getting a useful answer
requires first identifying

a useful question.

What is the probability that it will take Eun Young between 20 and 30 min
to make her commute? This probability is also not obvious, but it seems like a
more appropriate question for a variable such as commuting time. Based on the
data we have seen in Examples 2.1 and 2.2, it seems likely that the probability
would be pretty high that Eun Young’s commute would take between 20 and
30 min. We guess that this probability (Pr) is greater than 0.5 and perhaps as
high as Pr = 0.7 or 0.8 (80% chance). We know the probability would not be
Pr = 1 (100%), since when we measured the commuting time in Example 2.1
one trip took 50 min. At this point it is not so clear how to be more rigorous in
estimating these probabilities.

In the preceding discussion, we explored the difference between establish-
ing probabilities with discreet stochastic variables, such as the outcome of a
coin toss, and with continuous stochastic variables, such as commuting time.
For discrete stochastic variables, we establish probabilities by counting up all
the possible outcomes and calculating the number of ways of achieving each
outcome. For continuous stochastic variables, we cannot follow that procedure.
We cannot count the number of possible commuting times between 20 and
30 min and we cannot count the number of ways of having Eun Young take
29.6241 min to make her commute. Continuous stochastic variables require a
different approach than that used for discrete variables. The approach we use,
based on calculus, is to define a pdf and to calculate probabilities by integrating
the pdf across a range of values. We discuss how and why this works in the next
section.
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2.2.2 Probability Density Functions

Commuting time is a continuous stochastic variable. Quantities such as
commuting time are continuous because, in contrast to discrete quantities (the
number of people in a room, for example), values of commuting time are not
limited to integer values but can take on any decimal number. The continuous
nature of experimental variables affects how we quantify the likelihood of
observing different values of the variable.

When sampling a continuous stochastic variable, the probability of observ-
ing any specific outcome is very small, basically zero [38]. For example, in the
commuting-time measurement, if we ask about the likelihood of observing a
commuting time of exactly 29.6241 min, the answer is zero. Any other precise
value is highly unlikely as well; we can even say that between 20 and 30 min
there are an infinite number of unlikely values.

Yet our experience tells us that observing some commuting time in this
interval is likely. Individual values are unlikely, but when we aggregate over
intervals (integrate), the probability becomes finite. The choice of interval
matters as well. The interval between 20 and 30 min captures much of the data
we know about for Eun Young’s commuting time, but this interval is special:
not all intervals are equally likely to contain observed commuting times. For
example, it is unlikely to observe a commuting time between 100 and 110 min.
Thus, probability changes when we ask about different intervals. In addition,
the breadth of the interval changes the probability. At one extreme, if we
choose a very narrow interval, we find the probability is zero. If we broaden our
interval, we are more likely to capture observed commuting times. If we use
an extremely broad interval, the probability of observing a value of commuting
time becomes nearly certain. If we choose finite-sized limits throughout the
domain of possible values, we obtain different, finite probabilities.

An effective approach to the challenge of calculating probabilities for
continuous variables is to think of probability in terms of how it adds up over
various intervals. We define the probability density function f (x) to calculate
the probability Pr of the variable x taking on values in an interval between
limits a and b (Figure 2.4):

Definition of f :
probability is expressed

as an integral of a probability
density function (pdf)

(continuous stochastic variable)

Pr [a ≤ x ≤ b] ≡
∫ b

a

f (x′)dx′ (2.12)
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Figure 2.4 For continuous probability distributions, we cannot evaluate the
probability of observing a particular value such as an average commuting time
of 29.6241 min, but we can calculate the probability that the variable of interest is
bracketed in a range of values. (What is the probability that the commuting time is
between 28 and 30 min?) The probability is calculated as the area under the curve
of the probability density function, between the two values that form the range of
interest.

The quantity f (x′)dx′ is the probability that x takes on a value between x′ and
x′ + dx′. The integral represents the result of adding up all the probabilities
of observations between a and b. If we let a = −∞ and b = ∞, then the
probability is 1. For all other intervals [a,b], the probability is less than 1 and
is calculated by integrating the pdf f (x) between a and b.6

In the remaining sections and chapters of this text, Equation 2.12 is the key
tool for determining error limits for experimental data. We seek error limits
[a,b] on the expected value of x so that the probability is high that the true
value of a quantity we measure is found in that range. We now explain how
that error-limit range [a,b] is found.

To build familiarity with probability density functions and probability
calculations, it is helpful at this point to work out a specific probability example

6
We use the notation x′ in the integral to make clear that x′ is a dummy variable of integration
that disappears once the definite integral is carried out. This distinguishes temporary variable x′
from the variable x, which has meaning outside of the integral.
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for a case when the pdf is known. After the example, we turn to the question
of how one determines a pdf for a system of interest.

Example 2.3: Likelihood of duration of commuting time. If we know the
pdf of George’s commuting time is the function given in Equation 2.13 (plotted
in Figure 2.5), what is the probability that his commute takes between 25 and
35 min? What is the probability that the commute will take more than 35 min?

Probability density function
(pdf) of George’s
commuting time

f (x) = Ae− (x−B)2
C (2.13)

where A = (1/
√

50π) min−1, B = 29 min, and C = 50 min2.
Solution: The definition of pdf in Equation 2.12 (repeated here) allows us to

calculate probabilities for continuous stochastic variables if the pdf is known,
as it is in the case of George’s commuting time.

Pr [a ≤ x ≤ b] ≡
∫ b

a

f (x′)dx′ (Equation 2.12)

Commuting time, minutes

Pr
ob

ab
ili

ty
 d

en
sit

y, 
f(t

im
e)

Figure 2.5 The probability density function that characterizes George’s commute.
Having the pdf makes probability calculations straightforward; later we see how
to make probability estimates for variables without knowing the underlying pdf.
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For the question posed in this example, we obtain the requested probability by
integrating the pdf (Equation 2.13) between 25 and 35 min.

Pr [25 ≤ x ≤ 35 min] =
∫ 35

25
Ae− (x′−B)2

C dx′ (2.14)

We have everything we need to finish the problem; the rest is mathematics.
The integral in Equation 2.14 is a deceptively simple one, and it does

not have a closed-form solution. This integral is sufficiently common in
mathematics that it has been defined as a function all its own, called the error
function, erf (u). Like sin u and ln u, the function erf u comes preprogrammed
in mathematical software.

Error function (defined): erf (u) ≡ 2√
π

∫
e−u2

du (2.15)

∫
e−u2

du =
√

π

2
erf (u) (2.16)

We carry out the integral in Equation 2.14 in terms of the error function, which
we subsequently evaluate in Excel [in both MATLAB and Excel the command
for the error function is ERF()]:7

Pr [25 ≤ x ≤ 35 min] =
∫ 35

25
Ae− (x′−B)2

C dx′ =A
√

C

∫ 35

25
e
−
(

(x′−B)√
C

)2(
1√
C

dx′
)

=
(
A

√
C
)(√

π

2

)
erf

(
x′ − B√

C

)∣∣∣∣x′=35

x′=25

= 1

2

[
erf

(
(35 − 29)√

50

)
− erf

(
(25 − 29)√

50

)]
= 1

2
(0.76986 − (−0.57629))

= 0.673075 = 67%

We obtain the result that about two thirds of the time George needs between
25 and 35 min to make his commute.

For the second question, to determine how often the commute will be more
than 35 min, we integrate the pdf from 35 to ∞; the answer is that there is a
12% probability of a commute 35 min or longer (this calculation is left to the
reader; Problem 2.5).

7
Hint: In the calculation shown, let u ≡ (x′−B)√

C
and thus du = dx′√

C
.

https://doi.org/10.1017/9781108777513.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.003


36 2 Quick Start

As we saw in Example 2.3, it is straightforward to calculate probabilities
for continuous stochastic variables when the pdf of the underlying distribution
is known. With this ability, we can answer some interesting questions about
the variable. The problem now becomes, how do we determine the probability
density function for a continuous stochastic variable of interest? For Eun
Young’s commuting time, for instance (Examples 2.1 and 2.2), how do we
obtain f (x)?

Determining a pdf is a modeling question. As with throwing a die, if we
know the details of a process and can reason out when different outcomes
occur, we can, in principle, reason out the pdf. To do this, we research the
process and sort out what affects the variable, and we build a mathematical
model.

For complicated processes such as commuting time, a large number of
factors impact the duration of the commute – the weather, ongoing road
construction, accidents, seasonal events. Unfortunately, there are too many
factors to allow us to model this process accurately. This is the case with
many stochastic variables. Because of complexity, the most accurate way to
determine the pdf of a real quantity turns out to be to measure it, rather than
to model it. If we have patience and resources, a reasonably accurate version
of the pdf is straightforward to measure: we make a very large number of
observations over a wide range of conditions and cast the results in the form of
a pdf.

Although measuring the pdf is straightforward if we are patient and well
financed, measuring a pdf is rarely easy. Measuring the pdf for commuting
time is a substantial project: to accurately determine the pdf, we must ask
Eun Young to time her commute for years under a variety of conditions.
Before embarking on this measurement, it would be reasonable to ask, are
we justified in making this effort? If we just want to know how to plan a
future commute, can we do something useful that is less time-consuming than
measuring the pdf?

For casual concerns about one person’s commuting time, there is little
justification for undertaking the difficult and complex task of measuring the
pdf. Many realistic questions we might ask about Eun Young’s commuting
time could be addressed by taking a guess at the probable time, then adding
some extra time to the estimate to protect against circumstances that cause the
commute to be on the longer side. For questions relating to commuting time,
we probably do not really need to know the best value and its error limits
– a worst-case estimate is sufficient (see, for example, Problem 2.30). We
characterize this approach as relying on an expert’s opinion and incorporating
a safety factor; the effort to determine the pdf is not warranted.
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Although worst-case thinking has its place in decision making, for scientific
and engineering work a worst-case estimate of a quantity of interest is often
insufficient. In science, our measurements are usually part of a broader project
in which we hope to make discoveries, learn scientific truths, or build reliable
devices, processes, or models. We may measure density, for example, as part of
the calibration of a differential-pressure meter. The accuracy of the calibrated
meter depends substantially on the accuracy of the density measurement for the
fluid used during calibration, and we need to know the extent to which we can
rely on our measurements. Many technological applications of measurements
are like this – dependent on instrument and measurement accuracy. Not
infrequently, accuracy can be a matter of life and death (for example, when
building structures, designing safety processes, and manufacturing health-
related devices) or can be what determines the success/failure of a project
(cost estimates, instrument sizing, investments). In such cases we cannot use a
worst-case value and talk ourselves out of the need to establish credible error
limits on our numbers.

The objections raised here seem to argue that we have no choice but
to measure the pdf for stochastic variables that we study for scientific and
engineering purposes. This sounds like a great deal of work (and it is), but
there is some good news that will considerably reduce this burden.

First, it turns out that we can quite often reasonably assume that the
stochastic effects in measurements are normally distributed; that is, their pdf
has the shape of the normal distribution (Figure 2.6):

Normal
probability
distribution

(pdf)

f (x) = 1√
2σ 2π

e
− (x−μ)2

2σ2 (2.17)

The normal distribution (see the literature [38] and Section E.2 in the appendix
and for more details) is a symmetric distribution with two parameters: a mean
μ, which specifies the location of the center of the distribution, and the standard
deviation σ , which specifies the spread of the distribution. With the assumption
that the random effects are normally distributed (that is, they follow Equation
2.17), we reduce the problem of determining the pdf to determining the two
parameters μ and σ .

Second, often the questions we have about a stochastic variable can be
answered by examining a sample of the values of the stochastic variable. We
introduce sampling to get around the difficulty of determining the underlying
pdf of the variable. The approach is this: we take data replicates – three, four, or
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d

Figure 2.6 The normal distribution, famous as the bell curve, is a symmetric
probability density distribution characterized by two parameters, μ, which is its
center, and σ , which characterizes its spread. The pdf has been plotted here versus
a dimensionless version of x, translated to the mean (x − μ) and scaled by the
standard deviation of the distribution. When μ = 0 and σ = 1, this is called the
standard normal distribution. For the normal distribution, 68% of the probability
is located within ±σ of the mean, and 95% of the probability is located within
±1.96σ or ≈ ±2σ of the mean.

more observations – and we ask, what is a good value (including error limits)
of the stochastic variable based on this sample set? The sample is not a perfect
representation of the variable, but thanks to considerable study, the field of
statistics can tell us a great deal about how the characteristics of samples are
related to the characteristics of the true distribution – all without us having to
know in detail the underlying pdf of the variable. We can put this statistical
knowledge to good use when determining error limits.

In the next section we show how we use a probability density function
called the sampling distribution of the sample mean x̄ to determine a good
value (including error limits) for a stochastic variable based on finite data
samples.
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2.2.3 Sampling the Normal: Student’s t Distribution

We return to our purpose, which is to identify error limits for a quantity we
measure.

Goal: to determine a
plausible value

of a measured quantity
in the form

Answer = (value) ± (error limits) (2.18)

We seek to address this purpose by taking samples of the measured quantity,
which is a stochastic variable. We take replicate measurements (a sample of
size n) of the quantity, from which we wish to estimate a good value of the
measured quantity. To determine the appropriate error range about that value,
we also ask: what is the size of the error range we need to choose (Figure 2.7)
to create an interval that has a good chance (we define a “good chance” as 95%
probability) of including the true value of the variable?

Figure 2.7 We measure x̄ and seek to determine error limits that capture the true
value of the variable, μ. We do not know μ, however. Whatever we choose, we
also need to be able to say quantitatively how likely we believe it is that the mean
± the error limits will capture the true value of the variable.
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Restated goal: to determine error limits
on an estimated value that, with 95%

confidence, captures the true value of x

Answer = (value) ± (error limits)

(2.19)

The value of writing our goal this way is that, through sampling, we can
address the restated goal.

As we discuss here, we can say a great deal about samples of a variable
without knowing the details of the variable’s underlying distribution. For the
quantity we are measuring, we first agree to assume that its underlying pdf is
a normal distribution of unknown mean μ and unknown standard deviation σ

(Equation 2.17).8 Second, we take a sample of n measurements and calculate
x̄ and s for the sample set. Finally, we pose our questions. First, based on
the sample set, what is a good estimate of the mean μ of the underlying
distribution? Second, what ± error limits should we apply to the good estimate
so that, with 95% confidence, the true value μ is captured in the range
(value) ± (error limits)?

These questions deal with the sampling process. The sampling process
introduces a new continuous stochastic variable, the sample mean x̄. We saw
in our commuting-time examples earlier in the chapter that when we draw
a sample and calculate the sample mean x̄, the observed mean varies from
sample to sample. It is intuitive, perhaps, that the values of x̄ will be in the
neighborhood of the true value of x. This can be rigorously shown to be true
[5, 38]. Formally, we say that when a random sample of size n is drawn from
a population of stochastic variable x, the expected value of the sample mean x̄

is equal to μ, the true value of the mean of the underlying distribution of x.9

In terms of our goal, this result from statistics tells us that sample mean x̄ is a
good estimated value for μ.

Expected value E()

of sample mean x̄

(any distribution)
E(x̄) = μ (2.20)

Taking x̄ as our estimate of a good value of x, we next ask about the
probability that an individual observation of sample mean x̄ will be close or
not close to μ, the mean of the underlying distribution of x. To answer this
question, we start by quantifying “close” or “not close” to the true value by
defining the deviation as the difference between the observed sample mean
and the true value of the mean of x.

8
We can relax this assumption later.

9
See the literature discussion of the central limit theorem [15, 38].
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Deviation between
the observed sample mean x̄

and μ, the true mean
of the stochastic variable x

deviation ≡ (x̄ − μ) (2.21)

The deviation defined in Equation 2.21 is also a continuous stochastic variable.
Since the normal distribution is symmetric, the deviations are equally likely to
be positive and negative, and overall the expected (mean) value of the deviation
(x̄ − μ) is zero. As with all continuous stochastic variables, the probability of
observing any specific value of the deviation is zero, but if we have the pdf
for the deviation, we can calculate the probability that the deviation takes on
values between two limits (using Equation 2.12). For example, for a measured
average commuting time of x̄ = 23.3 min, if we knew the pdf f (x̄ − μ) of
the deviation defined in Equation 2.21, we could answer the question, what is
the probability that the deviation of our measured mean from the true mean, in
either direction, is at most 5.0 min?

Maximum deviation |(x̄ − μ)max | = 5.0 min (2.22)

Probability that
(x̄ − μ) is in the

interval [−5.0,5.0]
Pr [−5.0 ≤ (x̄ − μ) ≤ 5.0] (2.23)

Pr [−5.0 ≤ (x̄ − μ) ≤ 5.0] =
∫ 5.0

−5.0
f (x̄′ − μ)d(x̄′ − μ) (2.24)

This question about the deviation is the same as asking, what is the probability
that μ, the true value of x, lies in the range 23.3 ± 5.0 min? By focusing on
deviations, the error-limits problem now becomes the question of determining
the pdf f (x̄ − μ) of the deviation between the sample mean x̄ and the true
mean μ. This formulation has the advantage that to determine the pdf of the
deviation we do not need to know μ, the true mean value of x.

By focusing on the pdf of deviation (x̄ − μ), rather than of x̄,
we avoid having to know μ, the true mean value of x.

To recap, in a previous section we established the pdf’s role as the tool
needed to calculate the probability that a stochastic variable takes on a value
within a range (Equation 2.12). When the pdf of underlying experimental
errors is not known, we customarily assume that the underlying distribution is
a normal distribution (this is a good assumption for many experimental errors),
and we sample the distribution (obtain n replicates). We use the mean of the
sample set x̄ to determine a good value of x. To determine error ranges for our
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good value of x, we then seek the pdf of a new continuous stochastic variable,
(x̄ − μ), the deviation of the sample mean from the true value of the mean.
Concentrating on (x̄ − μ) means we avoid having to know the value of μ.

The pdf we seek, f (x̄ −μ), the pdf of the deviation between a sample mean
and the true mean of a normally distributed population of unknown standard
deviation, has been determined [16, 34], and we present its mathematical
form next (it is Student’s t distribution with (n − 1) degrees of freedom,
Equation 2.29). The derivation of f (x̄ − μ) is sufficiently complex that we
do not present it here. It is useful, however, to sketch out the properties of the
distribution by collecting our expectations for the distribution. This exercise
helps us understand the answer from the literature, which we use to construct
error limits.

Characteristics of the pdf of the deviation of a sample mean from the true
mean (x̄ − μ):

1. For all sample sets, it seems reasonable that the most likely value of x̄ is μ

and thus that the most likely value of the deviation (x̄ − μ) is zero.
2. Since errors are random, positive and negative deviations are equally

likely, and thus the probability density function of (x̄ − μ) is expected to
be symmetric around zero.

3. We do not expect observed deviations (x̄ − μ) to be very large; thus the
probability that (x̄ − μ) is large-positive or large-negative is very small.

4. If the standard deviation of a sample set s is large, this suggests that
random variations are large, and the probability density of the deviation
(x̄ − μ) will be more spread out.

5. If the standard deviation of a sample set s is small, this suggests that
stochastic variations are small, and the probability density of the deviation
(x̄ − μ) will be more tightly grouped near the maximum of the pdf, which
is at (x̄ − μ) = 0.

6. If the sample size n is small, we know less about the variable x, and thus
the probability density of the deviation (x̄ − μ) will be more spread out.

7. If the sample size n is large, we know more about the variable x, and thus
the probability density of the deviation (x̄ − μ) will be grouped closer to
the maximum of the pdf, which is at (x̄ − μ) = 0.

The probability density function of the deviation of the sample mean from
the true mean has been worked out for the case when the underlying distri-
bution is a normal distribution of unknown standard deviation [5, 16, 34, 38].
In agreement with our list of the characteristics of this pdf, the distribution
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depends on the sample standard deviation s and the sample size n. To write
the distribution compactly, it is expressed in terms of a dimensionless scaled
deviation, t :

Scaled deviation t ≡ (x̄ − μ)

s/
√

n
(2.25)

where s and n are the sample standard deviation and sample size, respectively.
The deviation (x̄−μ) is scaled by the replicate standard error s/

√
n, producing

the unitless stochastic variable t .

Standard error
of replicates

es,random ≡ s√
n

(2.26)

The quantity s/
√

n is also called the standard random error. For individual
observations of the mean x̄ of a sample set of size n, t represents the number
of standard errors the mean lies from the true value of the mean μ (Figure 2.8).

The quantity s/
√

n in Equation 2.25 has meaning. It appears during consid-
eration of the properties of the underlying distribution of x, the distribution
we are sampling. When the standard deviation of the underlying normal
distribution is known, its sampling distribution is also a normal distribution,
and we can easily show (see Appendix E, Section E.4) that the standard
deviation of the sample mean is σ/

√
n.

Normal
population
(known σ)

Standard
deviation

of the mean
= σ√

n
(2.27)

When the standard deviation of the underlying distribution not known, the
standard deviation of the mean is estimated by substituting s for σ , where s

is the sample standard deviation.

Sampling normal
with unknown

standard deviation

Standard
deviation

of the mean
(estimate)

= s√
n

(2.28)

The pdf of the sampling distribution of an underlying normal distribution
of unknown standard deviation is not a normal distribution. The problem of
determining the statistics of sampling an underlying normal distribution of
unknown standard deviation was worked out in the late 1800s by William Sealy
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Figure 2.8 The scaled variable t indicates how many standard errors s/
√

n

separate the observed sample mean x̄ and the true mean μ. The Student’s t

probability density distribution allows us to calculate the probability of observing
values of t within a chosen range.

Gosset, an analyst for the Guinness Brewery in Ireland, and the distribution is
named for the pseudonym under which he published (“Student”) [15, 16].

Student’s t distribution
pdf of the scaled deviation t

for various degrees of freedom ν

f (t,ν) =
�
(

ν+1
2

)
√

νπ �
(

ν
2

) (1 + t2

ν

)−
(

ν+1
2

)

(2.29)

The Student’s t distribution is the pdf of t , the scaled deviation of the sample
mean from the true mean; it is written as a function of t and ν, where ν is called
the degrees of freedom (Figure 2.9).10 �() is a standard mathematical function
called the gamma function [54]. The Student’s t probability distribution
function f (t,ν) is plotted in Figure 2.9 for various values of ν, and we see that,
as expected, it is symmetric, peaked at the center, and with very little density
in its tails at low and high values of t . For the problem of sampling means

10
Degrees of freedom are important when we are estimating parameters – it is important to avoid
overspecifying a problem [5, 38].
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Student’s t distribution

Increasing
sample size n

Figure 2.9 The Student’s t distribution f (t,ν) describes how the value of the
sample mean is distributed for repeated sampling of a normally distributed
stochastic variable of unknown standard deviation σ . The Student’s t probability
distribution depends on the sample size n, and f (t,ν) gives the probability density
as a function of the scaled deviation t = (x̄−μ)

s/
√

n
. As n approaches infinity,

the Student’s t distribution approaches the standard normal distribution. Lines
shown are for different sample sizes, expressed in terms of degrees of freedom
ν = (n − 1), where the values of ν in the figure are ν = 1,2,5,10, and ∞.

for samples of size n, the applicable sampling distribution is the Student’s t

distribution with ν = (n − 1) degrees of freedom.
Recall our purpose: we seek to determine error limits on measurements of a

stochastic variable x. The mean x̄ of a set of replicates of the variable is a good
estimate of the variable (Equation 2.20). To quantify variability in the sample
set, we seek the sampling distribution of the mean of the sample set (Equation
2.29), which is based on the scaled deviation t . The use of deviation avoids the
need to know the true mean μ, which we do not know. The scaled deviation
t (Equation 2.25) is scaled by an estimate of the standard deviation of the
sample mean. This estimate is based on the more straightforward case when
the standard deviation is known, the case when the underlying distribution is
the normal distribution. Not knowing the standard deviation of the underlying
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distribution changes and complicates the pdf of the sampling distribution.
When the standard deviation of the underlying distribution is not known, the
pdf of the sampling distribution of the mean is the Student’s t distribution with
(n − 1) degrees of freedom [16, 34]. With the Student’s t distribution pdf and
the methods of creating error limits discussed in Section 2.2, we are now able
to determine error limits with known levels of confidence.

The formula for the Student’s t distribution in Equation 2.29 as well as
integrals of f (t,ν) are programmed into Excel and MATLAB, making the
Student’s t distribution very easy to use in error-limits calculations (several
examples are provided in the next section). Excel is used most of the time;
see Table D.1 for equivalent MATLAB commands). In the next section we
discuss how to apply the Student’s t distribution to the problem of determining
appropriate error limits for data replicates.

2.3 Replicate Error Limits

2.3.1 Basic Error Limits

This chapter is about quantifying replicate error, a type of random uncertainty
present in our data. Replicate error shows up when we make repeated
measurements of a stochastic variable – we do not get the same number every
time. As discussed in the previous sections, random statistics teaches us that
the average of repeated measurements is a good estimate of the true value of
the variable. Statistics also guides us as to how to write error limits for this
estimated value. The essential tool for writing limits due to random error is the
Student’s t distribution, introduced in Section 2.2. This distribution allows us
to quantify likely variability of the data based on the properties of a sample of
the variable. In this section, we show how to use the Student’s t distribution to
answer some very practical questions about uncertainty in experimental data.

We present two introductory examples, the first one addressing the question
of a warrantied average value for a commodity and the second using the
Student’s t distribution to assess different choices for the number of significant
figures to report for an experimental result. These two initial examples lead to
the definition of the most common form of the error limit, the 95% confidence
interval, which we discuss in depth in Section 2.3.2.

Example 2.4: Probability with continuous stochastic variables: guarantee-
ing the mean stick length. A shop sells sticks intended to be 6 cm long, and
the vendor claims that the average stick length of his stock is between 5.5 cm

and 6.5 cm. To assess this guarantee, we measure the lengths of 25 sticks and
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find that the lengths vary a bit. We calculate the mean length to be x̄ = 6.0 cm,
and the standard deviation of the sample set is s = 0.70 cm. Based on these
data, what is the probability that the true average stick length in the vendor’s
stock is between 5.5 and 6.5 cm, as claimed?

Solution: This is a question about the mean of the distribution of stick
lengths. The best estimate of average stick length is the sample mean, x̄ =
6.0 cm, which for our sample has just the value that the vendor hoped it would
have. The lengths vary, however. Based on the sample of stick lengths obtained,
how confident should the vendor be that the average stick length is between
5.5 and 6.5 cm? In terms of probability, based on the sample, what is the
probability that the true population-average stick length is between 5.5 and
6.5 cm?

We can ask this question in terms of deviation: what is the probability
that the maximum deviation of the sample mean x̄ from the true mean of the
population of stick lengths will be 0.5 cm?

Maximum deviation
of the mean from the true

|(x̄ − μ)max | = 0.5 cm (2.30)

The Student’s t distribution with (n − 1) degrees of freedom expresses the
probability of observing deviations of various magnitudes, if we have a sample
from the population. The Student’s t distribution is the pdf for the stochastic
variable t (Equation 2.25). As we discussed in Section 2.2, the pdf of a
continuous stochastic variable allows us to calculate the probability that the
stochastic variable will take on a value within a range; thus, we are able to
use the Student’s t distribution to calculate the probability that a value of t lies
within some range.

To translate our question about mean stick length into a question about
values of t , we examine the definition of t :

Scaled deviation t t = (x̄ − μ)

s/
√

n
(2.31)

The quantities in the definition of t refer to three properties of a sample
of a stochastic variable (sample mean x̄, sample standard deviation s, and
number of observations in the sample n) and one property of the underlying
population that has been sampled (μ, the mean of the population). For the
current discussion of stick lengths, we do not know the population mean μ,
but we know all three properties of a sample and we know the target maximum
deviation (x̄ − μ)max . Thus, we can calculate a value of tlimit associated with
the target deviation. The question we are seeking to answer asks about the
mean stick length deviation being no more than ±0.5 cm. Thus, for tlimit
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calculated from the maximum deviation of 0.5 cm, the range of t from −tlimit

to +tlimit exactly expresses our mean-stick-length question: the probability
that t falls between −tlimit and +tlimit (ν = n − 1) is the same probability
that the population mean stick length μ will be between 5.5 cm and 6.5 cm, as
claimed by the vendor.

Our first step, then, is to calculate tlimit , the scaled deviation that represents
the maximum deviation of mean stick length.

t = (x̄ − μ)

s/
√

n
(2.32)

Scaled
maximum
deviation

tlimit = (maximum deviation)

s/
√

n
(2.33)

= (0.5 cm)

0.70 cm/
√

25
= 3.57142 (unitless, extra digits shown)

The sampling distribution of the mean is the Student’s t distribution with
(n − 1) degrees of freedom. The probability that −tlimit ≤ t ≤ tlimit is
given by the integral in Equation 2.12, with the pdf function being the pdf
of the Student’s t distribution and with the limits given by ±tlimit and for
ν = (n − 1) = 24 (Figure 2.10).

Probability that
scaled deviation t

is between − tlimit and tlimit

Pr =
∫ +tlimit

−tlimit

f (t ′;n − 1)dt ′ (2.34)

=
∫ 3.57142

−3.57142
f (t ′;24)dt ′ (2.35)

This integral over the pdf of the Student’s t distribution, and hence the
probability we seek, is readily calculated in Excel, as we now discuss.

Carrying out integrals of the Student’s t probability density distribution
is a very common calculation in statistics; Excel has built-in functions
that evaluate integrals of f (t,ν) for the Student’s t distribution, and we
discuss now how to use these to evaluate Equation 2.35. The Excel function
T.DIST.2T(tlimit,n−1) is called the two-tailed cumulative probability distribu-
tion of the Student’s t distribution. For the Student’s t distribution, the function
T.DIST.2T(tlimit,n−1) gives the area underneath the two probability-density
tails that are outside the interval in which we are interested (Figure 2.10):
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distribution

Figure 2.10 The integral under the Student’s t distribution pdf from −∞ to +∞
is 1; if we integrate from −tlimit to tlimit we leave behind two tails, each with the
same amount of probability (since the distribution is symmetric). The area under
the curve between ±tlimit is just the area in the two tails subtracted from the total
area, which is 1.

T.DIST.2T(tlimit,n − 1) ≡
∫ −tlimit

−∞
f (t ′;n − 1)dt ′ +

∫ ∞

tlimit

f (t ′;n − 1)dt ′

(2.36)

Thus, the probability we seek in Equation 2.35 is the difference between the
total area under the curve, which is equal to 1, (

∫∞
−∞ f (t ′,n − 1)dt ′ = 1), and

the value yielded by the Excel two-tailed function.

Probability that
scaled deviation t is

between − tlimit and tlimit

≡ Pr[−tlimit ≤ t ≤ tlimit ] =
∫ +tlimit

−tlimit

f (t ′;n − 1)dt ′

Pr[−tlimit ≤ t ≤ tlimit ] = 1 − T.DIST.2T(tlimit,n − 1) (2.37)

The availability of the function T.DIST.2T() in Excel makes calculating the
probability we seek a matter of entering a simple formula into Excel (see
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Appendix D for the equivalent MATLAB command.). For the sample of stick
length tlimit = 3.57142 and ν = (n − 1) = 24:

Probability that
t is between

−tlimit and tlimit

= 1 − T.DIST.2T(3.57142,24)

= 0.998456 = 99.8% (2.38)

Based on the sample obtained (n = 25;x̄ = 6.0 cm;s = 0.70 cm) and the
target maximum deviation of 0.5 cm, we are 99.8% confident that the true
mean stick length of the vendor’s supply is in the range 6.0 ± 0.5 cm. The
vendor has correctly characterized his collection of sticks.

Note that although the true mean stick length is well characterized by the
sample mean, the sample standard deviation is relatively large (s = 0.70 cm).
Customers should expect the lengths of the sticks to vary.11 If customers need
to have precise stick lengths, they need to consider both the mean and the
standard deviation of the vendor’s stock.

Example 2.5 applies the Student’s t distribution to the problem of deter-
mining the number of significant figures to associate with a measurement of
density. Appendix C contains a list of Excel functions that are useful for error-
limit calculations.

Example 2.5: Play with Student’s t: sig figs on measured fluid density.
A team of engineering students obtained 10 replicate determinations of the
density of a 20 wt% aqueous sugar solution: ρi(g/cm3) = 1.0843, 1.06837,
1.07047, 1.0635, 1.09398, 1.0879, 1.07873, 1.05692, 1.07584, 1.07587 (extra
digits from the calculator are reported to avoid downstream round-off error).
Given the variability of the measurements, how may significant figures should
we report in our answer?

Solution: The value of the mean density that we calculate from the students’
data is x̄ = ρ̄ = 1.075588 g/cm3, but the measurements ranged from
1.05692 to 1.09398 g/cm3, and the standard deviation of the sample set is
s = 0.011297 g/cm3 (extra digits shown). When calculating the average
density from the data, the computer gives 32 digits, but clearly we cannot
justify that degree of precision in our reported answer, given the variability
of the data.

11
In fact, for this vendor’s stock, the probability of actually having the length of a stick chosen at
random fall between 5.5 and 6.5 cm is only 51%; see Problem 2.32. We know the mean of the
stick population, with high confidence, to be between 5.5 and 6.5 cm, but the distribution of
stick lengths leading to that well-characterized mean is broad.
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g/cm3

Figure 2.11 Error limits shown correspond to density reported to five sig figs
(narrowest curly brackets), four sig figs, and three sig figs. When we specify an
answer within the significant figures convention, it implies that the true value will
be found in the range created by toggling the least certain digit by 1. When we
specify fewer significant figures, we are presenting a broader range and indicating
we are less certain of the true value.

Since the question concerns significant figures, can we perhaps apply the
sig-figs rules from Appendix B? Unfortunately, these rules are only applicable
when values of known precision are combined or manipulated. This is not our
current circumstance; rather, the uncertainty in density is due to the sample-
to-sample variability of the data (replicate variability). We must determine the
uncertainty from the variability of the data and subsequently assign the correct
number of significant figures.

We can address the question in this example by returning to the fundamental
meaning of the sig-figs convention and thinking in terms of deviation (x̄ − μ).
The sig figs idea is that the last digit retained is uncertain by plus or minus one
digit. Another way of expressing the question of this example is as follows:
what are the probabilities that the true value of the density is found in the
following intervals (Figure 2.11):

true value
?= 1.0756 ± 0.0001 g/cm3 (5 sig figs)

true value
?= 1.076 ± 0.001 g/cm3 (4 sig figs)

true value
?= 1.08 ± 0.01 g/cm3 (3 sig figs)

The three ± values are three possible values of maximum deviation (x̄−μ)max .
The sampling distribution of the sample mean [the Student’s t distribution,
ν = (n − 1)] allows us to assess the probability that the true value of the
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variable (in this case the solution density) is found in a chosen interval of scaled
deviation t ; we can calculate the probability for each of the potential intervals
shown above, and whichever answer gives us an acceptable probability is the
number of sig figs we report.

The true value of the density is unknown, but we can write the deviation
between the estimate (sample mean x̄) and the true μ as (x̄ − μ), which for
five significant figures would have to be equal to no more than 0.0001 g/cm3.

Maximum deviation between
the estimate and

the true value of ρ

for 5 sig figs

∣∣(x̄ − μ)max

∣∣ = 0.0001 g/cm3

The variable t in the Student’s t distribution is the deviation (x̄ −μ) expressed
in units of replicate standard error s/

√
n, which is based on sample properties

(sample standard deviation s, number of samples n).

Scaled deviation t = (x̄ − μ)

s/
√

n

We know the replicate standard error s/
√

n from the dataset, and thus we can
determine the value of the scaled deviation tlimit such that the dimensionless
interval between −tlimit and tlimit corresponds to a maximum deviation of
0.0001 g/cm3.

Scaled
maximum
deviation

tlimit = max deviation

s/
√

n
= (x̄ − μ)max

s/
√

n
(2.39)

tlimit,10−4 = 0.0001 g/cm3

0.01129736 g/cm3/
√

10
= 0.02799 (unitless)

The probability that, when we take a sample, the observed scaled deviation
t will be in the interval −tlimit ≤ t ≤ tlimit is given by the area under the pdf
of the Student’s t distribution with ν = (n − 1) = 9 in the interval between
−tlimit and tlimit .

Pr =
∫ tlimit

−tlimit

f (t ′,ν)dt ′ (2.40)

Using the same Excel function introduced in Example 2.4, and for the three
sig-figs intervals under consideration [corresponding to maximum deviations
(x̄−μ) of 10−4, 10−3, and 10−2 g/cm3], we obtain the following probabilities.
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For five significant figures:

tlimit,10−4 = (x̄ − μ)max

s/
√

n

= 0.0001

3.5725 × 10−3
= 0.02799

∫ 0.02799

−0.02799
f (t ′;9)dt ′ = 1 − T.DIST.2T(0.02799,9) = 2% (5 sig figs)

For four significant figures:

tlimit,10−3 = 0.001

3.5725 × 10−3
= 0.2799

∫ 0.2799

−0.2799
f (t ′;9)dt ′ = 1 − T.DIST.2T(0.2799,9) = 21% (4 sig figs)

For three significant figures:

tlimit,10−2 = 0.01

3.5725 × 10−3
= 2.799

∫ 2.799

−2.799
f (t ′;9)dt ′ = 1 − T.DIST.2T(2.799,9) = 98% (3 sig figs)

The calculation shows us that intervals associated with five significant figures
(±10−4 g/cm3, only 2% confidence of capturing the true value; review Figure
2.7) and four significant figures (±10−3 g/cm3, just 21% confidence) are not
justified; based on the variability of the data, we should report no more than
three significant figures or expect a deviation of at least ±10−2 g/cm3 if we
want to be reasonably sure that the reported interval includes the true value
of the density, given the variability of the observations. Specifically, we can be
98% confident that the true value of the density is within the interval associated
with reporting three significant figures. If we choose to report four significant
figures, we are taking a substantial risk, as the sample statistics imply that we
should only have 21% confidence that we will bracket the true value of the
density with this narrower choice.

From Examples 2.4 and 2.5, we see that we can answer some interesting and
practical questions with the Student’s t distribution and Excel. While sig-figs
rules are helpful when manipulating quantities of known uncertainty, sampling
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gives us direct access to the variability of a quantity. The Excel (or MATLAB)
functions make using the statistics fast and easy.

At the beginning of Section 2.2.3 we defined our restated goal as

Restated goal: to determine error limits
on an estimated value that, 95%

of the time, captures the true value of x

Answer = (value) ± (error limits)

(2.41)

We have made progress on this goal. Based on a sample (n,x̄,s), we now know
how to calculate the probability of finding the true mean μ in a chosen interval.
The steps are given here.

Calculate the likelihood of finding the true mean μ in a chosen interval,
based on a sample of size n with mean x̄ and standard deviation s:

1. Choose the magnitude of the maximum deviation |(x̄ − μ)max |. This
determines the chosen interval for the error limits.

2. Calculate the maximum scaled deviation tlimit from |(x̄ − μ)max |, the
definition of t , and the sample properties n and s (Equation 2.39, repeated
here).

Scaled
maximum
deviation

tlimit = max deviation

s/
√

n
= (x̄ − μ)max

s/
√

n
(Equation 2.39)

3. Use Equation 2.34 (repeated here) to calculate the probability that the
observed deviation |(x̄ − μ)| is no larger than the chosen value of
maximum deviation.

Probability that
t is between

−tlimit and tlimit

=
∫ +tlimit

−tlimit

f (t ′;n − 1)dt ′ (Equation 2.34)

= 1 − T.DIST.2T(tlimit,n − 1)

4. Report the answer for the predicted mean as x̄ ± (max deviation) at a
confidence of (result).

The definition of the scaled sampling deviation t and the identification of
the Student’s t distribution (with ν = n − 1) as the appropriate probability
density distribution for the sampling distribution of the mean, when the
standard deviation is unknown, are the advances that make these error-limit
and probability calculations possible.
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Calculating the probability for a chosen maximum deviation clarifies error-
limit and sig-figs choices, but choosing the maximum deviation (step 1) is
not always the preferred way of addressing error questions. We would prefer
to choose the confidence level with which we are comfortable and turn the
problem around and calculate the limits ±tlimit that correspond to the chosen
confidence level. We show how to do this in Section 2.3.2. The probability we
choose is 95%, and the interval calculated, when expressed in terms of error
limits on x̄, is called the 95% confidence interval of the mean. In the next
section we discuss the issue of how to back-calculate tlimit from sample sets to
obtain 95% confidence intervals.

We have a final comment on the validity of using the Student’s t distribution
for estimating sampling properties of the mean. The use of the Student’s t

distribution is based on the assumption that the underlying distribution of
x is the normal distribution with unknown standard deviation, but rigorous
calculations show that even if the underlying distribution is not normal, if it is
at least a centrally peaked distribution, we may continue to use the Student’s t

distribution as the sampling distribution of the sample mean [5, 38].

2.3.2 Confidence Intervals of the Mean

The sig-figs convention, based on plus/minus “1” in the last digit, is a coarse
expression of error limits that we have seen may not precisely reflect the likely
uncertainty in measurements. In Example 2.5 the four significant figures choice
for average density (that is, chosen maximum deviation of ±10−3 g/cm3)
gave a too low amount of confidence at 21% (the true value is captured
within this range only about 1 in 5 times that a sample is processed), but the
three significant figures choice (±10−2 g/cm3) forced us to the perhaps too
conservative 98% confidence level. The jump from 21% confidence to 98%
confidence was rather abrupt, and it was forced by thinking of error limits
as having to be plus/minus “1” of a decimal place. It may make more sense
to choose our confidence level and let the plus/minus increment be whatever
corresponds to that confidence level. We explore this approach in the next
example.

Example 2.6: Error limits driven by confidence level: measured fluid
density, revisited. A team of engineering students obtained 10 replicate
determinations of the density of a 20 wt% aqueous sugar solution (see Example
2.5 for the data). With 95% confidence and based on their data, what is the
value of the density along with appropriate error limits on the determined
value? (Answer is a range.)
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Solution: The calculation of sample mean density ρ̄ and sample standard
deivation s from the data proceeds as in Example 2.5, and the remaining
problem is to construct the appropriate error limits such that the probability
of capturing the true value of density is 95%. As with the calculations in
Example 2.5, we arrive at a confidence value by integrating the probability
density function of the sampling distribution between −tlimit and tlimit .

Pr[−tlimit ≤ t ≤ tlimit ] =
∫ tlimit

−tlimit

f (t ′;n − 1)dt ′ (2.42)

where f (t;n− 1) is the pdf of the Student’s t distribution with (n− 1) degrees
of freedom. Previously we chose the maximum deviation |(x̄ − μ)max |, deter-
mined tlimit from the maximum deviation and properties of the sample, and
calculated the probability of observing that deviation from the Student’s t

distribution. For the current example, the desired confidence is given as 95%;
Pr = 0.95 is thus the value of the integral in Equation 2.42. What is not known
in this case is the value of the scaled deviation tlimit to be used in the limits of
the integration so as to obtain that chosen value of the probability.

Pr[? ≤ t ≤?] = 0.95 =
∫ ?

?
f (t ′;n − 1)dt ′ (2.43)

To determine the 95% probability limits, we must back-calculate tlimit from
the value of the integral (that is, 0.95) so that Equation 2.43 holds. Once we
know tlimit , we can write the range in which we expect to find the true value
of the density as follows:

Maximum
scaled

deviation
tlimit = |(x̄ − μ)|max

s/
√

n

Maximum deviation
(error limits)

± (x̄ − μ) = ±tlimit

(
s√
n

)
(2.44)

Solving Equation 2.44 for μ, we expect, with 95% confidence, the true mean
μ will be in this interval:

μ = x̄ ± tlimit

s√
n

(2.45)

Excel performs the inversion we seek (Equation 2.43) with its function
T.INV.2T(α,n − 1) (see also Appendices C and D). The significance level α

is defined as 1 minus the confidence level (probability) sought.
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Significance level α ≡ 1 − Pr (2.46)

For 95% confidence, α = 0.05. The parameter ν = (n − 1) is the number of
degrees of freedom of the sampling process. The general integral of interest in
this type of problem is

Probability that
t is between

−tlimit and tlimit

Pr[−tlimit ≤ t ≤ tlimit ]

Pr = (1 − α) =
∫ tlimit

−tlimit

f (t ′,ν)dt ′ (2.47)

The back-calculation in Equation 2.47 of tlimit from known α and ν = (n − 1)

is performed by Excel or MATLAB:

Calculate limits ±tlimit

from Equation 2.47
for set significance α

(Excel)

tlimit = t α
2 ,ν = T.INV.2T(α,ν) (2.48)

(MATLAB) tlimit = t α
2 ,ν = −tinv

(α

2
,ν
)

(2.49)

We explain the subscript “α/2” nomenclature in the discussion that follows.
The value of tlimit we seek is the value that will give an area of (1 − α)

when f (t ′,n − 1) is integrated between −tlimit and tlimit (Figure 2.12). There
are two pdf “tails” containing excluded areas: one between −∞ and −tlimit

and one between tlimit and ∞ (compare with Equation 2.36). The total area
in the two tails is α. In the Excel function T.INV.2T() (2T=“two tailed”), one
variable we specify is the total amount of probability in the two tails (α); the
other variable is the number of degrees of freedom ν = (n−1). The area under
f (t;ν) below −tlimit is α/2; thus the convention is to write tlimit = t α

2 ,ν .
We now apply this calculation to the current problem of fluid density error

limits. For 95% confidence (α = 0.05), with ν = (n − 1) = 9 degrees of
freedom, the tlimit we obtain is:

tlimit = t0.025,9 = T.INV.2T(0.05,9)

= 2.262157
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probability

probabilityprobability

distribution

Figure 2.12 For confidence intervals, we are interested in knowing how far out
toward the tails we need to go to capture (1 − α)% of the probability between
the limits −tlimit and tlimit . The small probability that resides in the two tails
represents improbable observed values of the sample mean.

Once again the calculation is reduced to a simple function call in Excel or
MATLAB. From tlimit we now calculate the range in which we expect to find
the true value of the density.

Maximum
scaled

deviation
tlimit = (x̄ − μ)max

s/
√

n

μ = x̄ ± tlimit

s√
n

= 1.075588 ± 2.262157

(
0.01129736√

10

)
20 wt% solution density

(95% confidence)
= 1.076 ± 0.008 g/cm3 (2.50)

This interval is shown in Figure 2.13 along with the sig figs–based error limits
from Example 2.5. The 95% confidence interval is more precise than the broad,
three sig-figs error limits, while still corresponding to a very reasonable (and
known) confidence level, 95%.
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CI

CI
CI

CI

g/cm3

g/cm3

Figure 2.13 Confidence intervals from Examples 2.5 and 2.6. The confidence
level varies depending on the error limits chosen. With 95% confidence intervals,
we specify a confidence level and calculate the error limits.

Note that in writing our answer in Equation 2.50, we retain only one digit on
error. Also, the error is in the third digit after the decimal, and this uncertainty
determines how many digits we report for the density (we usually keep only
one uncertain digit). For more on significant figures when writing error limits
(including exceptions to the one-uncertain-digit rule), see Section 2.4.

The process followed in Example 2.6 is a statistical way of knowing the
stochastic “give and take” amounts we mentioned earlier in the chapter. A
common choice is to report the amount of “give and take” that will, with 95%
confidence, make your estimate right: “right” means we are 95% confident that
the calculated range captures the true value of the mean of the distribution, μ.
The range that, with 95% confidence, includes the true value of the mean is
called a 95% confidence interval of the mean (Figure 2.14).

95% confidence interval
of the mean

=
⎛⎝ range that, with 95% confidence,

contains μ, the true mean
of the underlying distribution

⎞⎠ (2.51)

The 95% confidence interval12 of the mean is the usual way to determine
error limits when only random errors are present. For a stochastic variable

12
If we create a large number of 95% confidence intervals from different samples, 95% of them
will contain the true mean μ. The range for any one sample, however, either does or does not
contain μ. Thus, the probability that any one confidence interval contains the true mean μ is
not 95%: It is either one or zero. Rather, we are 95% confident that the mean is in that interval.
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probability

probabilityprobability

distribution

Figure 2.14 The Student’s t probability distribution, f (t;ν), is used to construct
95% confidence intervals on the mean. The central 95% region represents the most
likely values we will observe for the sample mean in a sample of size n. The 5% of
the probability that resides in the two tails represents improbable observed values
of sample mean – improbable, but not impossible. They are observed about 5% of
the time (they will be observed 1 in 20 times that a sample of size n is tested).

x sampled n times with sample mean x̄ and sample variance s2, the 95%
confidence interval of the mean is calculated as follows:

95% confidence interval
of the mean x̄

(replicate error only)
μ = x̄ ± t0.025,n−1es,random (2.52)

es,random ≡ s√
n

t0.025,n−1 = T.INV.2T(0.05,n − 1) Excel

= −t inv(0.025,n − 1) MATLAB

where es,random = s√
n

is the standard error on the mean of x and t0.025,n−1

is a value associated with the Student’s t distribution that ensures that 95%
of the probability in the distribution is captured between the limits given in
Equation 2.52. Three-digit values of t0.025,n−1 are given in Table 2.3 as a
function of sample size n; these values are calculated more precisely with
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Table 2.3. The Student’s t distribution approximate values of t0.025,n−1 for
use in constructing 95% confidence intervals for samples of size n. The
numbers in bold are equal to “2” to one digit. Accurate values of |t0.025,n−1|
may be calculated with Excel’s function call T.INV.2T(0.05,n − 1) or with
−t inv(0.025,n − 1) with MATLAB.

n 2 3 4 5 6 7 8 9 10 20 50 100 ∞
n − 1 1 2 3 4 5 6 7 8 9 19 49 99 ∞

t0.025,n−1 12.71 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.09 2.01 1.98 1.96

Excel using the function call T.INV.2T(0.05,n − 1).13 Note that for large n,
t0.025,n−1 approaches a value of about 2.

For practice, we now apply the Student’s t distribution and Equation 2.52
to determine 95% confidence intervals on the commuting-time measurements
in Examples 2.1 and 2.2.

Example 2.7: Commuting time, revisited. Over the course of a year,
Eun Young took 20 measurements of her commuting time under all kinds of
conditions. Ten of her observations are shown in Table 2.1 (Example 2.1) and
10 other measurements taken using the same stopwatch and the same timing
protocols are shown in Table 2.2 (Example 2.2). Calculate an estimate of Eun
Young’s time-to-commute first using the first dataset and then using all 20 data
points. Express your answers for the estimates of commuting time with error
limits consisting of 95% confidence intervals of the mean.

Solution: Using the first set of n = 10 data points found in Table 2.1, we
employ Equation 2.52 with x̄ = 28 min, s = 11 min, and t0.025,9 = 2.26
[T.INV.2T(0.05,9)]. The 95% confidence interval of the mean is:

95% confidence interval
of the mean

Set 1; n = 10
μ = x̄ ± t0.025,n−1

s√
n

= 28 ± (2.26)
11√
10

= 28 ± 8 min

Using all n = 20 data points found in Tables 2.1 and 2.2, we calculate
x̄ = 30 min, s = 10 min, and from T.INV.2T(0.05,19) we find t0.025,19 = 2.09.
The 95% confidence interval of the mean for these data is as follows:

13
In this formula, the α = 0.05 corresponds to the 95% confidence level selected; for a 99%
confidence level, replace 0.05 with 0.01.
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n
n

Figure 2.15 The first dataset with n = 10 produced a wider 95% confidence
interval than the second dataset with n = 20. The two predictions overlap and thus
are consistent in their predictions for the true value of the mean of the variable, μ.

95% confidence interval
of the mean

Combined set; n = 20
μ = x̄ ± t0.025,n−1

s√
n

= 30 ± (2.09)
10√
20

= 30 ± 5 min

Taking a sample size of 10 yielded an estimate of between 20 and 36 min
for the mean commuting time (Figure 2.15, sample 1). Taking a sample of
size 20 yielded an estimate that agrees that the true mean is between those
two numbers, but that narrows the prediction to be between 20 and 30 min
at the same level of confidence (Figure 2.15, sample 2). Because of the

√
n

in the denominator of Equation 2.52, increasing n narrows the confidence
interval and more precisely predicts the mean commuting time. Note that in
neither case could we rely on sig-figs rules to express the appropriate precision.
The true uncertainty is reflected in the variability of the data and had to be
determined through sampling.

As Example 2.7 shows, when we have data replicates, it is straightforward
to use software to calculate an expected value of the mean and a 95% confi-
dence interval for that value. For predictions of the sample mean, obtaining
more replicates narrows the range of the confidence interval (makes us more
precise in our estimate of the true value of the mean at the same level of
confidence).
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Predicted value
of the mean:

μ = x̄ ± t0.025,n−1
s√
n

= lim
n→∞

(
x̄ ± t0.025,n−1

s√
n

)
= x̄ (2.53)

The 95% confidence interval quantifies the “give or take” that should be
associated with an estimate of the mean of a stochastic quantity such as
commuting time.

Note that the current discussion has focused on error limits on the mean.
As n increases to infinity, we become certain of the mean. One example we
have discussed is the typical commuting time for Eun Young – the answer for
typical commuting time is the mean commuting time and the error limits are
the error limits on the mean. A different but related question is, what duration
do we expect for Eun Young’s commute tomorrow? This is a question about a
“next” value for a variable. The answer to this question is also the mean of the
dataset, but the variability is different – the variability expected in tomorrow’s
commuting time is much larger than the variability expected for the mean.
More replicates refine our estimate of the mean, but larger samples do not make
Eun Young’s commute less variable from day to day. To address a “next” value
of a variable, we use a prediction interval rather than a confidence interval; see
Section 2.3.3 and Example 2.15.

In Example 2.8 we carry out another 95% confidence interval calculation
for laboratory data.

Example 2.8: Density from laboratory replicates. Ten student groups mea-
sure the density of Blue Fluid 175 following the same technique: using an
analytical balance they weigh full and empty 10.00 ± 0.04 ml pycnometers.14

Their raw results for density are given in Table 2.4. Note that they used
ten different pycnometers. With 95% confidence, what is the density of the
Blue Fluid 175 implied by these data? Assume only random errors are
present.

Solution: We use Excel to calculate the sample mean and standard deviation
of the data in Table 2.4: the mean of the dataset is ρ̄ = 1.73439 g/cm3

and the standard deviation is s = 0.00485 g/cm3 (excess digits have been
retained to avoid round-off error in downstream calculations). According to our
understanding of the distribution of random events, with 95% confidence, the
true value of a variable x measured n times is within the range x̄± t0.025,n−1

s√
n

14
For more on pycnometers, see Figure 3.13 and Examples 3.8 and 4.4.
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Table 2.4. Raw data replicates of the
room-temperature density of Blue Fluid
175 obtained by ten student groups.

Index Density,

g/cm3

1 1.7375
2 1.7272
3 1.7374
4 1.7351
5 1.73012
6 1.7377
7 1.7398
8 1.72599
9 1.7354
10 1.7377

(Equation 2.52); the quantity t0.025,n−1 is given in Table 2.3 (or calculated from
the Student’s t distribution with Excel or MATLAB) as a function of n. For the
density data in Table 2.4, we calculate:

n = 10

t0.025,9 = 2.262157 [using Excel: T.INV.2T(0.05,9)]

density = x̄ ± t0.025,9
s√
n

= 1.734391 ± (2.262157)

(
0.004853√

10

)

ρBF175 = 1.734 ± 0.003 g/cm3 (95% CI)

From the data collected, the expected value of the density of the Blue Fluid
175 is 1.734 ± 0.003 g/cm3 with 95% confidence. We are 95% confident that
the true value of the density of the fluid is within this interval. Note that the
calculated 95% confidence interval is ±3 in the last digit (±0.003 g/cm3). We
cannot express this precise level of uncertainty with significant figures alone.
Without the error limits, reporting ρ = 1.734 g/cm3 implies by sig figs that
the uncertainty is ±0.001 (“1” in the last digit), which is overly optimistic.
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If we choose to report the uncertainty as ±0.001 g/cm3, we can calculate the
confidence we should have in such an answer, as we see in the next example.

Example 2.9: Density from laboratory replicates: tempted by four sig figs.
In Example 2.8 we calculated the 95% confidence interval associated with
some measurement replicates of density. If we instead take a shortcut and guess
that we may report the final answer to 4 sig figs as ρ = 1.734 g/cm3, what is
the confidence level associated with this answer?

Solution: Error limits of ±0.001 g/cm3 imply a maximum deviation from
the true value of |(x̄ − μ)max | = 0.001 g/cm3. To calculate the probability of
such a maximum deviation, we integrate the pdf of the Student’s t distribution
between limits of ±tlimit , where tlimit is calculated from the maximum
deviation (see Example 2.5).

Maximum
scaled

deviation
tlimit = |(x̄ − μ)max |

s/
√

n

= (0.001 g/cm3)

0.004853 g/cm3/
√

10
= 0.651612953

Pr =
∫ tlimit

−tlimit

f (t ′;n − 1)dt ′

= 1 − T.DIST.2T(tlimit,n − 1)

= 1 − T.DIST.2T(0.6516129,9)

= 47%

Our confidence is less than 50% that the true value of the density is found in
the narrow interval ρ = 1.734 ± 0.001 g/cm3.

Determining uncertainty of replicates is essential in scientific and engineer-
ing practice, so it is worthwhile to become familiar with the basic features of
the Student’s t distribution. Looking at the values in Table 2.3, we see that
for two replicates (n = 2,ν = 1) and considering only one digit of precision,
we must bracket almost 13 standard errors of the mean to be 95% sure that we
have captured the true mean (t0.025,1 ≈ 13, Figure 2.16). Increasing from n = 2
replicates to n = 3 replicates, however, reduces the number of standard errors
needed for 95% confidence to about t0.025,2 ≈ 4, which is a big improvement.
Going to n = 4 narrows the confidence interval still further to t0.025,3 ≈ 3
standard errors, which is also approximately the value of t0.025,n−1 for n = 5
and 6 (to one digit). For n ≥ 7, the value of t0.025,n−1 is approximately 2. From
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Figure 2.16 The number of standard errors to use when constructing replicate
error limits varies strongly as n changes from 2 to 3; the number continues to
decrease until approximately n ≈ 7, when it plateaus at about 2.

the values of t0.025,n−1, we can understand why scientists and engineers often
take at least data triplicates to determine an estimate of a stochastic quantity:
we get a large gain in precision when we increase the number of measurements
from n = 2 to n = 3, and less substantial increases when we increase n further,
particularly after n = 7.

The 95% confidence interval for replicates, given in Equation 2.52, is a
widely adopted standard for expressing experimental results. In Appendix A
we provide a replicate error worksheet as a reminder of the process used to
obtain error limits on measured quantities subject to random error. For n > 7,
about plus or minus two standard errors (es,random = s

√
n) corresponds to the

95% confidence interval.

Random error
95% CI of mean

(es,random = s
√

n)
n replicates, μ = x̄ ± t0.025,n−1es,random (2.54)

n > 7 replicates, μ ≈ x̄ ± 2es,random

In subsequent chapters we discuss ways to incorporate nonrandom errors into
our error limits, and additional error worksheets are discussed there. When
expressing 95% confidence intervals with nonrandom errors, we retain the
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structure of the 95% confidence interval as approximately ±2es (two standard
errors; see Appendix E, Equation E.5), but we use a different standard error
that corresponds to the independent combination of replicate, reading, and
calibration errors.

Standard errors
combine in quadrature

e2
s,cmbd = e2

s,random + e2
s,reading + e2

s,cal (2.55)

The task of incorporating nonrandom errors into error limits requires us to
determine an appropriate standard error es for the nonrandom contributions
(see Section 1.4).

Nonrandom error
95% CI of estimate

(es,cmbd = combination of random,
reading, and calibration error)

estimate ≈ x̄ ± 2es,cmbd (2.56)

We pursue these calculations in Chapters 3 and 4.
The examples that follow provide some practice with 95% confidence

intervals of the mean and with using the Student’s t values from Table 2.3
or from Excel or MATLAB.

Example 2.10: Power of replicates: density from a pycnometer. Chris
and Pat are asked to measure the density of a solution using pycnometers15

and an analytical balance. They are new to using pycnometers, and they
each take a measurement; Chris obtains ρ1 = 1.723 g/cm3 and Pat obtains
ρ2 = 1.701 g/cm3. Chris averages the two results and reports the average
along with the replicate error limits. Calculate Chris’s answer and error limits
(n = 2). Pat takes a third measurement and obtains ρ3 = 1.687 g/cm3. Pat
decides to average all three data points (Pat’s two and Chris’s measurement).
Calculate Pat’s answer and error limits, assuming that all three measurements
are equally valid and affected only by random error. Comment on the effect of
taking the third measurement versus reporting the average of a duplicate only.

Solution: The 95% confidence interval of the mean of data replicates is

95% CI
of the mean:

x̄ ± t0.025,n−1
s√
n

For Chris’s two data points (Chris’s measurement and Pat’s first data point), the
mean is ρ̄ = 1.7120 g/cm3 and the standard deviation is s = 0.0156 g/cm3,
and thus Chris obtains:

15
For more on pycnometers, see Figure 3.13 and Examples 3.8 and 4.4.
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Chris’s answer: n = 2

t0.025,1 = 12.706

density = 1.7120 ± (12.706)

(
0.0156√

2

)
= 1.71 ± 0.14 g/cm3

Note that we chose to provide two uncertain digits in our answer since the
leading error digit is “1” (see Section 2.4).

For Pat’s answer, we use all three data points, calculating: ρ̄ =
1.70367 g/cm3 and s = 0.0181 g/cm3. Pat obtains:

Pat’s answer: n = 3

t0.025,2 = 4.303

density = 1.70367 ± (4.303)

(
0.0181√

3

)
= 1.70 ± 0.05 g/cm3

Because the leading error digit is 5, we provide only one digit on error.
The two answers are compared in Figure 2.17. Chris and Pat obtain similar

estimates of the density, but the error limits on Chris’s number are quite a
bit wider than those on Pat’s, since Pat used a data triplicate versus Chris’s
duplicate. There is a significant increase in precision when we are able to

g/cm3

Figure 2.17 Chris and Pat obtain similar estimates of a sample’s density (in
g/cm3), but Chris’s answer is significantly less precise (wider 95% confidence
interval).
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obtain a data triplicate (t0.025,2 ≈ 4.3 for n = 3; see Table 2.3) compared
to only having two replicates (t0.025,1 ≈ 12.7 for n = 2).

Replication provides the opportunity to obtain precise values of measured
quantities. Sometimes, however, there is no opportunity to replicate, as in the
next example.

Example 2.11: Estimate density uncertainty without replicates. We seek to
determine the density of a sample of Blue Fluid 175, but there is only a small
amount of solution available, and we can make the measurement only once.
The technique used is mass by difference with a 10.00 ± 0.04 ml pycnometer
and an analytic balance (the balance is accurate to ±10−4g). What are the
appropriate error limits on this single measurement?

Solution: We have discussed thus far how to obtain error limits when
replicate measurements are available. In the current problem, we do not have
any replicates to evaluate, so the techniques of this chapter do not allow us to
assess the error limits.

The scenario in this problem is quite common, and we address this question
further in Chapter 5. We can estimate error limits of a single data point
calculation with a technique called error propagation. Error propagation is
based on appropriately combining the estimated reading and calibration error
of the devices that produce the numbers employed in the calculation. In the
current problem, these would be the reading and calibration error of the ana-
lytical balance and the calibration error of the pycnometer. For now, we cannot
proceed with this problem; we revisit this estimate in Examples 5.1 and 5.4.

Thus far, we have explored the appropriate methods for determining error
limits on measurements when random error is present: when random errors
are present, we take data replicates and construct 95% confidence intervals
around the mean of the sample set. We have also indicated that when more
than random error is present, we must estimate reading and calibration error
and combine these with replicate error to obtain the correct combined error. In
Chapter 3 we turn to determining reading error.

The remaining sections of this chapter address several topics related to
replicate measurements as well as some topics related to measurement error
in general. First, we discuss prediction intervals, which may be used to
address problems such as estimating uncertainty in future (“next”) data points.
Next, we discuss a technique for turning potential systematic errors into more
easily handled random errors. Finally, we formally present our convention for
reporting significant figures on error. Together these topics complete our quick
start on replicate error and set the stage for the discussion of systematic errors,
which begins in Chapter 3.
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2.3.3 Prediction Intervals for the Next Value of x

In the previous section on confidence intervals for the mean, we saw how to
estimate a value for a replicated quantity and how to determine its uncertainty.
The uncertainty of the sample mean is proportional to the standard error of
replicates, es = s/

√
n, which gets smaller as the sample size n gets larger.

For large sample sizes, limn−→∞ s/
√

n = 0 and the 95% confidence interval
error limits will be very tight, and the true value of the mean of the underlying
distribution of x will be known with a high degree of precision. Note that
it is the true, mean value of the stochastic variable x, calculated from the
mean of samples, that is determined within tighter and tighter error limits.16

Confidence intervals for the mean do not tell us about error limits for individual
measurements. We explore this topic in the next example.

Example 2.12: Using statistics to identify density outliers. In Example 2.8,
we calculated the value of the density of Blue Fluid 175 to be ρBF175 =
1.734 ± 0.003 g/cm3. The density was determined by calculating the mean
of 10 measurements, and the uncertainty in the result was calculated from
the 95% confidence interval of the mean. Looking back at the data used to
calculate the mean (Table 2.4, plotted in Figure 2.18), we see that several
of the original data points are outside of the 95% confidence interval of the
mean. Does this indicate that some of the data points are outliers and should
be discarded?

Solution: No, that is not correct. We have calculated the 95% confidence
interval of the mean. It indicates that we are 95% confident that the true mean
value of the Blue Fluid 175 density measurement (the mean of the underlying
distribution of density measurements) is in the interval 1.734 ± 0.003 g/cm3.
The confidence interval of the mean gets more and more narrow when we use
larger and larger sample sizes; in other words, the more data we obtain, the
more precisely we can state the value of the mean (the confidence interval
becomes small).

μ = x̄ ± t0.025,n−1
s√
n

(2.57)

For n large: μ = lim
n−→∞

(
x̄ ± t0.025,n−1

s√
n

)
= x̄

As n increases, eventually nearly all measured data points will lie outside the
95% confidence interval of the mean.

16
This assumes only random error influences the measurement; see Chapters 3 and 4.
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Measurements
Mean
Confidence interval for the mean

D

D

Figure 2.18 Several of the original data points from Example 2.8 fall outside the
95% confidence interval of the mean. The confidence interval of the mean only
relates to how well we know the mean; it does not help us evaluate or understand
the scatter of the individual observations of the variable.

When we look at the raw data (Figure 2.18), they are scattered, and
their scatter reflects the random effects that influenced the values obtained
in the individual, noisy measurements. The next (eleventh) measurement of
density will also be subject to these random effects, and we expect subsequent
measurements to be similarly scattered. The 95% confidence interval of the
mean does not tell us about the magnitude of these random effects on individual
measurements.

The 95% confidence interval of the mean does not tell us
about the magnitude of random effects on individual measurements.

The idea that individual data points may be suspect – that is, might be
outliers (due to a blunder or other disqualifying circumstances) – can be
evaluated with a different tool, the prediction interval. We discuss this approach
next.
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If we are interested in expressing an interval that encompasses a prediction
of the next likely value of a measured quantity, we construct a prediction inter-
val. If the underlying pdf of the variable can be assumed to be approximately
normally distributed (meaning the errors follow the normal distribution), then
it can be shown with error propagation (see reference [38] and Problem 2.41)
that the next data point for x will fall within the following 95% prediction
interval of the next value of x [5, 38]:

95% prediction interval
for xn+1, the next

value of x

xn+1 = x̄ ± t0.025,n−1 es,next (2.58)

es,next ≡ s

√
1 + 1

n

t0.025,n−1 = T.INV.2T(0.05,n − 1)

The quantity es,next = s

√
1 + 1

n
is the standard error for the next value of x.

This expression results from a combination (see Chapter 5) of the uncertainty
associated with a new data point and the uncertainty associated with the mean
x̄. Note that this interval shrinks a bit with increasing n due to changes in
t0.025,n−1 and n (Table 2.3), but for n ≥ 7, the prediction interval plateaus at
approximately ±2s.

We can practice creating prediction intervals by calculating a prediction
interval for the Blue Fluid 175 density data from Example 2.12.

Example 2.13: Prediction interval on students’ measurements of fluid
density. Based on the student data on density of Blue Fluid 175 given in Table
2.4, what value do we expect a new student group to obtain for ρBF175, given
that they follow the same experimental procedure? The answer is a range.

Solution: We assume that the new student group is of comparable ability
and attentiveness to procedure as the groups whose data supplied the results
in Table 2.4. Thus, the next value obtained will be subject to the same amount
of random scatter as shown in the previous data. We can find the answer to
the question by calculating the 95% prediction interval of the next value of
ρBF175.

We construct the 95% prediction interval using Equation 2.58 and the data
in Table 2.4. To avoid round-off error, extra digits are shown here for use in the
intermediate calculations (see Section 2.4). The final answer is given with the
appropriate number of significant figures.
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⎡⎣ 95% PI
of next
ρBF175

⎤⎦ = x̄ ± t0.025,n−1s

√
1 + 1

n

ρ̄ = 1.734391 g/cm3

n = 10

s = 0.004853 g/cm3

t0.025,9 = 2.262157 [T.INV.2T(0.05,9)]⎡⎣ 95% PI
of next
ρBF175

⎤⎦ = 1.734391 ± (2.262157)(0.004853)(1.0488)

= 1.734 ± 0.012 g/cm3 (two uncertain digits)

Our result17 indicates that, with 95% confidence, a student group will obtain a
value between 1.723 and 1.746 g/cm3.

This prediction interval is wider than the confidence interval of the mean
(Figure 2.19). Several individual data points fall outside the 95% confidence
interval of the mean, but all of the data points are within the 95% prediction
interval for the next value of ρBF175. None of the data points is particularly
unusual, as judged at the 95% confidence level.

An important use for the prediction interval for the next value of x is to
determine if new data should be obtained or existing data discarded due to a
probable mistake of some sort. The idea is that some experimental outcomes
are very unlikely, and if an unlikely value is observed, it is plausible that
the data point is a mistake or blunder and should not be used. Example 2.14
considers such an application.

Example 2.14: Evaluating the quality of a new density data point. One
day in lab, ten student groups measured the density of a sample of Blue
Fluid 175, obtaining the results shown in Table 2.4. An eleventh student group
also measured the density of the same fluid the next day, following the same
procedure. The result obtained by Group 11 was ρBF175 = 1.755 g/cm3, which
was higher than any value obtained by the first ten groups. Should we suspect
that there is some problem with Group 11’s result, or is the result within the
range we would expect for this measurement protocol?

17
Two digits are used in expressing the error limits in this case because the leading error digit is
“1”; see Section 2.4.
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Measurements
Mean
Confidence interval of the mean

D

D

Predication interval for the next measurement

Figure 2.19 For n larger than 3, it is unsurprising that several of the original data
points fall outside the 95% confidence interval of the mean, since the confidence
interval is constructed with ±t0.025,n−1s/

√
n and n is in the denominator. To

address the question of how representative any given data point is of the entire set,
we construct 95% prediction intervals of the next value of x. All the data points
in the example fall within the prediction interval; by definition, if the effects are
all random, 95% of the data will fall within the prediction interval.

Solution: We address this question by seeing whether the new result lies
within the 95% prediction interval implied by the original data. In Example
2.13 we calculated that prediction interval:

Based on
Table 2.4 data

(n = 10)

⎡⎣ 95% PI
of next
ρBF175

⎤⎦ = 1.734 ± 0.012 g/cm3

This result tells us that with 95% confidence, the next measured value of
ρBF175 will lie in the following interval:

1.722 g/cm3 ≤ ρBF175 ≤ 1.746 g/cm3 (2.59)

The value measured by Group 11 was ρ̄ = 1.755 g/cm3, which is not
within this interval. Thus, we conclude that their result is suspect, since with
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95% confidence, individual results are expected to be within the prediction
interval calculated. Perhaps there was a mistake in the execution of the
procedure.

We could also ask a related question: what is the probability that a
measurement at least as extreme as this measurement occurs? If the resulting
probability is very small, that could be reason for rejecting the point. The posed
question may be answered by finding the total probability within the region
of the Student’s t distribution pdf tail that just includes this rare point; see
Problem 2.29.

In Example 2.14 we did not conclude that the examined value is definitely
in error; rather, we concluded that the value is suspect. We are using a 95%
prediction interval, which means that, on average, one time in 20 we expect a
next data point to lie outside of the interval. When working with stochastic
variables, we can never be 100% certain that an unlikely outcome is not
occurring. What we can do, however, is arrive at a prediction and deliver
that prediction along with the level of our confidence, based on the samples
examined.

We can use the prediction interval to determine the range of commuting
times that Eun Young should expect on future trips, based on her past data (as
discussed in Examples 2.1, 2.2, and 2.7). This is a classic question about a next
value of a stochastic variable.

Example 2.15: Commuting time, once again revisited. Over the course of a
year, Eun Young took 20 measurements of her commuting time under all kinds
of conditions, using the same stopwatch and the same timing protocols; the
data are in Tables 2.1 and 2.2. What is Eun Young’s most likely commuting
time tomorrow? Provide limits that indicate the range of values of commuting
time that Eun Young may experience.

Solution: The most likely amount of time that Eun Young’s commute will
take is the mean of the 20 observations, with 95% confidence, which we
determined in Example 2.7 to be 30 ± 5 min. The error limits on the mean
indicate our confidence (at the 95% level) in the value of the mean.

To determine the range of values of commuting time that Eun Young may
experience tomorrow (“next”), we need the 95% prediction interval of the next
value of the variable. We calculate this with Equation 2.58 with α = 0.05.

95% PI
of next

value of x

xi = x̄ ± t0.025,n−1 s

√
1 + 1

n
(2.60)
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For the 20 data points on Eun Young’s commuting time, the 95% prediction
interval of the mean is:

xi = x̄ ± t0.025,n−1 s

√
1 + 1

n

x = 29.9 ± (2.093024)(9.877673)

√
1 + 1

20
= 29.9 ± 21.18476

= 30 ± 22 min

Thus, Eun Young should expect a commuting time of up to 52 min (95%
confidence level).

Replicate sampling, as we see from the discussion here, is a powerful way
to estimate the true value of a quantity that we are able to sample. The only
limitation on the power of replication is that replicate error only accounts
for random effects. If nonrandom effects cause measurements to be different
from the true value, then no amount of replication will allow us to find the
true value of the variable or the proper range of the confidence or prediction
intervals.

If nonrandom effects cause measurements to be different
from the true value, then no amount of replication
will allow us to find the true value of the variable

or the proper range of the confidence or prediction intervals.

To see what this dilemma looks like, consider the next example.

Example 2.16: Repeated temperature observations with a digital indica-
tor. Ian uses a digital temperature indicator equipped with a thermocouple
to take the temperature at the surface of a reactor. He records the temperature
reading every 5 min for 20 min and the values recorded are 185.1, 185.1, 185.1,
185.1, and 185.1 (all in ◦C). Assuming there are only random errors in these
measurements, what is the temperature at the surface of the reactor? Include
the appropriate error limits.

Solution: Assuming that there are only random errors, we calculate the
value of the surface temperature as the average of the five values, and we use
the 95% confidence interval of the mean in Equation 2.52 for the uncertainty.
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n = 5

T̄ = 185.1◦C

s = 0.0◦C

t0.025,4 = 2.78

surface temperature = T̄ ± t0.025,4

(
s√
n

)

= 185.1000 ± 0.0000◦C

According to this calculation, since we obtained five identical measurements,
we know the surface temperature of the reactor exactly.

Of course, you should be skeptical of this conclusion and already wondering
what went wrong with this logic. If that is so, you are correct: something has
gone wrong. The sensor used in this analysis gave the same value every time a
measurement was taken, and we (correctly) calculated a standard deviation of
zero. The conclusion we can draw from the zero standard deviation is that the
sensor is very consistent and there is no detectable random error.

It would be wrong to assume that we now know the temperature exactly,
however. For one thing, since the indicator only gives temperature to the tenths
digit, we cannot tell the difference between 181.12◦C and 181.13◦C with
our indicator. We discuss this sort of error, called reading error, in Chapter
3 (see Problem 3.3). In addition, we have not explored the actual accuracy
of the temperature indicator. Does the indicator give the actual temperature
or does it read a bit high or low? Many home ovens can run high or low
due to limitations in sensor accuracy, and good cooks know to adjust for this
tendency. Matching a sensor’s reading with the true value of the quantity of
interest is called calibration. Uncertainty due to limitations of calibration is
discussed in Chapter 4 (see Problem 4.23 for more on thermocouple accuracy).
Both reading error and calibration error are systematic errors, and repeating
the measurement will not make these systematic errors visible. We must track
down systematic errors by other methods.

In this chapter we have discussed how to account for random errors in mea-
surement. There are also nonrandom effects, and we discuss these beginning
in the next chapter. Two common sources of nonrandom error are considered
in this book: reading error (Chapter 3) and calibration error (Chapter 4). These
nonrandom effects often dominate the uncertainty in experimental results
and should not be neglected without investigation. Both reading error and
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calibration error are systematic errors, and repeating the measurement will not
make them visible. Instead, we must track down systematic errors individually.

In the next section we introduce randomization, an experimental technique
that helps us ferret out some types of nonrandom error. In Section 2.4 we close
with a discussion of the significant figures appropriate for error limits.

2.3.4 Essential Practice: Randomizing Data Acquisition

The methods described in this book allow us to quantify uncertainty. When
random errors are present, the values obtained for a measured quantity bounce
around, even when all the known factors affecting the quantity are held
constant. This makes random errors easy to detect when a measurement is
repeated or replicated. As discussed earlier in this chapter, we can quantify
random errors by analyzing replicate measurements: once we obtain replicate
values, we apply the statistics of the sampling of stochastic variables to report
a good value for the property (the mean of replicates) and the error limits (95%
confidence interval of the mean).

Soon we will consider systematic contributions to uncertainty due to
reading error and calibration errors. These are errors that we know are present.
Because we recognize the presence of reading and calibration errors, we can
explore the sources of the errors, reason about how these errors affect samples,
and construct standard errors for each of these sources (we do this in Chapters 3
and 4). Since random, reading, and calibration errors are independent effects,
they simultaneously act on measurements, and thus they add up in ways we
can determine (they add like variances – that is, in quadrature. This topic was
introduced in Chapter 1, and details are discussed in Section 3.3).

Somewhat more difficult to deal with are systematic errors that we do not
know are present. Unrecognized systematic errors do not show up as scatter in
replicates because these errors correlate, or act systematically; thus they can
skew our data without us ever knowing they were present. To see this dilemma
in action, we discuss a specific example.

Example 2.17: Calibrating a flow meter. A team is assigned to calibrate
a rotameter flow meter. The rotameter is installed in a water flow loop (see
Figure 4.4; water temperature = 19.1◦C) constructed of copper tubing, with
the flow driven by a pump. To calibrate the rotameter, the flow rate is varied
and independently measured by the “pail-and-scale” method: the water flow
is collected in a “pail” (or tank, or other reservoir), and the mass of the water
collected over a measured time interval is recorded. The mass measurement,
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Table 2.5. Data from calibrating a rotameter by the pail-and-scale
method with two team members systematically dividing up data
acquisition duties. Extra digits provided; see also Table 6.9.

Mass flow Rotameter
Index rate (kg/s) reading (R%)

1 0.04315 14.67
2 0.05130 17.33
3 0.05515 18.50
4 0.06512 21.50
5 0.07429 24.33
6 0.08545 27.80
7 0.09585 31.00
8 0.10262 33.00
9 0.11449 36.67
10 0.13201 42.00
11 0.14325 45.50
12 0.15100 51.00
13 0.16882 56.33
14 0.18326 60.67
15 0.19643 65.00
16 0.20447 67.00
17 0.21361 69.67
18 0.22880 74.67
19 0.23625 77.00
20 0.24323 79.00
21 0.26620 85.50
22 0.27831 90.67

along with the collection time, allows the team to calculate the observed mass
flow rate for each reading on the rotameter (reading R% =% full scale).

The team divides up the calibration flow range, with one team member
taking the low flow rates and the other taking the high flow rates. The data
are shown in Table 2.5. What is the calibration curve for the rotameter? What
is the uncertainty associated with the calibration curve?

Solution: This text presents the error-analysis tools needed to create a
calibration curve for data such as that in Table 2.5: in Chapter 4 we introduce
calibration and calibration error, and in Chapter 6, which builds on Chapter
5, we show how to produce an ordinary least-squares fit of a model to
data. We discuss the current problem out of sequence to illustrate some
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Figure 2.20 The rotameter calibration data are plotted for the case in which
the work was systematically divided between the two experimenters, with one
providing the low-flow-rate data and the other providing the high-flow-rate data.
Also shown are the residuals at each value of x; this is the difference between the
data and the fit. We observe a pattern in the residuals, a hint that a systemic error
may be affecting the data.

common experimental-design and systematic errors that occur. We introduce
the software tools we need as we go along. In the chapters that follow we offer
a more thorough discussion of the model-fitting tools used here.

Systematic errors can creep into our data in ways that are difficult to
anticipate. In the problem statement for this example, we learned a little bit
about the experimental design for the rotameter calibration – in particular,
the calibration team shared data acquisition duties, with one team member
acquiring the low-flow-rate data points and the other team member acquiring
the high-flow-rate ones. This arrangement seems harmless; both team members
are presumably equally qualified to take the data. Splitting up the data
acquisition in this way spreads out the work in an equitable way.

The data in Table 2.5 are plotted in Figure 2.20, and they look fine. Included
in the figure is an ordinary least-squares curve fit, and the equation for the fit
and its R2 value (coefficient of determination; see Equation 6.17) are shown.
This curve fit is obtained in Excel by right-clicking on the data in the plot and
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Correct
Incorrect

Figure 2.21 The rotameter is designed to be read from the position “pointed to”
by the angled portion of the float. Sometimes new users think the reading comes
from the location of the top of the float.

choosing to add a “Trendline”; in the Trendline dialog box we check the boxes
that instruct Excel to display both the equation and the R2 on the plot. The data
follow a straight line, and R2 is almost 1, indicating that the linear model is a
good choice, as it is capturing the variation in the data. (We will have more to
say on R2 in Example 2.18 and in Chapter 6.)

The data look good, and the linear fit appears to be excellent. Unfortunately,
there is a hidden systematic error in the data. The slope obtained by the trend-
line fit is 324 R%/(kg/s); when the systematic error is found and eliminated,
the correct slope obtained is 306 R%/(kg/s). (A complete dataset without
the systematic error is given in Table 6.9.) The data have an unrecognized
systematic error.

We return to this problem in Example 2.18.

What hidden issue has affected the rotameter calibration? And how could
we have prevented the problem? It turns out that the hidden systematic error
in the data is the result of a misunderstanding in how to read the rotameter
(Figure 2.21). The float in the rotameter has an angled indicator that “points”
to a position on a scale; the reading that is expected by the manufacturer is the
number that is pointed to by the indicator. Investigation revealed that one team
member thought that the reading was determined by the position of the top of
the float rather than by the position of the angled indicator.
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The use of two different reading methods does not seem to have affected the
data much: the data in Figure 2.20 are smooth and linear, and when a straight
line is fit to the data, they produce an excellent value of R2 = 0.9990. There
is nothing to make us distrust the calibration. Having been told that there is
a problem with the data, however, we can look closer and see that the lower-
flow-rate data and the higher-flow-rate data seem to be slightly offset; they
meet at rotameter reading 45. The effect is small and nearly invisible, however.

How would such an error ever be discovered? The hidden mistake in
these data could have been found if the team had randomized their trials.
Randomization is a technique that seeks to expose each experimental trial
to the sources of stochastic variation that are present. For example, we may
believe that it would make no difference who reads the rotameter during the
calibration work. This is a reasonable assumption. To test this supposition, we
can assign data trials randomly to different people. This random assignment
may have no effect, as hypothesized. If there is an effect, however, the effect
will appear randomly.

Why, we might ask, would we want to introduce variability? Why not just
use one person so that the data are consistent? The reason to randomize, for
example, the identity of the data-taker, is to guard against it mattering who
took the data. If only one person takes the data, and if that person makes an
error consistently, we will not be able to detect the mistake. Randomizing the
data taker tests the hypothesis that it does not matter who takes the data. When
we design a process to depend critically on one single aspect, such as entrusting
all the data-taking to one individual’s expertise or taking data in a systematic
way from low to high values, we are exposing our experiments to the risk
that all the data may contain hidden systematic errors. On a grand scale, when
we scientists and engineers publish our results and invite others to attempt to
reproduce the results, we are asserting that any competent investigator will
obtain the same results as we obtained. If we have done our experiments
correctly, and if our colleagues do the same, we will all get the same results. For
our results to be of the highest quality, we should use randomization wherever
possible to double-check that no systematic effects have been unintentionally
introduced.

Our next question might be, why will randomizing help us find systematic
errors? And, will we get any useful data out of the more scattered results we
obtain when we randomize? If we randomize our experimental design and we
were right that the change does not make a difference, we have shown that the
change did not make a difference. This allows us to simplify future experiments
with confidence, as we know definitively that the variable we randomized does
not affect the outcome.
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If we randomize an aspect of our experimental design and there is an effect,
the effect will become visible, as it will introduce additional scatter in the
data. The presence of scatter is a message to the experimenter that there are
random effects in the experiment as currently designed and executed. If the
scatter is not too large and can be tolerated, nothing additional needs to be
done. If the scatter is large and cannot be tolerated, its presence becomes a
reason to reevaluate the experimental design to find the source of the scatter.
The magnitude of the scatter becomes a detector of systematic error that needs
to be addressed. Unrecognized systematic errors are a serious threat to the
quality of the conclusions we may make with our data; knowing that there is
an unrecognized effect – one that shows up as extra scatter when the process
is randomized – is a welcome first step to tracking down a potentially serious
problem with our studies.

We can see the randomization effect on the rotameter calibration in Example
2.17 if we start over with a different dataset in which each of the researchers
again obtained half the data points, but in this case, the flow rates were assigned
randomly.

Example 2.18: Calibrating a flow meter, revisited. A team is assigned to
calibrate a rotameter flow meter. The rotameter is installed in a water flow loop
(see Figure 4.4; water temperature = 19.1◦C) constructed of copper tubing,
with the flow driven by a pump. To calibrate the rotameter, the flow rate is
varied and independently measured by the “pail-and-scale” method.

The team divides up the calibration flow range, with flow rates assigned
randomly to the two team members. The data are shown in Table 2.6. What
is the calibration curve for the rotameter? What is the uncertainty associated
with the calibration curve?

Solution: The data in Table 2.6 are plotted in Figure 2.22.18 These data look
more scattered than the original plot in Figure 2.20. An ordinary least-squares
fit to a line has been obtained with a slope of 309 R%/(kg/s) and yields an R2

of 0.9954.
The randomization of the data acquisition led to data with more scatter.

The scatter in the data is a message: something is affecting the data. The
message is received when the team reflects on what they see, holds a team
meeting to review the procedure, and discovers and corrects the problem.

18
These data were obtained by the author with each rotameter reading recorded in both the
correct way and the incorrect way for each mass flow rate measurement. Thus, we could
produce this second version of a plot for the same set of experiments. All the datasets
referenced in Examples 2.17 and 2.18 (and Problems 6.7, 6.10, and 6.17) are also given in
Table 6.9 (limited number of digits provided).
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Table 2.6. Data from calibrating a rotameter by the
pail-and-scale method; data acquisition duties were divided
randomly. Extra digits provided; see also Table 6.9.

Mass flow Rotameter
Index rate (kg/s) reading (R%)

1 0.04315 17.67
2 0.05130 17.33
3 0.05515 18.50
4 0.06512 24.50
5 0.07429 27.00
6 0.08545 27.80
7 0.09585 31.00
8 0.10262 33.00
9 0.11449 39.00
10 0.13201 45.00
11 0.14325 45.50
12 0.15100 48.33
13 0.16882 53.80
14 0.18326 60.67
15 0.19643 62.33
16 0.20447 62.50
17 0.21361 67.00
18 0.22880 74.67
19 0.23625 77.00
20 0.24323 79.00
21 0.26620 83.00
22 0.27831 90.67

For the rotameter data, plotting the points with different symbols according
to who took the data made it clear that there was a systematic effect tied to
operator identity. The take-away from this example is that we need to be on
guard when we plan our experiments – systematic errors can sneak in through
seemingly innocuous choices. Another take-away is that scatter in data can
be a good thing if it shows that something unrecognized is affecting the data
systematically.

This example also shows that values of R2 that approach 1 do not guarantee
that data are of high quality and free from systematic errors. As we discuss
in Chapter 6, R2 reflects the degree to which a chosen model (in our case,
a straight line with nonzero slope) represents the data, compared to the

https://doi.org/10.1017/9781108777513.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.003


2.3 Replicate Error Limits 85

M

R

R

Figure 2.22 The rotameter calibration data are plotted for the task randomly
divided between two experimenters. The scatter from the model line is greater
than in Figure 2.20; this is reflected in the value of the standard deviation of y

at a value of x, sy,x as discussed in the text. The scatter barely affects R2. The
residuals in this dataset (data − model) have a more random pattern compared to
those in Figure 2.20.

assumption that the data are constant (flat line). In an ordinary least-squares
fit, the statistic that reflects the scatter of data with respect to the model line is
sy,x , the standard deviation of y at a given x (see Chapter 6, Equation 6.25).
For the data discussed in this example, the values of sy,x are

Shared data, assigned systematically
(Example 2.17)

sy,x = 0.783 R% (2.61)

Shared data, assigned randomly:
(Example 2.18)

sy,x = 1.614 R% (2.62)

The statistic sy,x correctly reflects the qualities of the fits. When the data are all
taken correctly, sy,x is small and the data points are all close to the model line;
sy,x for correctly taken data is 0.456 R% (see Table 6.9 and Problem 6.7). In
contrast, when the results randomly include data that are read incorrectly, sy,x

is large. The systematic case for Example 2.17 has an intermediate value for
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sy,x , indicating that the error in reading the rotameter is hidden in the relatively
smooth data (with the wrong slope).

Obtaining an accurate calibration curve begins with taking good calibration
data. Good data are obtained by following the best practices for minimizing
random and systematic errors. Randomization is a key tool for identifying and
eliminating systematic errors.

The discussion in this section focuses on the difference between random and
systematic errors. We prefer random errors because we have a powerful tool
for dealing with random error: replication. When the only differences among
replicate trials are the amounts of random error present, then averaging the
results gives us the true value of the measurement to a high degree of precision.
A requirement for this to be valid, however, is that only random error be
present. Systematic error will not disappear when replicates are averaged, and
thus no matter the number of replicates, it remains our obligation to identify
and eliminate systematic errors from our measurements.

Randomization is a tool for making systematic errors visible, as we have
discussed. If we randomize our data acquisition, switching things that we
do not think make a difference, then unrecognized effects can show up as
additional “random” error. It may seem undesirable to design our protocols to
amplify random error, but that is an inappropriate conclusion. Randomization
is an important part of experimental troubleshooting since it is better to
discover and correct systematic effects than to leave them in place, hidden,
and to believe, incorrectly, that our results are high quality.

Randomization works against the selective introduction of errors into a
process. If some aspect of a process introduces errors, these errors are easier to
identify and fix if they affect all the data points rather than just some points. If
a subset of trials are isolated from a source of error, that error source becomes
systematic and possibly invisible. Replicates that result from data acquisition
that is free from arbitrary systematic effects are called true replicates. In the
next example we explore the kind of questions we can ask to ensure that our
experiments produce true replicates.

Example 2.19: True replicates of viscosity with Cannon–Fenske viscome-
ters. Students are asked to measure the kinematic viscosity of a 30wt%
aqueous sugar solution using Cannon–Fenske ordinary viscometers (Figure
2.23). The viscometers’ procedure calls for loading an amount of solution
(following a standard process), thermal-soaking the loaded viscometer in a
temperature-controlled bath, and measuring the fluid’s efflux time by drawing
the fluid into the top reservoir and timing the travel of the fluid meniscus
between timing marks. The viscometers are pre-calibrated by the manufacturer,
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Cannon–Fenske
ordinary viscometer

Figure 2.23 The Cannon–Fenske ordinary viscometer uses gravity to drive a fluid
through a capillary tube. The viscosity comes from measuring the efflux time
�teff for the fluid meniscus to pass from the upper timing mark to the lower
timing mark. The calibration coefficient α̃ is supplied by the manufacturer. The
viscosity μ̃ is equal to α̃ρ�teff , where ρ is the fluid density. For more on Cannon–
Fenske viscometers, see Example 5.8.

and kinematic viscosity μ̃/ρ is obtained by multiplying the efflux time by
a manufacturer-supplied calibration constant. How can the student teams
produce valid replicates of kinematic viscosity with these viscometers?

Solution: This is a question about experimental design. To address this
question, we remind ourselves that a true replicate is exposed to all the
elements that introduce error into the process. To plan for true replicates, then,
we must reflect on all the elements that might potentially introduce error into
the process.

We identify the following issues:

1. Loading the standardized volume may be subject to uncertainty in volume.
2. The temperature bath must accurately maintain the instrument at the

desired temperature.
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3. The timing of the travel of the meniscus will be impacted by the operator’s
reaction time with the stopwatch.

4. The viscometer’s calibration constant must be known accurately at the
temperature of the experiment.

5. The particular viscometer used must not be defective; that is, it must
perform the way the manufacturer warranties it to perform.

6. The viscometer must be clean and dry before use.
7. We did not mention it in the problem statement, but it is also important

that when the liquid is flowing the viscometer is maintained in a vertical
position and held motionless, since gravity drives the flow in these
instruments.

We have many issues to consider when formulating our experimental plan.
Some of the viscometer operation issues presented can be addressed by

replication. For example, the flow can be timed repeatedly. Since the operator’s
response time may lead to random positive or negative deviations in the
measured efflux time, the average of repeated timings will give a good value
of efflux time for a single loading of a viscometer. Likewise, the uncertainty in
sample volume may be addressed by repeating the loading of samples. Each
time the sample is loaded there will likely be a small positive or negative error
in the volume added, and if this step is repeated, this random effect can be
averaged out. The possibility of a defective or dirty viscometer can be explored
by filling three or more different viscometers and averaging results across these
different, but presumably equivalent, devices. This kind of repetition would
also address a calibration problem associated with a single viscometer.

The issue of the water temperature cannot be addressed by replication
(unless multiple baths are feasible), but must instead be addressed by calibra-
tion. The temperature of the bath must be measured and controlled with devices
of established accuracy to eliminate the impact of a temperature offset.

The issue of the vertical placement of the viscometer may be addressed by
using specially designed holders that ensure reproducible vertical placement. If
these are not available, replication with different, careful operators will allow
this source of uncertainty to be distributed across the replicates and, if the effect
is random, it will average out.

Following a discussion of these issues, the class agreed that their true
replicates would be obtained as follows:

1. A well-calibrated temperature indicator would be used to determine the
bath temperature. All groups would use the same, carefully calibrated
bath, which would be designed to hold the viscometers vertically.
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2. To reduce the impact of timing issues on efflux time, each group would
draw up and time the flowing solution three times and use the average of
the three timings to produce a single value of efflux time, which would be
converted to a single value of kinematic viscosity.

3. Three groups would measure mean efflux time using three different
viscometers and following the standard procedure, resulting in three
replicates of viscosity.

4. The three independent measurements of kinematic viscosity (by the three
groups) would be considered true replicates and would be averaged to
yield the final kinematic viscosity value and its error limits (replicate error
only).

To see this protocol at work, see Example 5.8, which considers the data
analysis of Cannon–Fenske measurements on an aqueous sugar solution.

The thinking process used in Example 2.19 is a general solution and is
recommended when a high degree of accuracy is called for: possible sources
of both random and systematic error are identified; procedures are chosen to
reduce or at least randomize the errors; and finally, true replicates are taken
and averaged. Reflecting alone does not guarantee that we will think of all the
sources of error in our measurements, but certainly it is an essential step toward
ensuring better data acquisition and error reduction.

The last section of this chapter addresses the convention for significant
figures on error limits.

2.4 Significant Figures on Error

When we determine a number from a measurement of some sort, we do not
know that number with absolute certainty. In the previous sections we saw that
for data subjected to random error only, we can take multiple measurements,
average the results, and express the expected value of the quantity we are
measuring as the calculated average along with an appropriate 95% confidence
interval of the mean (Equation 2.52).

When presenting the result of such an exercise, we are faced with the choice
of how many digits to show for both the expected value, x̄, and for the error
limits, ±t0.025,n−1es . The accepted practice for writing these results is to follow
the significant-figures convention – that is, retain all certain digits and one
uncertain digit. Since the error limits indicate the amount that the measurement
may vary, we can adopt the following rule for error:
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Rule 1: Sig Figs on Error
Report only one digit on error.
(one uncertain digit)

Thus, a density 95% confidence interval limit of, for example, 2es =
±0.0323112 g/cm3 for a mean of x̄ = 1.2549921 g/cm3 would be expressed as

ρ = 1.25 ± 0.03 g/cm3 (95% CI, one uncertain digit)

Note that the error limits make the digit 5 on the density uncertain, and
therefore to follow the significant-figures convention, we round our results and
report only up to that one, uncertain, decimal place.

Although Rule 1 says we keep only one digit on error, we do make an
exception to the one-digit rule in some cases, as we see in Rule 2.

Rule 2: Sig Figs on Error
We may report two digits on error
if the error digit is 1 or 2.
(two uncertain digits)

If the uncertainty for density had been 2es = 0.0123112 g/cm3 (error digit is
1 – that is ±0.01 g/cm3) on an expected value of 1.2549921 g/cm3, the result
would be expressed with an additional uncertain error digit:

ρ = 1.255 ± 0.012 g/cm3 (95% CI, two uncertain digits) (2.63)

The reasoning behind this second rule is that when the error digit is 1 or 2, the
next digit to the right has a large effect when rounding, and keeping the extra
digit will allow the reader to calculate the 95% confidence interval with less
round-off effect.19 The user of the number in Equation 2.63 must remember,
however, to correctly interpret the density to have only three significant figures,
even though four digits are shown (two digits are uncertain). The presence of
the error limit with two digits shown makes the two-digit uncertainty clear.

It bears repeating that it is good practice to tell the reader what system you
are using to express your uncertainty. We use 95% confidence limits or about
two standard errors. Others may use 68% (approximately one standard error)
or 99% (approximately three standard errors; see Problem 2.37). If the author
fails to indicate which meaning is intended, there is no sure way of knowing
which standard is being employed.

19
When the digit you are rounding is 5, there is no good justification to choose to round up or to
choose to round down. The best we can do is to randomize this choice. This can be achieved
by targeting obtaining an even number after rounding. This practice, over many roundings, is
unbiased, whereas always rounding the digit 5 up (or down) is systematic and can introduce
bias.
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Discussing the sig-figs rules brings up another related issue, that of round-
off error. When we round off or truncate numbers in a calculation, we
introduce calculation errors. Calculations done by computers may be the result
of thousands or millions of individual mathematical operations. Round-off
errors are undesirable, and for this reason, within the internal functioning of
calculators and computers, those devices retain many digits (at least 32) so
that the round-off errors affect only digits that are well away from the digits
that we are going to retain.

In our own calculations, we should follow the same practices. If we are
doing follow-up calculations with a value that we calculated or measured, in
the intermediate calculations we should use all the digits we have. This requires
us to record extra digits from intermediate calculations and to use the most
precise values of constants obtained elsewhere. In performing 95% confidence
and prediction interval calculations, when a value of t0.025,n−1 is needed from
the Student’s t distribution, we should use the most accurate available value,
by employing, for example, Excel’s T.INV.2T() function call rather than using
the truncated numbers from Table 2.3. Shortcuts (using truncated or rounded
values) may be employed for estimates, but high-precision numbers are best
to use for important calculations. Keeping extra digits is comparable to what
a computer or calculator does internally: it keeps all the digits it has. It is
only at the last step, when we report to others our final answer of a quantity,
that we must report the appropriate number of significant figures. Rounding
off intermediate calculations can severely degrade the precision of a final
calculation and should be avoided.

2.5 Summary

In this chapter, we present the basics of using statistics to quantify the effects of
random errors on measurements. The methods discussed are summarized here;
the discussion of the impact of reading errors begins in Chapter 3, followed by
calibration error in Chapter 4 (both are systematic errors).

Summary of Properties of a Sample of n Observations of
Stochastic Variable x, Subject Only to Random Error

• A quantity subject to random variation is called a stochastic variable.
Values obtained from experimental measurements are continuous stochastic
variables.

• Stochastic variables are represented by an expected value and error limits
on the expected value.
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• When a stochastic variable is sampled, the mean of a sample set (mean x̄;
size n; sample standard deviation s) is an unbiased estimate of the
expected value of x. This is a formal statement of the correctness of
using averages of true replicates to estimate the value of a stochastic
variable, x.

• With 95% confidence, the true value of x (the mean of the underlying

distribution of the stochastic variable) is within the range ≈ x̄ ± 2s
(

1√
n

)
(for n ≥ 7) or the range x̄ ± t0.025,n−1

(
s√
n

)
(for all n, but especially for

n < 7).

• With 95% confidence, the next value of x, if the measurement were

repeated, is within the range ≈ x̄ ± 2s

√(
1 + 1

n

)
(for n ≥ 7) or the range

x̄ ± t0.025,n−1s

√(
1 + 1

n

)
(for all n, but especially for n < 7) as

established by a previous sample set of size n, mean x̄, and sample standard
deviation s.

• The accepted convention is to use one digit (one uncertain digit) on error
(except if the error digit is 1 or 2, in which case use two uncertain digits on
error). Report the value x to no more than the number of decimal places in
the error.

• Do not round off digits in intermediate calculations; carry several extra
digits and round only the final answer to the appropriate number of
significant figures.

• It is recommended to round in an unbiased way. When the digit you are
rounding is 5, there is no good justification to choose to round up or to
choose to round down. The best we can do is to randomize this choice. This
can be achieved by seeking to obtain an even number after rounding. This
practice, over many roundings, is unbiased, whereas always rounding the
digit 5 up (or down) is systematic and can introduce bias.

• Bonus advice: In engineering practice, we usually have no more than two
or three significant figures, and we can even expect to have only one
significant figure in some cases. Only with extreme care can we get four
significant figures. If you have not rigorously designed and executed your
measurement with the aim of eliminating error, you have no more than
three sig figs, and quite likely you have two or one sig figs. Our advice:
avoid reporting four or more significant figures in an engineering
report. Two significant figures is the most likely precision in engineering
work; only if you can justify it should you use three significant figures
or more.
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2.6 Problems

1. Which of the following are stochastic variables and which are not? What
could be the source of the stochastic variations?

(a) Weight of a cup of sugar
(b) The number of days in a week
(c) The temperature at noon in Manila, Philippines
(d) The number of counties in the state of Michigan
(e) The number typical of counties in a U.S. state

2. In Example 2.1 we calculate Eun Young’s mean commuting time to be
28 min, but in Example 2.2 we calculate her commuting time to be
32 min. Which mean is correct? Explain your answer.

3. In Example 2.1 we calculate Eun Young’s commuting time to be 28 min.
Looking at the data used to calculate this mean time, how much would
you expect her actual commuting time to vary? We are not asking for a
mathematical calculation in this question; rather, using your intuition,
what would you expect the commuting time to be, most of the time?
(Once you have made your estimate, see Example 2.15 for the
mathematical answer.)

4. How do we determine probabilities from probability density functions
(pdf) for stochastic variables? In other words, for the stochastic variable
commuting time (see Examples 2.1 and 2.2), if we knew its pdf, how
would we calculate, for example, the probability of the commute taking
between 50 and 55 min?

5. In Example 2.3 we presented the pdf for the duration of George’s daily
work commute (Equation 2.13). What is the probability that George’s
commuting time is 35 min or longer?

6. For the pdf provided in Example 2.3 (Equation 2.13), what is the
probability that it takes George between 20 and 25 min to commute?

7. From the pdf provided in Example 2.3 (Equation 2.13), what is George’s
mean commuting time?

8. Reproduce the plot in Figure 2.5, which shows the pdf of George’s
commuting time, using mathematical software. Describe in a few
sentences the implications of the shape of the pdf.

9. Reproduce the plot in Figure 2.6, which shows the pdf of the normal
distribution, using mathematical software. What is the normal
distribution? Describe it in a few sentences.
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10. Reproduce the plot in Figure 2.9, which shows the pdf of the Student’s t

distribution, using mathematical software. What is the Student’s t

distribution? Describe it in a few sentences.
11. A sample set of packaged snack food items is sent to the lab. Each item is

weighed. For a sample for which n = 25, x̄ = 456.323 g, and
s = 6.4352 g (extra digits supplied), calculate the error limits on the
mean mass and assign the correct number of significant figures. Discuss
your observations.

12. A sample of 16 maple tree leaves is collected; we measure the mass of
each leaf. For the leaf mass data shown in Table 2.7, calculate the sample
mean x̄, standard deviation s, and standard error from replicates s/

√
n.

What is the mean maple leaf mass in the sample? Include the appropriate
error limits.

13. A sample of 16 maple tree leaves is collected; we measure the length
from the leaf stem to the tip of the leaf. For the leaf length data shown in
Table 2.7, calculate the sample mean x̄, standard deviation s, and

Table 2.7. Sample of maple tree
leaves masses and lengths.

Mass Length
i (g) (cm)

1 0.93 9.5
2 1.38 11.7
3 1.43 10.9
4 1.41 10.4
5 0.78 8.4
6 1.07 10.0
7 2.17 11.5
8 1.43 12.0
9 1.34 11.5
10 0.92 8.8
11 0.73 7.8
12 0.85 8.5
13 1.49 11.5
14 1.11 9.5
15 1.29 9.8
16 0.59 8.4
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Table 2.8. Sample of lilac bush
leaves masses and lengths.

Mass Length
i (g) (cm)

1 0.65 5.9
2 0.37 4.7
3 0.66 5.9
4 0.41 4.7
5 0.99 6.4
6 0.74 5.7
7 1.01 6.0
8 0.64 5.3
9 0.42 4.2
10 0.5 5.0
11 0.53 4.4
12 0.6 5.2
13 0.47 4.5
14 0.44 4.2
15 0.56 4.9
16 1.06 6.6
17 0.73 5.5

standard error from replicates s/
√

n. What is the mean maple leaf length
in the sample? Include the appropriate error limits.

14. A sample of 17 leaves from a lilac bush is collected; we measure the
mass of each leaf. For the leaf mass data supplied in Table 2.8, calculate
the sample mean x̄, standard deviation s, and standard error from
replicates s/

√
n. What is the mean lilac leaf mass in the sample? Include

the appropriate error limits.
15. A sample of 17 leaves from a lilac bush is collected; we measure the

length across the broadest part of the leaf. For the leaf length data
supplied in Table 2.8, calculate the sample mean x̄, standard deviation s,
and standard error from replicates s/

√
n. What is the mean lilac leaf

length in the sample? Include the appropriate error limits.
16. A sample of 15 leaves from a flowering crab tree is collected; we

measure the mass of each leaf. For the leaf mass data supplied in Table
2.9, calculate the sample mean x̄, standard deviation s, and standard error
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Table 2.9. Sample of flowering crab
tree leaves masses and lengths.

Mass Length
i (g) (cm)

1 0.56 5.5
2 0.37 4.5
3 0.32 4.3
4 0.36 5.0
5 0.47 4.3
6 0.61 5.6
7 0.43 4.8
8 0.36 4.1
9 0.49 4.7
10 0.45 4.7
11 0.27 3.5
12 0.61 4.9
13 0.27 4.7
14 0.59 5.2
15 0.50 5.2

from replicates s/
√

n. What is the mean flowering crab leaf mass in the
sample? Include the appropriate error limits.

17. A sample of 15 leaves from a flowering crab tree is collected; we
measure the length across the longest part of the leaf, from stem to tip.
For the leaf length data supplied in Table 2.9, calculate the sample mean
x̄, standard deviation s, and standard error from replicates s/

√
n. What is

the mean flowering crab leaf length in the sample? Include the
appropriate error limits.

18. The process for manufacturing plastic 16-oz drinking cups produces
seemingly identical cups. We weigh 19 cups to see how much their
masses vary. For the data shown in Table 2.10, calculate the sample mean
x̄, standard deviation s, and standard error from replicates s/

√
n. What is

the mean cup mass in the sample? Include the appropriate error limits.
19. For the Cannon–Fenske viscometer efflux time replicates in Table 5.3,

calculate the sample mean x̄, standard deviation s, and standard error
from replicates s/

√
n. What is the 95% confidence interval of efflux time

for each of the three viscometers? See Table 5.4 for some of the answers
to this problem.
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Table 2.10. Sample of
masses of plastic cups.

Mass
i (g)

1 8.47
2 8.48
3 8.53
4 8.45
5 8.44
6 8.46
7 8.49
8 8.52
9 8.48
10 8.51
11 8.42
12 8.45
13 8.47
14 8.49
15 8.44
16 8.47
17 8.45
18 8.48
19 8.47

20. For the three viscosity replicates in Table 5.4, calculate the sample mean
x̄, standard deviation s, and standard error from replicates s/

√
n. What is

the 95% confidence interval of solution viscosity?
21. For the maple-leaf mass data given in Table 2.7, what are the sample

mean and sample standard deviation? Calculate the level of confidence
associated with reporting two, three, or four significant figures on the
mean mass. Express your answer for the mean with the appropriate
number of significant figures.

22. For the plastic cup mass data given in Table 2.10, what are the sample
mean and sample standard deviation? Calculate the level of confidence
associated with reporting two, three, or four significant figures on the
mean mass. Express your answer for the mean with the appropriate
number of significant figures.
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23. For the Blue Fluid 175 density data given in Example 2.8, what are the
sample mean and sample standard deviation? Calculate the level of
confidence associated with reporting two, three, or four significant figures
on the mean density. Express your answer for the mean with the
appropriate number of significant figures.

24. In Example 2.4 we reported on measurements of length for a sample of
25 sticks from a shop. If the mean stick length is reported with three
significant figures, what is the level of confidence we are asserting?
Repeat for two and one sig figs. How many sig figs will you recommend
reporting?

25. Sometimes lab workers take a shortcut and assume an error limit such as
1% error as a rule of thumb. For the plastic cup mass data in Table 2.10,
what are the ±1% error limits on the mean? What level of confidence is
associated with these error limits? Comment on your answer.

26. For the sample of packaged food weights described in Problem 2.11,
what is the probability that the true mean is within ±1% of the measured
mean? Comment on your answer.

27. Based on the sample of plastic cup data given in Table 2.10, what is the
probability that a cup (a “next” cup) will weigh less than 8.42 g?

28. The density of an aqueous sugar solution was measured ten times as
reported in Example 2.5. What are the mean and standard deviation of the
density data? What is the standard deviation of the mean? An eleventh
data point is taken and the result is 1.1003 g/cm3 (extra digits supplied).
How many standard deviations (of the mean) is this result from the
mean? In your own words, what is the significance of this
positioning?

29. In Example 2.14 we identified a new data point on density
(ρBF,n+1 = 1.755 g/cm3) as being outside the expected 95% prediction
interval of the dataset, implying that there may have been a problem with
the measurement. If we broadened our prediction interval to, for
example, 96% confidence, perhaps the data point would be included.
What is the smallest prediction interval (the smallest percent confidence)
that we could choose to use to make the new obtained value in that
example consistent with the other members of the dataset? Comment on
your findings.

30. Using the “worst-case method” discussed in the text, estimate the
duration of Eun Young’s commute, along with error limits. Perform your
calculation for both datasets provided (Examples 2.1 and 2.2). Calculate
also the 95% confidence interval and the 95% prediction interval for the
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combined dataset. Comment on your answers. What do you tell Eun
Young about the probable duration of her commute tomorrow?

31. For Eun Young’s commute, as discussed in Examples 2.1 and 2.2, what is
the probability that tomorrow the commute will take more than 40 min?
Use the combined dataset (n = 20) for your calculation.

32. For the stick vendor’s data from Example 2.4, what is the 95% prediction
interval for the next value of stick length? What is the probability that a
stick chosen at random from the vendor’s collection is between 5.5 and
6.5 cm? Hint: we know the next value in terms of deviation. What is the
probability?

33. For the maple leaf data in Table 2.7, calculate the 95% confidence
interval of the mean and the 95% prediction interval of the next value of
leaf mass. Create a plot like Figure 2.19 showing the data and the
intervals. In your own words, what do these two limits represent?

34. For the lilac leaf data in Table 2.8, calculate the 95% confidence interval
of the mean and the 95% prediction interval of the next value of leaf
length. Create a plot like Figure 2.19 showing the data and the intervals.
In your own words, what do these two limits represent?

35. For the flowering crab leaf data in Table 2.9, calculate the 95%
confidence interval of the mean and the 95% prediction interval of the
next value of both leaf mass and length. Create a plot like Figure 2.19
showing the data and the intervals. In your own words, what do these two
limits represent?

36. For the plastic cup data in Table 2.10, calculate the 95% confidence
interval of the mean and the 95% prediction interval of the next value of
cup mass. Create a plot like Figure 2.19 showing the data and the
intervals. In your own words, what do these two limits represent?

37. For data that follow the normal distribution (pdf given in Equation 2.17),
calculate the confidence level associated with error limits of μ ± σ ,
μ ± 2σ , and μ ± 3σ .

38. For all probability density distributions, the integral of the pdf from −∞
to ∞ is 1. Verify that this is the case for the normal distribution (Equation
2.17).

39. Do these two numbers agree: 62 ± 14◦C; 58 ± 2◦C? Justify your answer
with a graphic.

40. An (x,y) dataset is given here: (20, 16.234); (30, 16.252); (40, 16.271);
(50, 16.211); (60, 16.201); (70, 16.292); (80, 16.235). Plot y versus x.
Does y depend on x or is y independent of x within a reasonable amount
of uncertainty in y? Justify your answer.
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41. Equation 2.58 gives the 95% prediction interval for the next value of x:

95% prediction interval
for xi , the next

value of x:
xi = x̄ ± t0.025,n−1 s

√
1 + 1

n
(Equation 2.58)

Using the error-propagation techniques of Chapter 5, show that Equation
2.58 holds.

42. Based on the sample of plastic cup data given in Table 2.10, what is the
probability that a cup will weigh more than 8.55 g?
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