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Abstract

The demographic histories, genetic relationships and population structure of sedentary fish
Pomatoschistus marmoratus (Risso, 1810), which was sampled from the north-eastern basin
of the Mediterranean Sea (including the Turkish coasts of the Black Sea, Aegean Sea,
Levantine Sea and Sea of Marmara), were investigated by mitochondrial cytochrome c oxidase
subunit I (652 bp) and cytochrome b (526 bp) regions. It was found that the population
groups had high haplotype diversity while the nucleotide diversity was quite low for both
gene regions. Phylogeographic analyses of the haplotypes indicated that the Levantine popu-
lation (LEV) were genetically different from other populations. Also, the gene flow between
LEV and the other populations was very limited. The results of the analyses of neutrality
and mismatch distributions that were applied to the population groups were evaluated as a
whole. It was determined that the haplogroup that represents the Black Sea and Sea of
Marmara populations (BLAMAR) was stable, but the Levantine population (LEV) was
under the sudden demographic expansion model following the population bottleneck. The
genetic variance indices indicated sudden demographic expansion following population con-
traction. This was supported by star-shaped haplotype networks. The reason for this limited
gene flow and differentiation between the Levantine population (LEV) and the others was
linked with wind-driven offshore transport of the larvae and surface currents in these sub-
basins. The timing of the differentiation, demographic histories of populations associated
with geological and palaeo-climatic events and current ecological conditions were discussed.

Introduction

The semi-enclosed Mediterranean Sea underwent substantial changes due to its evolutionary
history throughout the Tertiary period. Combined effects of the complex geological events,
and palaeo-climatic history of the Mediterranean Sea, play a key role in shaping speciation
and population structuring (Patarnello et al., 2007). Recent research, which describes genetic
differentiation in some Mediterranean species, has indicated that habitats, biological and
oceanographic conditions have a great impact on population structures, in addition to climatic
changes and geological events (Avise, 2000; Lemaire et al., 2005; Maggio et al., 2009; Mejri
et al., 2011).

The gobiid fishes represent one of the most speciose groups in the Mediterranean Sea
(Miller, 1986). Among the Eastern Atlantic and Mediterranean gobiid fishes, the paraphyletic
genus Pomatoschistus is one of the dominant gobiid group, consisting of 14 mainly marine
species (Eschmeyer et al., 2019). Research on Pomatoschistus species and populations has
revealed that there is a high genetic differentiation between both the western and eastern
Mediterranean Sea and Atlantic–Mediterranean populations of these species (Gysels et al.,
2004a, 2004b; Larmuseau et al., 2009; Mejri et al., 2009, 2011; Boissin et al., 2011; Tougard
et al., 2014).

The marbled goby Pomatoschistus marmoratus (Risso, 1810) is a small benthic fish inha-
biting near-shore sandy habitats and is widespread throughout the eastern Atlantic (western
Spain and south-western coasts of France), Mediterranean, Black Sea, Azov Sea and Suez
Canal (Miller, 1986). They prefer spending their entire life cycle in shallow coastal regions,
including lagoons with differing salinity values (Miller, 1986; Mazzoldi & Rasotto, 2001;
Rigal et al., 2008; Gonzalez-Wangüemert & Vergara-Chen, 2014) and have a pelagic larval
duration of 40–50 days under laboratory conditions (Locatello et al., 2017). The habitat pref-
erence of P. marmoratus is very close to the shoreline (generally 0–3 m), which is unstable and
most affected by palaeo-climatic events. In addition, P. marmoratus exhibits benthic eggs and
adults are known to be poor swimmers and habitat dependent, which makes this species quite
convenient for researching genetic relationships between populations.

It is known that sand goby populations, which are important components of coastal bio-
diversity with their key roles in the food chain, are subject to many different selection pressures
in the historical process of the Mediterranean Sea. Therefore, geographic variations between
populations were emphasized (Gysels et al., 2004a, 2004b; Huyse et al., 2004; Larmuseau
et al., 2009; Mejri et al., 2009, 2011; Boissin et al., 2011; Tougard et al., 2014). The present
study aims to obtain information about the evolutionary mechanisms and historical processes
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that affected the P. marmaratus populations in the sub-basins in
the north-eastern Mediterranean Sea by identifying intra- and
inter-population variation, possible isolations and gene flow.

Materials and methods

Sampling

A total of 326 P. marmoratus specimens were sampled from 16
localities in the north-eastern Mediterranean (Turkish coasts of
the Black Sea, Aegean Sea, Levantine Sea and Sea of Marmara)
(Figure 1). Samplings and underwater observations were carried
out in different seasons during a 3-year period from 2015–2018
with replications until 30 individuals were sampled from each
sub-basin (Table 1). The specimens were caught from coastal
shorelines at 0–3 m depth using hand nets in both scuba and
free diving. All specimens were euthanized via an overdose anaes-
thetic (quinaldine). Pectoral fin clips of the specimens were fixed
in 96% ethanol for genetic analysis.

DNA extraction, amplification and sequencing

Total genomic DNA was isolated from the fin clips using the
PureLink Genomic DNA mini kit (Invitrogen) and GeneJET
Genomic DNA Purification Kit (Thermo Scientific). Fragments
of mitochondrial DNA (mtDNA) were PCR-amplified with uni-
versal mitochondrial cytochrome c oxidase subunit I (COI)
FishF1 and FishF2 primers, which are described in Ward et al.
(2005) and specific primers PomCB1F and GobCB2R designed
for the amplification of the mitochondrial cytochrome b (cyt b)
described in Tougard et al. (2014). The PCR thermal profile
consisted of an initial step of 2 min at 95°C followed by 35
cycles of 30 s at 94°C, 30 s at 54°C, and 1 min at 72°C, followed
in turn by 10 min at 72°C for COI, and DNA denaturation at
94°C for 5 min, followed by 35 cycles including a denaturation
at 94°C for 45 s, an annealing at 50°C for 1 min, an extension at
72°C for 2 min, and a final extension at 72°C for 10 min for cyt
b. Sequences produced by a private company (Macrogen Inc.,
Seoul, South Korea) were obtained for both strands to confirm
polymorphic sites. They were aligned using MEGA v.7.0
(Kumar et al., 2016).

Population structure and phylogeographic analyses

Sequences were aligned using CLUSTAL W (Thompson et al.,
1994) and manually edited in BIOEDIT 7.2.5. (Hall, 1999).
Polymorphic sites (s), haplotype diversity (h), nucleotide diversity
(π), and the genetic structures of the locations were estimated
using DnaSP v.5.0 (Librado & Rozas, 2009). The analysis of
molecular variance (ϕst) and estimates of the gene flow (Nem)
(Hudson et al., 1992) were calculated using Arlequin 3.5
(Excoffier & Lischer, 2010), and P values were obtained by
permutating data 1000 times.

The phylogeographic analyses for haplotypes were conducted
on each separate gene, using MEGA. Pomatoschistus microps
(GenBank accession numbers KM077855 and HF969830) was
used to root the tree. The best-fit models of nucleotide substitu-
tion for COI and cyt b were calculated by the Akaike and
Bayesian Information Criteria (AIC and BIC) approaches. The
model with the lowest BIC and AIC scores are considered to
describe the substitution pattern the best. Maximum likelihood
(ML) analysis was performed with the software package MEGA,
using the Kimura two parameter (K2P) distance model and
Tamura–Nei model for COI and cyt b analyses, respectively,
which were chosen after running the ‘Model Selection’ tool in
MEGA. A bootstrap test with 1000 replicates was performed to
verify the robustness of the tree. A median-joining haplotype net-
work was generated through PopART (Leigh & Bryant, 2015).

The samples which were clustered in a haplogroup, belonging
to the same region, were subsequently used for analyses by means
of a hierarchical analysis of molecular variance AMOVA
(Excoffier et al., 1992) using the software Arlequin 3.5
(Excoffier & Lischer, 2010). The historical demographic expan-
sions were examined by the D test of Tajima, Fs test of Fu and
Ramos-Onsins and Roza’s R2 (Tajima, 1989; Fu, 1997;
Ramos-Onsins & Rozas, 2002). While significant negative D
and Fs statistics can be interpreted as a sudden population expan-
sion after a bottleneck event, positive values indicate either balan-
cing selection or demographic stability. The R2 test, suitable for
small sample sizes, is expected to produce lower values under a
recent severe population growth scenario (Ramos-Onsins &
Rozas, 2002). Historical demographic expansions were also inves-
tigated by examination of frequency distributions of pairwise dif-
ferences between sequences (mismatch distribution) (Rogers &

Fig. 1. Sampling locations of P. marmoratus. Each colour represents locations from different Seas. LEV, Levantine Sea; AEG, Aegean Sea; BLAMAR, Black Sea & Sea
of Marmara.
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Harpending, 1992). While the multimodal distributions indicate
demographic stability, a unimodal distribution is consistent with
sudden expansion (Slatkin & Hudson, 1991). Observed and
expected distributions were compared with Harpending’s (1994)
sum of squared deviations (SSD), and with the raggedness
index (r) which were implemented in Arlequin 3.5. Due to this,
the non-significant values of SSD indicate that the data do not
deviate from that expected under the model of expansion.
Besides this, the populations in demographic equilibrium, i.e.
stable populations, have a large raggedness index and the popula-
tions that underwent recent expansion have small raggedness
indices (Harpending, 1994).

The time since possible population expansion (t) was calcu-
lated separately for COI and cyt b through the equation τ = 2ut
(Rogers & Harpending, 1992), with u being the mutation rate of
the sequence, calculated by u = 2μҡ, where μ is the mutation rate
per nucleotide and ҡ is the number of nucleotides. A mutation
rate of 2–4% per nucleotide and per million years (Myr) was
used for COI analysis (Brown et al., 1979; Mejri et al., 2009,
2011) and 1–2% was used for cyt b analysis (Gysels et al.,
2004a, 2004b). To calculate the number of generations
since expansion, we used the generation time of two years for
P. marmoratus (Miller, 1986).

Results

The abundance and prevalence of the Levantine Sea populations
were found to be very low although the samplings were carried
out in different seasons (with replications). Besides, these popula-
tions were observed only during the autumn (during the period of
recruitment to stock). It should be noted that, during this period,
we could observe just juvenile specimens, while adult individuals
were very rarely observed. We think that the majority of indivi-
duals up to adult length are predated by lessepsians fishes in
the area. However, it was found that the Aegean, Marmara and
the Black Sea populations reached high abundance with uniform
size classes if suitable habitats were found.

Genetic diversity

A 652 and 526 bp fragment of COI and cyt b gene were obtained
for the 280 and 221 specimens of the marbled goby respectively,
which were collected from the four sub-basins in the north-
eastern Mediterranean Sea. The sequences were deposited in the
GenBank under the accession numbers MT181761–MT181840
and MT181989–MT182021 for COI and cyt b, respecitvely. The
COI sequences revealed 80 haplotypes, produced by the 105 vari-
able sites, of which 69 were parsimony informative. A total of 74
variable sites and 59 parsimony informative sites produced 33
haplotypes for cyt b (Supplementary Table S1). All populations
represented high values of haplotype diversity and low values
for nucleotide diversity for each gene. The mean haplotype
diversity (h) of the haplogroups varied from 0.762–0.889 and
the mean nucleotide diversity (π) of the haplogroups varied
from 0.002–0.004 for COI. The mean haplotype diversity (h) of
the haplogroups varied from 0.401–0.802 and the mean nucleo-
tide diversity (π) of the haplogroups varied from 0.001–0.005
for cyt b (Table 2).

Population structure and phylogeographic analyses

Phylogeographic analysis of the haplotypes, performed on COI,
revealed a phylogeographic division between analysed regions
(Figure 2). Due to this, three highly divergent haplogroups from
different seas were detected: (1) Haplotypes of the Sea of
Marmara and the Black Sea grouped and generated BLAMAR
haplogroup; (2) Aegean Sea haplogroup (AEG) and (3)
Levantine Sea haplogroup (LEV) (Figure 2). Cyt b sequences
showed lower resolution among populations and two haplogroups

Table 1. Geographic locations of the P. marmoratus sampling sites, codes and
number of samples

Sub-basin/Sampling Site Code Number of samples

Southern Black Sea

West 52

Kerpe KRP

Amasra AMS

Cilingoz CLN

Central 48

Sinop SNP

Ordu ORD

East 33

Rize RZ

Sea of Marmara 40

Erdek ERD

Kemer KMR

Eastern Aegean Sea

North 47

Bakla B. SRZ

Enez ENZ

Edremit EDR

Central 40

Izmir (Caltidere) IZM

Northern Levantine Sea

West 6

Iztuzu IZT

Central 30

Tasucu TSC

East 30

Yumurtalık YUM

Table 2. Genetic diversity of the COI and cyt b sequences of P. marmoratus

Locality BLAMAR AEG LEV

COI

N 130 84 66

Nh 30 26 24

h 0.762 ± 0.035 0.819 ± 0.039 0.889 ± 0.025

π 0.002 ± 0.0001 0.003 ± 0.0003 0.004 ± 0.0004

Cyt b

N 127 32 62

Nh 21 1 12

h 0.802 ± 0.028 0 0.401 ± 0.080

π 0.005 ± 0.0002 0 0.001 ± 0.0005

Number of analysed sequences (N); number of haplotypes (Nh); Haplotype diversity (h);
Nucleotide diversity (π). LEV (Levantine Sea), AEG (Aegean Sea), BLAMAR (Black Sea & Sea of
Marmara).
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were detected: (1) Haplotypes of the Black Sea, Sea of Marmara
and Aegean Sea grouped and generated one haplogroup
AEGBLAMAR; (2) Levantine Sea haplogroup (LEV) (Figure 3).

The estimated differentiation times of the haplogroups (LEV/
AEG/BLAMAR) from each other were calculated. According to
the analysis of the LEV and AEGBLAMAR haplogroups, based

on the cyt b gene, the estimated differentiation times were 19.3–
9.65 myr BP. The estimated differentiation times of both
AEG-LEV and LEV-BLAMAR populations were found to be
6.95–3.48 and 5.85–2.98 myr BP and 0.68–1.35 myr BP for the
AEG-BLAMAR haplogroups, respectively, based on the COI
gene, which is thought to evolve faster and accumulate mutations.

Fig. 2. ML tree constructed from COI sequences
based on K2P model with P. microps (KM077855)
as outgroup. Numbers at nodes are for ML boot-
strap percentages (≥50%). The tree is drawn to
scale, with branch lengths (under the branches)
measured in the number of substitutions per
site.
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The most recent differentiation (1.35–0.68 myr BP) was observed
between BLAMAR and AEG groups (Table 3).

AMOVA revealed that most of the total molecular variance
(93.40%) was attributed to regional differences among groups.
In addition, 2.14% was apportioned among the population within
the group, and 4.46% was found to be the individuals within the
population for COI (Table 4). Two alternative groupings were
tested with AMOVA for cyt b sequences to find the best fit for
our data: I. Clustering samples according to three haplogroup
results, [BLAMAR] vs [AEG] vs [LEV]; and II. Clustering the
samples according to two haplogroup results, [AEGBLAMAR]
vs [LEV]. The grouping of sites which maximizes ᶲct was assumed
to be the most probable geographic subdivision. Due to this, the
first grouping showed the most probable geographic subdivision
and AMOVA revealed that the total molecular variance
(97.19%) can be found in regional differences among groups,
while 1.83% was found among the population within the group
and 0.99% individuals within the population for cyt b (Table 4).

Evolutionary relationships among haplotype sequences were
also analysed by median-joining networks for both genes, and
these networks also supported the existence of three haplogroups
(BLAMAR, AEG and LEV) for COI, and two haplogroups
(AEGBLAMAR and LEV) for cyt b which were in agreement

with ML trees in the north-eastern basin of the Mediterranean
Sea (Figure 4A, B). The haplotype networks (Figure 4) resulted
in a star-like shape, suggesting past demographic expansions for
LEV (for both genes) and AEG haplogroups (Slatkin &
Hudson, 1991), which were also consistent with mismatch ana-
lysis (Figure 5). The demographic history of the clades was
inferred from neutrality tests (Fu’s Fs, Tajima’s D statistics and
Ramos-Onsins and Rozas R2) and mismatch distributions (sum
of squared deviations SSD and raggedness index r) (Figure 5).
A unimodal distribution was observed for LEV clade suggesting
sudden expansion for both COI and cyt b analyses but results
for BLAMAR clade were more confusing. While the results of
Ramos-Onsins and Rozas R2, SSD and r analyses and a multi-
modal distribution indicated stable populations for BLAMAR
clade, negative values of Fu’s Fs and Tajima’s D statistics were
observed for this clade. This inconsistency between mismatch dis-
tributions and neutrality test was explained by statistical power of
the tests in previous studies (Ramos-Onsins & Rozas, 2002;
Tougard et al., 2014). Due to this, BLAMAR clade is accepted
as stable according to the results of Ramos-Onsins and Rozas
R2, SSD and r analyses and rejecting the population expansion
model for both COI and cyt b. AEG clade produced significantly
negative Fu’s Fs and Tajima’s D statistics and provided a unimodal

Fig. 3. ML tree constructed from cyt b sequences
based on Tamura–Nei model with P. microps
(HF969830) as outgroup. Numbers at nodes are
for ML bootstrap percentages (≥50%). The tree
is drawn to scale, with branch lengths (under
the branches) measured in the number of substi-
tutions per site.

Journal of the Marine Biological Association of the United Kingdom 423

https://doi.org/10.1017/S0025315421000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315421000199


pairwise mismatch analysis for the COI gene, which indicates
population expansion. In addition to all these, cyt b analysis did
not detect any polymorphism for AEG clade. Due to this, the esti-
mates regarding timing since expansion based on COI analysis
ranged from 0.194–0.097 myr BP and 0.236–0.118 myr BP for
LEV and AEG clades, respectively, while it ranged from 475–
237 BP for LEV clade in cyt b analysis (Figure 5).

Gene flow Nem estimates and pairwise genetic distances
between the clades of P. marmoratus were given in Table 5. The
gene flow between the LEV and the other clades (BLAMAR and
AEG) were found to be remarkably low, which is congruent
with ϕ-statistics and indicated small number of migrants per gen-
eration (Nem < 0.03). Pairwise genetic distances indicated that the
LEV clade was also significantly differentiated, which also sup-
ported the limited gene flow between LEV and other clades
(Table 5).

Discussion

The understanding of population structure and the factors which
affect it in the marine environment is important for conservation
strategies for habitats, species and other conservation measures
(Kelly & Palumbi, 2010). Different mechanisms may cause genetic
differentiation between populations, such as vicariance processes
caused by palaeo-climatic and geological events, oceanographic
currents, habitat discontinuities, local adaptation, larval behav-
iour, dispersal capabilities of larvae and adults and even repro-
ductive strategy (Marques et al., 2006; Giovannotti et al., 2009;
Earl et al., 2010; Riginos et al., 2011; Schunter et al., 2011;
Gonzalez-Wangüemert & Perez-Ruzafa, 2012; Hirase et al.,
2012; Durand et al., 2013; Portnoy et al., 2013).

The modern Mediterranean Sea and the Indo-West Pacific
Region evolved independently from each other when the
Arabian and Anatolian plates collided (Rögl, 1999; Seidenkrantz
et al., 2000). The Mediterranean–Atlantic connection became
constricted at the end of the Miocene after the isolation of
Paratethys from the Mediterranean. A consequence of this was
the desiccation of the Mediterranean, in an event known as the
Messinian Salinity Crisis (MSC), which took place about 6.14–
5.96 myr (Hsü et al., 1973; Krijgsman et al., 1999). The present
distribution of P. marmoratus in the Eastern Mediterranean is
thought to be the result of the isolation of Paratethys from the
Mediterranean and MSC (Miller, 1990; Huyse et al., 2004).

Estimated differentiation times (19.3–9.65 myr BP) of the LEV
and AEGBLAMAR populations based on the cyt b gene coincide
with the period in which Paratethys was first isolated from the
Mediterranean Sea and, according to the results of COI analyses
which are thought to evolve faster and accumulate mutations,
the estimated differentiation time of both AEG-LEV and
LEV-BLAMAR populations (6.95–3.48 and 5.85–2.98 myr BP,
respectively) coincide with the opening of the Gibraltar Strait
after MSC.

The impact of the salinity crisis and cyclic glacial ages with sig-
nificant decreases in sea levels, which affected the origin of bio-
diversity in the Mediterranean Sea basin, have a significant
impact on the populations of the gobies (Stefanni & Thorley,
2003; Gysels et al., 2004a, 2004b; Huyse et al., 2004; Larmuseau
et al., 2009; Mejri et al., 2009, 2011; Boissin et al., 2011). The sud-
den demographic expansion of populations with low genetic
diversity and re-colonization of sand gobies have been described
in many studies as the impact of the last glacial period which
ended about 10 kyr BP (Hewitt, 1996, 1999, 2000; Taberlet
et al., 1998; Stefanni & Thorley, 2003; Gysels et al., 2004a,
2004b; Huyse et al., 2004). The sea level of Anatolian coasts
had substantial changes during the last glacial period as did the
whole Mediterranean basin (Lambeck, 1995; Özdoğan, 1997;
Lambeck & Purcell, 2005; Gökaşan et al., 2010). It is known
that the sea level was at least 100–165 m lower in general during
the last glacial maximum (van Andel & Shackleton, 1982;
Lambeck & Purcell, 2005) and the borders of the territorial
areas extending into the Aegean Sea were wider because of the
sea level drops (Lambeck, 1995; Özdoğan, 1997; Lambeck &
Purcell, 2005). The lacustrine conditions occurred intermittently
both in the Sea of Marmara and the Black Sea, but analysis of
the deep sea cores indicates that the Sea of Marmara had similar
conditions to that of the present Black Sea during the last glacial
period (Meriç, 1990; Özdoğan, 1997). The level of the Sea of
Marmara was ∼45–50 m above the level of the Aegean Sea both
during the last glacial period and also possibly the previous glacial
period (Aksu et al., 1999). The Turkish Straits System
(Dardanelles and Bosphorus) acted as rivers carrying meltwater
from northern Europe into the Black Sea, and then through the
Marmara Sea to the Aegean Sea and the eastern Mediterranean
Sea during the glacial to interglacial transitions (Stanley &
Blanpied, 1980; Aksu et al., 1999). These interactions between
the Black Sea, Sea of Marmara and the Aegean Sea could prevent
populations becoming completely isolated but also could restrict
an effective gene flow. Due to this, the estimated differentiation
time of BLAMAR and AEG groups (1.35–0.68 myr BP) can be
linked with sea level changes in the last glacial period. Our results
also underlined that demographic analyses as well as high
haplotype diversity indicate a recent and rapid population
divergence during the last glacial period due to τ values of the
LEV and AEG groups (0.194–0.097 myr and 0.236–0.118 myr,
respectively).

The potential distribution of planktonic larvae and eggs and
the lack of geographic barriers among populations contribute to

Table 3. Estimated differentiation times of the haplogroups based on a
molecular clock of between 2% (slow/below diagonal) and 4% (fast/above
diagonal) for COI gene and 1% (slow/below diagonal) and 2% (fast/above
diagonal) for cyt b gene, respectively

LEV AEG BLAMAR

COI

LEV – 3.48 2.98

AEG 6.95 – 0.68

BLAMAR 5.85 1.35 –

LEV AEGBLAMAR

Cyt b

LEV – 9.65

AEGBLAMAR 19.3 –

Table 4. AMOVA results for COI and cyt b sequences of P. marmoratus

Source of variation
% of

variation ϕ-statistics

COI Among groups 93.40 ϕct = 0.934*

Among populations within groups 2.14 ϕsc = 0.955*

Within populations 4.46 ϕst = 0.324*

Cyt b Among groups 97.19 ϕct = 0.971*

Among populations within groups 1.83 ϕsc = 0.649*

Within populations 0.99 ϕst = 0.990*

Group 1 = BLAMAR (Black Sea and Sea of Marmara), Group 2 = AEG (Aegean Sea), Group
3 = LEV (Levantine Sea). *P < 0.05.
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continuous gene flow and low genetic differentiation in marine
ecosystems (McCusker & Bentzen, 2010; Wang et al., 2011).
The continuous gene flow between populations was detected in
various studies that were conducted in the sub-basins of the
Eastern Mediterranean, although there were biotic and abiotic fac-
tors that resulted in the populations’ differentiations (Bektaş &
Beldüz, 2008; Keskin & Atar, 2012; Turan et al., 2016; Bektaş
et al., 2018). However, many studies have shown that intra-specific
differences in many Mediterranean species are associated with the
present-day physical barriers that may affect gene flow (Borsa
et al., 1997; Mejri et al., 2009, 2011). Analyses of both gene regions
indicated that the population groups had high haplotype diversity,
while the nucleotide diversity was quite low in the present study.
Moreover, the Levantine population is genetically different from

all other populations and gene flow was determined to be very lim-
ited. When the results of the analyses of the neutrality and mismatch
distribution that were applied to the haplogroups are evaluated as a
whole, it was found that the haplogroup covering the Black Sea and
Sea of Marmara was in equilibrium. However, the haplogroup cover-
ing the Levantine Sea coasts was under the sudden demographic
expansion model following a population bottleneck, which was in
agreement with a star-shaped haplotype network.

It was concluded that the limited gene exchange between the
Levantine population and other populations is still affected by
the prevailing hydrographic conditions. Bakun & Agostini
(2001) reported that the eastern Aegean and north-western
Levantine shores (approximately the Teke peninsula) are influ-
enced by strong winds blowing from the land to the sea, and

Fig. 4. Median joining network (A) for COI and (B) for cyt b genes. The network is connecting all sequences through putative mutational step and separating the
three major clades for COI and two major clades for cyt b congruent with the ML tree subdivision. The number of samples is reflected by the size of the circles and
each line segment between haplotypes represents a single mutation. Inferred intermediate haplotypes that were not sampled are shown as black dots.
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consequently the coastal surface water movements are directed
towards the open sea by the Ekman transport and the Coriolis
force. Researchers have stated that this transport is further
strengthened in spring and summer (this corresponds to the
spawning season and larval stage of P. marmoratus; Mazzoldi &
Rasotto, 2001) and consequently strong upwelling areas are
formed in the Aegean and north-western Levantine coasts. This
situation has also been observed by authors during fieldwork.
For these reasons, it is concluded that the limited gene flow
between the Levantine population and other populations is
affected by the transport from the coast to the open sea on the
eastern Aegean Sea and the northern Levantine Sea.

The entire life cycle, including the reproduction of P. marmor-
atus, takes place in shallow coastal habitats (generally 0–3 m)
(Miller, 1986) and this transport is thought to limit the gene
flow by preventing the chance of survival in deep-water habitats
during the transition phase of the larva to benthic form. Drost
et al. (2015) observed a similar situation in the gobies distributed
in the South African coast. The researchers stated that the prevail-
ing winds on the coasts of South Africa are directed offshore, and
the larvae move away from the coastal waters due to wind-driven
upwelling and Ekman transport. This situation limits the gene
flow by decreasing the rate of recruitment success. Besides this,
the offshore wind-driven surface flows and Ekman transport

Fig. 5. Mismatch distribution analysis for COI and cyt
b genes with neutrality tests and demographic indices
for each Pomatoschistus marmoratus clade. Fu’s test
of neutrality (Fs), Tajima’s D neutrality test (D), statis-
tics of Ramos-Onsins and Rozas (R2), sum of squared
deviations (SSD), raggedness index (r), the time since
possible population expansion (t). The time since pos-
sible population expansion (t) was expressed in 10−3

years before present (kyr BP) (*P < 0.05, **P < 0.01,
not significant ns). LEV, Levantine Sea; AEG, Aegean
Sea; BLAMAR, Black Sea & Sea of Marmara.
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will keep planktonic larvae away from the protected coastal
waters, and reduce the possibility of reaching suitable habitat
for settlement (Lutjeharms, 2006).

Coastal surface currents of the northern Levantine Sea are
moving westward and change direction in front of Fethiye and
Rhodes Island. The main currents in the Aegean Sea are generally
south-oriented and have been reported to be directed towards the
Ionian Sea before reaching the Levantine Sea (Fernández et al.,
2005; Hamad et al., 2006; Patarnello et al., 2007). Taking these
into consideration, there are no main coastal surface currents
extending from the Levantine Sea towards the Aegean Sea, and
this phenomenon creates an effective hydrographic barrier that
limits gene flow. In addition, it was observed in our field studies
that the Datça peninsula, which is located near the intersection of
the southern Aegean and western Levantine coasts, limits gene
flow, while deep rocky habitats frequently found along the coast-
line of the peninsula interrupt the habitat connectivity of P. mar-
moratus. Similar habitat fragmentations such as steep cliff
structures and the lack of shallow sandy areas were observed
between Fethiye-Antalya and Alanya-Tasucu. However, although
suitable habitats have been observed from the Tasucu coasts to
Iskenderun Bay, it has been observed that the populations of P.
marmoratus are either undetectable or are not abundant in
these habitats. It was concluded that this might be due to the
intense pressure of lessepsian fishes. It is seen that all these factors
limit gene flow between the Aegean Sea and Levantine Sea popu-
lations and thus negatively affect populations by decreasing the
intra and inter-population genetic diversity.

It was understood that conservation of biological diversity
alone is not sufficient, but the levels of genetic variation of
species and populations, as well as the variation processes of
the populations, must also be known. Based on the results pre-
sented in this paper, it was concluded that hydrographic factors
directly affect gene flow at larval stages and habitat fragmentations
limit the gene flow of the poor-swimmer goby species in the
adult period. Besides this, the ongoing genetic differentiation process
in the Levantine populations caused by palaeo-geographic and
palaeo-climatic conditions is still affected by today’s hydrographic
factors. Moreover, environmental pressures such as lessepsian inva-
sion in the area, pollution and increasing seawater temperature
make these populations fragile by decreasing the abundance of the
populations.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315421000199
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