BULL. AUSTRAL. MATH. SOC. Vol. 37 (1988) [333-335]

SINGLETON ARRAYS IN CODING THEORY

TATSUYA MARUTA, ISAO KIKUMASA AND HITOSHI KANETA

We construct all Singleton arrays for the field GF(q) when q is odd. There exist $\varphi(q-1)$ arrays in this case.

INTRODUCTION

Let GF(q) be the finite field of q elements, and let $S_q(q \ge 3)$ denote the triangular array

1	1	1	1	•••	1	1	1
1	a_1	a_2	a_3	•••	a_{q-3}	a_{q-2}	
1	a_2	a_3	•	• • •	a_{q-2}		
1	a_3	•	•	• • •			
•	•	•	•	•••			
1	a_{q-3}	a_{q-2}					
1	a_{q-2}						
1							

where $a_i \in GF(q)$. We call S_q a Singleton array if every square submatrix is nonsingular. See [2, p.322] for the relation between Singleton arrays and MDS codes. Singleton arrays exist:

THEOREM 1. [3]. Let ξ be a primitive element of GF(q). Then the above S_q with $a_i = 1/(1-\xi^i)$ $(1 \le i \le q-2)$ is a Singleton array.

We note that Theorem 1 is an easy consequence of Lemma 4 in the next section. In this paper we shall prove the converse:

THEOREM 2. If the above S_q is a Singleton array, then $a_i = 1/(1 - \xi^i)$ for some primitive element ξ of GF(q), provided q is odd.

To our regret, the case $q = 2^h$ is still open.

Received 14 July 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

PROOF OF THEOREM 2

A set K of k points of the projective plane PG(2, GF(q))(or PG(2,q) for simplicity) is called a k-arc if no three points of K are collinear. It is well-known that max $\{k; a k$ -arc exists $\}$ is equal to q + 1 or q + 2 according as q is odd or even [1, p.164]. A k-arc with maximal k is called an oval. We refer to [1, p.168] for the proof of the following celebrated theorem.

THEOREM 3 (SEGRE). Let q be odd. Then an oval K of PG(2,q) admits a projective transformation T such that $T(K) = \{{}^{t}(x_0, x_1, x_2); x_0x_1 + x_1x_2 + x_2x_0 = 0\}$ and that $TP_1 = {}^{t}(1,0,0), TP_2 = {}^{t}(0,1,0)$ and $TP_3 = {}^{t}(0,0,1)$ for three prescribed points of K.

Denote by $S_{m,n}(q)$ the set of (m,n)-matrices with GF(q) entries such that every square submatrix is nonsingular. An (m,n)-matrix (a_{ij}) is called a Cauchy matrix if $a_{ij} = 1/(1-x_iy_j)$ for some x_i , y_j in GF(q) (for $1 \le i \le m$, $1 \le j \le n$) with $x_iy_j \ne 1$. As to the determinant of a Cauchy matrix we have [4, p.202]

LEMMA 4. (Cauchy). The determinant of a square Cauchy matrix is given by the formula

$$\deg(1/(1-x_iy_j)) = D(x_1, \ldots, x_n)D(y_1, \ldots, y_n) / \prod_{i=1}^n \prod_{j=1}^n (1-x_iy_j)$$

where $D(x_1,\ldots,x_n) = \prod_{1 \leq i < j \leq n} (x_i - x_j).$

COROLLARY TO THEOREM 3. Assume that q is odd. If the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & a_1 & a_2 & \dots & a_{q-3} \\ 1 & b_1 & b_2 & \dots & b_{q-3} \end{pmatrix}$$

belongs to $S_{3,q-2}(q)$, then A is a Cauchy matrix with $a_i, b_i \in GF(q) - \{0,1\}$ $(1 \le i \le q-3)$.

PROOF OF COROLLARY: It is evident that a_i and b_i are equal to neither 0 nor 1. Let a (3,3)-matrix E_3 be the unit matrix. Then q+1 columns of the (3, q+1)-matrix (E_3, A) make up an oval of PG(2,q). In view of Theorem 3 there exists a diagonal (3,3)-matrix $[1, d_1, d_2]$ ($d_i \neq 0$) such that the set of columns of $[1, d_1, d_2](E_3, A)$ is equal to $\{{}^t(x_0, x_1, x_2); x_0x_1 + x_1x_2 + x_2x_0 = 0\}$ as a subset of PG(2,q). Thus the set of columns of $[1, d_1, d_2]A$ coincides with the set of columns of the (3, q-2)-matrix

$$B = \begin{pmatrix} 1 & 1 & \dots & 1 \\ -\xi & -\xi^2 & \dots & -\xi^{q-2} \\ -1/(1-\xi^{-1}) & -1/(1-\xi^{-2}) & \dots & -1/(1-\xi^{-q+2}) \end{pmatrix}$$

Singleton arrays

as a subset of PG(2,q), where ξ is a primitive element of GF(q). Hence $d_1 = -\xi^k$ and $d_2 = -1(1 - \xi^{-k})$ for some $1 \le k \le q-2$. We shall show that $B' = [1, d_1, d_2]^{-1}B$ is a Cauchy matrix. Then it follows that A is a Cauchy matrix, since B' is equal to Aup to the order of columns. Let ${}^t(1, 1/(1 - u_i), 1/(1 - v_i))$ be the *i*-th column of the matrix B'. For $1 \le i < j \le q-2$ and $i, j \ne k$ we have $u_i v_i u_j v_j \ne 0$. Furthermore, $u_i v_j - u_j v_i$ vanishes, because it equals

$$(1 - \eta^{i-k})(1 - (1 - \eta^{j})/(1 - \eta^{k})) - (1 - \eta^{j-k})(1 - (1 - \eta^{i})/(1 - \eta^{k}))$$

where $\eta = \xi^{-1}$. Thus B' is a Cauchy matrix, as desired.

PROOF OF THEOREM 2: Let

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & a_1 & a_2 & \dots & a_{q-3} \\ 1 & a_2 & a_3 & \dots & a_{q-2} \end{pmatrix}$$

be a submatrix of a Singleton array S_q . Then the matrix A belongs to $S_{3,q-2}(q)$. We can write $a_i = 1/(1 - \xi^{n_i})$ $(1 \le n_i \le q-2, 1 \le i \le q-2)$. Since A is a Cauchy matrix by the Corollary, so are the submatrices

$$\begin{pmatrix} a_{i-1} & a_i \\ a_i & a_{i+1} \end{pmatrix} \qquad (2 \leqslant i \leqslant q-3).$$

Consequently we get $n_{i-1} + n_{i+1} = 2n_i \mod (q-1)$ $(2 \le i \le q-3)$. In other words we have $n_{i+1} - n_i = n_i - n_{i-1} \mod (q-1)$. Hence there exist integers $0 \le n'$, d < q-1 such that $n_i = n' + di \mod (q-1)$ $(1 \le i \le q-2)$. Since $\{n' + di; 1 \le i \le q-2\} = \{1, 2, \ldots, q-2\}$ in $\mathbb{Z}/(q-1)$, the set $\{di; 1 \le i \le q-2\}$ must contain q-2 elements. It now follows that (d, q-1) = 1 and n' = 0. Thus $a_i = 1/(1 - \gamma^i)$, where $\gamma = \xi^d$ is a primitive element of GF(q). This completes the proof of Theorem 2.

References

- [1] J.W.P. Hirschfeld, Projective Geometry over Finite Fields (Oxford University Press, 1979).
- [2] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes (North-Holland Amsterdam, 1977).
- R.M. Roth and G. Seroussi, 'On generator matrices of MDS codes', IEEE Trans. Inform. Theor. IT-31 (1985), 826-830.
- [4] H. Weyl, The Classical Groups (Princeton University Press, 1946).

Department of Mathematics Faculty of Science Okayama University Okayama 700 JAPAN