SINGLETON ARRAYS IN CODING THEORY

Tatsuya Maruta, Isao Kikumasa and Hitoshi Kaneta

We construct all Singleton arrays for the field $G F(q)$ when q is odd. There exist $\varphi(q-1)$ arrays in this case.

Introduction

Let $G F(q)$ be the finite field of q elements, and let $S_{q}(q \geqslant 3)$ denote the triangular array

1	1	1	1	\ldots	1	1	1
1	a_{1}	a_{2}	a_{3}	\ldots	a_{q-3}	a_{q-2}	
1	a_{2}	a_{3}	\cdot	\ldots	a_{q-2}		
1	a_{3}	\cdot	\cdot	\ldots			
\cdot	\cdot	\cdot	\cdot	\ldots			
1	a_{q-3}	a_{q-2}					
1	a_{q-2}						
1							

where $a_{i} \in G F(q)$. We call S_{q} a Singleton array if every square submatrix is nonsingular. See [2, p.322] for the relation between Singleton arrays and MDS codes. Singleton arrays exist:

Theorem 1. [3]. Let ξ be a primitive element of $G F(q)$. Then the above S_{q} with $a_{i}=1 /\left(1-\xi^{i}\right)(1 \leqslant i \leqslant q-2)$ is a Singleton array.

We note that Theorem 1 is an easy consequence of Lemma 4 in the next section. In this paper we shall prove the converse:

Theorem 2. If the above S_{q} is a Singleton array, then $a_{i}=1 /\left(1-\xi^{i}\right)$ for some primitive element ξ of $G F(q)$, provided q is odd.

To our regret, the case $q=2^{h}$ is still open.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

Proof of Theorem 2

A set K of k points of the projective plane $P G(2, G F(q))$ (or $P G(2, q)$ for simplicity) is called a k-arc if no three points of K are collinear. It is well-known that $\max \{k$; a k-arc exists $\}$ is equal to $q+1$ or $q+2$ according as q is odd or even [$\mathbf{1}, \mathrm{p} .164]$. A k-arc with maximal k is called an oval. We refer to [$\mathbf{1}$, p .168] for the proof of the following celebrated theorem.

Theorem 3 (Segre). Let q be odd. Then an oval K of $P G(2, q)$ admits a projective transformation T such that $T(K)=\left\{{ }^{t}\left(x_{0}, x_{1}, x_{2}\right) ; x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}=0\right\}$ and that $T P_{1}={ }^{t}(1,0,0), T P_{2}={ }^{t}(0,1,0)$ and $T P_{3}={ }^{t}(0,0,1)$ for three prescribed points of K.

Denote by $S_{m, n}(q)$ the set of (m, n)-matrices with $G F(q)$ entries such that every square submatrix is nonsingular. An (m, n)-matrix $\left(a_{i j}\right)$ is called a Cauchy matrix if $a_{i j}=1 /\left(1-x_{i} y_{j}\right)$ for some x_{i}, y_{j} in $G F(q)$ (for $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$) with $x_{i} y_{j} \neq 1$. As to the determinant of a Cauchy matrix we have [4, p.202]

Lemma 4. (Cauchy). The determinant of a square Cauchy matrix is given by the formula

$$
\operatorname{deg}\left(1 /\left(1-x_{i} y_{j}\right)\right)=D\left(x_{1}, \ldots, x_{n}\right) D\left(y_{1}, \ldots, y_{n}\right) / \prod_{i=1}^{n} \prod_{j=1}^{n}\left(1-x_{i} y_{j}\right)
$$

where $D\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(x_{i}-x_{j}\right)$.
Corollary to Theorem 3. Assume that q is odd. If the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & a_{1} & a_{2} & \ldots & a_{q-3} \\
1 & b_{1} & b_{2} & \ldots & b_{q-3}
\end{array}\right)
$$

belongs to $S_{3, q-2}(q)$, then A is a Cauchy matrix with $a_{i}, b_{i} \in G F(q)-\{0,1\}(1 \leqslant i \leqslant$ $q-3)$.

Proof of corollary: It is evident that a_{i} and b_{i} are equal to neither 0 nor 1. Let a (3,3)-matrix E_{3} be the unit matrix. Then $q+1$ columns of the $(3, q+1)$-matrix $\left(E_{3}, A\right)$ make up an oval of $P G(2, q)$. In view of Theorem 3 there exists a diagonal $(3,3)$-matrix $\left[1, d_{1}, d_{2}\right]\left(d_{i} \neq 0\right)$ such that the set of columns of $\left[1, d_{1}, d_{2}\right]\left(E_{3}, A\right)$ is equal to $\left\{{ }^{t}\left(x_{0}, x_{1}, x_{2}\right) ; x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{0}=0\right\}$ as a subset of $P G(2, q)$. Thus the set of columns of $\left[1, d_{1}, d_{2}\right] A$ coincides with the set of columns of the ($3, q-2$)-matrix

$$
B=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
-\xi & -\xi^{2} & \cdots & -\xi^{q-2} \\
-1 /\left(1-\xi^{-1}\right) & -1 /\left(1-\xi^{-2}\right) & \cdots & -1 /\left(1-\xi^{-q+2}\right)
\end{array}\right)
$$

as a subset of $P G(2, q)$, where ξ is a primitive element of $G F(q)$. Hence $d_{1}=-\xi^{k}$ and $d_{2}=-1\left(1-\xi^{-k}\right)$ for some $1 \leqslant k \leqslant q-2$. We shall show that $B^{\prime}=\left[1, d_{1}, d_{2}\right]^{-1} B$ is a Cauchy matrix. Then it follows that A is a Cauchy matrix, since B^{\prime} is equal to A up to the order of columns. Let ${ }^{t}\left(1,1 /\left(1-u_{i}\right), 1 /\left(1-v_{i}\right)\right)$ be the i-th column of the matrix B^{\prime}. For $1 \leqslant i<j \leqslant q-2$ and $i, j \neq k$ we have $u_{i} v_{i} u_{j} v_{j} \neq 0$. Furthermore, $u_{i} u_{j}-u_{j} v_{i}$ vanishes, because it equals

$$
\left(1-\eta^{i-k}\right)\left(1-\left(1-\eta^{j}\right) /\left(1-\eta^{k}\right)\right)-\left(1-\eta^{j-k}\right)\left(1-\left(1-\eta^{i}\right) /\left(1-\eta^{k}\right)\right)
$$

where $\eta=\xi^{-1}$. Thus B^{\prime} is a Cauchy matrix, as desired.
Proof of Theorem 2: Let

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & a_{1} & a_{2} & \ldots & a_{q-3} \\
1 & a_{2} & a_{3} & \ldots & a_{q-2}
\end{array}\right)
$$

be a submatrix of a Singleton array S_{q}. Then the matrix A belongs to $S_{3, q-2}(q)$. We can write $a_{i}=1 /\left(1-\xi^{n_{i}}\right)\left(1 \leqslant n_{i} \leqslant q-2,1 \leqslant i \leqslant q-2\right)$. Since A is a Cauchy matrix by the Corollary, so are the submatrices

$$
\left(\begin{array}{cc}
a_{i-1} & a_{i} \\
a_{i} & a_{i+1}
\end{array}\right) \quad(2 \leqslant i \leqslant q-3) .
$$

Consequently we get $n_{i-1}+n_{i+1}=2 n_{i} \bmod (q-1)(2 \leqslant i \leqslant q-3)$. In other words we have $n_{i+1}-n_{i}=n_{i}-n_{i-1} \bmod (q-1)$. Hence there exist integers $0 \leqslant n^{\prime}, d<q-1$ such that $n_{i}=n^{\prime}+d i \bmod (q-1)(1 \leqslant i \leqslant q-2)$. Since $\left\{n^{\prime}+d i ; 1 \leqslant i \leqslant q-2\right\}=$ $\{1,2, \ldots q-2\}$ in $Z /(q-1)$, the set $\{d i ; 1 \leqslant i \leqslant q-2\}$ must contain $q-2$ elements. It now follows that $(d, q-1)=1$ and $n^{\prime}=0$. Thus $a_{i}=1 /\left(1-\gamma^{i}\right)$, where $\gamma=\xi^{d}$ is a primitive element of $G F(q)$. This completes the proof of Theorem 2.

References

[1] J.W.P. Hirschfeld, Projective Geometry over Finite Fields (Oxford University Press, 1979).
[2] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting Codes (North-Holland Ainsterdam, 1977).
[3] R.M. Roth and G. Seroussi, 'On generator matrices of MDS codes', IEEE Trans. Inform. Theor. IT-31 (1985), 826-830.
[4] H. Weyl, The Classical Groups (Princeton University Press, 1946).

Department of Mathematics
Faculty of Science
Okayama University
Okayama 700
JAPAN

[^0]: Received 14 July 1987

