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Symbolic Powers Versus Regular Powers of
Ideals of General Points in P1 × P1

Elena Guardo, Brian Harbourne, and Adam Van Tuyl

Abstract. Recent work of Ein–Lazarsfeld–Smith and Hochster–Huneke raised the problem of which
symbolic powers of an ideal are contained in a given ordinary power of the ideal. Bocci–Harbourne de-
veloped methods to address this problem, which involve asymptotic numerical characters of symbolic
powers of the ideals. Most of the work done up to now has been done for ideals defining 0-dimensional
subschemes of projective space. Here we focus on certain subschemes given by a union of lines in P3

that can also be viewed as points in P1 × P1. We also obtain results on the closely related problem,
studied by Hochster and by Li and Swanson, of determining situations for which each symbolic power
of an ideal is an ordinary power.

1 Introduction

Refinements of the groundbreaking results of [7, 21] regarding which symbolic pow-
ers of ideals are contained in a given ordinary power of the ideal have recently been
given in [1–3, 23], with a focus on ideals defining 0-dimensional subschemes of pro-
jective space. The methods mainly involve giving numerical criteria, both for con-
tainment and for non-containment. These criteria have been extended in [16] to
ideals defining smooth subschemes in PN and applied to the case of disjoint unions
of lines. The most difficult numerical character needed for these results is denoted in
these papers by γ(I). We pause briefly to recall its definition.

Throughout this paper we work over an algebraically closed field k of arbitrary
characteristic. Let k[PN ] denote the polynomial ring k[x0, . . . , xN ] with the stan-
dard grading (so each variable has degree 1). Given any homogeneous ideal (0) 6=
I ⊆ k[PN ], α(I) denotes the least degree of a nonzero form (i.e., homogeneous ele-
ment) in I. Then the limit limm→∞ α(I(m))/m is known to exist (see, for example,
[1, Lemma 2.3.1]), and is denoted by γ(I).

A large amount of work has been done studying γ(I) in a range of contexts (in-
cluding number theory [4, 32, 33], complex analysis [29], algebraic geometry [1, 2,
8, 27], and commutative algebra [21]), with an emphasis on the case that I defines
a 0-dimensional subscheme. Our focus here will be on computing γ(I) for ideals
of lines in P3. A special case for which γ(I) can be computed is when the symbolic
powers I(m) and ordinary powers Im all coincide. This is because if I(m) = Im for
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all m ≥ 1, then α(I(m)) = α(Im) = mα(I), hence γ(I) = α(I). Thus we will also
be interested in distinguishing when I(m) = Im for m ≥ 1 occurs and when it does
not. It has been known for a long time that I(m) = Im holds for all m ≥ 1 when
I is a complete intersection (i.e., defined by a regular sequence; see [34, Lemma 5,
Appendix 6]). What is of interest is when I is not a complete intersection. This is
also a remarkably difficult problem; partial results have been obtained, for example,
in [22, 24].

The reason for our focus on ideals of certain unions of lines in P3 is that, for the
cases we will consider, the questions can be converted into ones involving symbolic
powers of ideals of points in P1 × P1. The ideal I of a point in P1 × P1 is a bigraded
ideal. Since k[P1 × P1] = k[P3] as rings, we can regard I as defining a subscheme of
P3, the key being that even though I as a bigraded ideal defines a point in P1 × P1,
it defines a line in P3 when regarded as a singly graded ideal in the usual grading
on k[P3]; see Remark 2.1.1. Thus the ideal of a finite set of points in P1 × P1 is
simultaneously (but with respect to a different grading) the ideal of a finite set of
lines P3. (As a specific example, the ideal of s ≤ 4 general points of P1 × P1 is
the ideal of s general lines of P3; see Remark 2.1.1. For s > 4, the ideal of s points
of P1 × P1 is the ideal of s lines in P3, but the lines are never general, even if the
points are.) Moving to P1 × P1 makes available to us the vast array of work done on
products of projective spaces and surfaces in general, and on P1 × P1 in particular;
see, for example [12, 14, 18, 25, 28, 30].

Our main results are Theorems 1.1 and 1.2.

Theorem 1.1 Let I be the ideal of s ≥ 1 general points of P1 × P1.

• If s = 1, then γ(I) = 1.
• If s = 2 or 3, then γ(I) = 2.
• If s = 4, then γ(I) = 8/3.
• If s = 5, then γ(I) = 3.
• If s = 6, then γ(I) = 24/7.
• If s = 7, then γ(I) = 56/15.
• If s = 8, then γ(I) = 4.
• If 9 ≤ s, then

√
s− 1 < α(I)/2 ≤ γ(I) ≤

√
2s and 4 ≤ γ(I).

See Section 2 for the proof.

Theorem 1.2 Let I be the ideal of a set Z of s general points in P1×P1. Then Im = I(m)

for all m > 0 if and only if s is 1, 2, 3, or 5. Moreover, I(3) 6= I3 if s = 4 and I(2) 6= I2 if
s ≥ 6.

See Section 3 for the proof. We note that the ideal I of s general points of P1 × P1

is a complete intersection if and only if s = 1 (see the paragraph right before Propo-
sition 2.1.2).

Whereas most of our focus in this paper is on sets of points in general position in
P1×P1, points not in general position can also be of interest; note for example that a
reduced scheme consisting of s > 1 general points in P1 × P1 is never arithmetically
Cohen–Macaulay. In a recent preprint[17] we studied this problem for finite sets of
points that are arithmetically Cohen–Macaulay subschemes of P1 × P1.
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2 Background

2.1 Points in P1 × P1 and their Ideals

For the convenience of the reader, we begin with a review of multi-graded ideals
arising in the context of products of projective space.

The multi-homogeneous coordinate ring k[Pn1 × · · · × Pnt ] of Pn1 × · · · × Pnt is

k[x1,0, . . . , x1,n1 , . . . , xt,0, . . . , xt,nt ].

It has a multi-grading given by

deg(xi, j) = ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nt ,

where the 1 is in the i-th position. The ring k[Pn1 × · · · × Pnt ] is a di-
rect sum of its multi-homogeneous components k[Pn1 × · · · × Pnt ](a1,...,at ), where
k[Pn1 × · · · × Pnt ](a1,...,at ) is the k-vector space span of the monomials of multi-
degree (a1, . . . , at ). An ideal I ⊆ k[Pn1 × · · · ×Pnt ] is multi-homogeneous if it is the
direct sum of its multi-homogeneous components (i.e., of k[Pn1×· · ·×Pnt ](a1,...,at )∩
I). Note that a multi-homogeneous ideal I can be regarded as a homogeneous ideal
in k[PN ], N = n1 + · · · + nt + t − 1, where a monomial of multi-degree (a1, . . . , at )
has degree d = a1 + · · · + at and the homogeneous component of I of degree d is
Id =

⊕∑
i ai=d I(a1,...,at ). However, when t > 1, a multi-homogeneous ideal I when

regarded as being homogeneous never defines a 0-dimensional subscheme of PN ,
even if I defines a zero-dimensional subscheme of Pn1 × · · · × Pnt . For example,
the multi-homogeneous ideal I of a finite set of points in P1 × P1 defines a finite set
of lines in P3, which are skew (and thus not a cone) if no two of the points lie on
the same horizontal or vertical rule of P1 × P1 (see Remark 2.1.1), and not a com-
plete intersection unless the points comprise a rectangular array in P1 × P1 (see the
paragraph right before Proposition 2.1.2).

Let R = k[P1 × P1], where we will use the standard multi-grading for R. That
is, R = k[x0, x1, y0, y1], with deg xi = (1, 0) and deg yi = (0, 1). Let I ⊆ R be a
multi-homogeneous ideal (because R is bigraded, we sometimes say I is bihomoge-
neous). Then I has a multi-homogeneous primary decomposition, i.e., a primary
decomposition I =

⋂
i Qi , where each

√
Qi is a multi-homogeneous prime ideal,

and Qi is multi-homogeneous and
√

Qi-primary [34, Theorem 9, p. 153]. We define
the m-th symbolic power of I to be the ideal I(m) =

⋂
jPi j , where Im =

⋂
i Pi is a

multi-homogeneous primary decomposition, and the intersection
⋂

jPi j is over all
components Pi such that

√
Pi is contained in an associated prime of I. In particular,

we see that I(1) = I and that Im ⊆ I(m).
Of particular interest to this paper is the case where I is the ideal of a set Z of

s distinct reduced points of P1 × P1, i.e., Z = {P1, . . . , Ps}. A point has the form
P = [a0 :a1] × [b0 :b1] ∈ P1 × P1, and its defining ideal I(P) in R is a prime ideal
of the form I(P) = (F,G), where deg F = (1, 0) and deg G = (0, 1). The ideal I(Z)
is then given by I(Z) =

⋂s
i=1 I(Pi). Furthermore, the m-th symbolic power of I(Z)

has the form I(Z)(m) =
⋂s

i=1 I(Pi)m. The scheme defined by I(Z)(m) is sometimes
referred to as a fat point scheme and denoted mP1 + · · · + mPs.
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Remark 2.1.1 Note that while the gradings on the rings k[P1 × P1] and k[P3]
are different (and hence k[P1 × P1] and k[P3] are not isomorphic as graded rings),
the underlying rings are the same; in particular, k[P1 × P1] = k[x0, x1, y0, y1] =
k[P3]. A given ideal in this common underlying ring can define non-isomorphic
subschemes depending on which graded structure we use. For example, the irrelevant
ideals (x0, x1) and (y0, y1) corresponding to the two factors of P1 in P1 × P1 define
a pair of skew lines L1

∼= P1 and L2
∼= P1 in P3, where I(L1) = (y0, y1) and hence

k[L1] = k[x0, x1], and similarly I(L2) = (x0, x1) and k[L2] = k[y0, y1]. Thus the
point P = [a0 :a1]×[b0 :b1] ∈ P1×P1 corresponds to a pair of points P1 = [a0 :a1] ∈
L1 and P2 = [b0 :b1] ∈ L2, and the ideal I(P) defines the line LP in P3 through the
points P1 and P2. Given distinct points P,Q ∈ P1 × P1, the lines LP and LQ meet if
and only if either P1 = Q1 or P2 = Q2, i.e., if and only if P and Q are both on the
same horizontal rule or both on the same vertical rule of P1 × P1.

Given any single line L ⊂ P3, lines L1
∼= P1 and L2

∼= P1 in P3 can be found
such that I(L) is the ideal of a single point in P1 × P1. Likewise, for any two lines
L, L ′ ⊂ P3, lines L1

∼= P1 and L2
∼= P1 in P3 can be found such that I(L ∪ L ′) is the

ideal of two points in P1 ×P1, and if the lines are general so are the points. Consider
three general lines L, L ′, L ′ ′. There is a unique smooth quadric Q (isomorphic to
P1 × P1) containing them. The lines L, L ′, L ′ ′ lie in a single ruling of Q, and we can
take L1 and L2 to be any two lines in the other ruling. With respect to L1 and L2,
I(L∪ L ′ ∪ L ′ ′) defines 3 general points of P1×P1. (Note that the P1×P1 defined by
L1 and L2 is not canonically the quadric Q itself, although Q is isomorphic to P1×P1

abstractly.) Finally, consider four general lines L, L ′, L ′ ′, L ′ ′ ′. Then L, L ′, and L ′ ′

determine Q and lie in a giving ruling on Q, and L ′ ′ ′ meets Q in two points. We
take L1 and L2 to be the lines of the other ruling through these two points. Now with
respect to L1 and L2, I(L ∪ L ′ ∪ L ′ ′ ∪ L ′ ′ ′) defines four general points in P1 × P1.

One situation for which I(m) = Im for all m occurs is the case where I is a complete
intersection, meaning that I has a set of t generators, where t is the codimension. For
example, suppose I is the ideal of a finite set Z of points of P1×· · ·×P1 = (P1)t = Y .
Then codimY (Z) = t , so I is a complete intersection if it is generated by t elements of
I. As noted in [12, Remark 1.3] for t = 2 (but which extends naturally to all t ≥ 2),
an ideal I of a finite set of points Z ⊂ Y is a complete intersection if and only if Z is a
rectangular array of points (i.e., Z = X1 × · · · × Xt for finite sets Xi ⊂ P1).

Proposition 2.1.2 Let X1, . . . ,Xt ⊆ P1 be finite sets of points, and let I be the ideal of
Z = X1 × X2 × · · · × Xt ⊆ P1 × · · · × P1. Then Im = I(m) for all m ≥ 1.

Proof Under these hypotheses, I = I(X1)R+ · · ·+I(Xt )R with R = k[P1 × · · · × P1]
and I(Xi) is the defining ideal of Xi in k[P1]. The ideal I is then a complete inter-
section. For any complete intersection I, we have Im = I(m) for all m ≥ 1 (see
[34, Lemma 5, Appendix 6]).

2.2 Hilbert Functions and Points in Multiplicity 1 Generic Position

Let Z ⊆ PN be the subscheme defined by a homogeneous ideal I in k[PN ]. We recall
that the Hilbert function HZ of Z is defined to be HZ(t) = dim k[PN ]t−dim It , where
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for a graded module M, Mt denotes the homogeneous piece of degree t . Similarly,
recall that the Hilbert function HZ of a subscheme Z ⊆ P1 × P1 is defined to be
HZ(i, j) = dim k[P1 × P1](i, j) − dim I(Z)(i, j).

Consider a finite set of points Z ⊆ P1 × P1 (regarded as a reduced subscheme).
We will say Z has generic Hilbert function if

HZ(i, j) = min
{

dim R(i, j), |Z|
}

= min
{

(i + 1)( j + 1), |Z|
}
.

It is well known that points with generic Hilbert function are general; i.e, for each
s ≥ 1, there is a non-empty open subset of Us ⊂ (P1 × P1)s consisting of distinct
ordered sets of s points of P1 × P1 with generic Hilbert function (see, for example,
[30]). In particular, subschemes Z = P1 + · · · + Ps consisting of s distinct points for
which every subset of the points has generic Hilbert function are general.

We will say that a set of s distinct points P1, . . . , Ps are multiplicity 1 generic or are
in multiplicity 1 generic position if for every subscheme Z = m1P1 + · · · + msPs with
0 ≤ mi ≤ 1, Z has generic Hilbert function. Thus being multiplicity 1 generic holds
for general points. Note that points P1, . . . , Ps ∈ P1 × P1 being generic is not the
same as being multiplicity 1 generic. To explain, let K ⊆ k be a subfield. Then there
is a natural inclusion P1

K ⊆ P1
k, and we say that P1, . . . , Ps ∈ P1

k × P1
k = (P1 × P1)k

are generic if Pi ∈ (P1×P1)ki \(P1×P1)ki−1 for each i, where k0 ( k1 ( · · · ( ks = k

is a tower of algebraically closed fields such that k0 is the algebraic closure k ′ of the
prime field k ′ of k. Thus for example, if C ⊂ P2 is an irreducible reduced cubic
with a double point, and if we pick points p1, . . . , p8 ∈ C such that no three are
collinear and no six lie on a conic but such that p1 is the double point, then the
points are multiplicity 1 generic but not generic. On the other hand, s generic points
are multiplicity 1 generic.

Example 2.2.1 Any single point of P1×P1 is in multiplicity 1 generic position. Two
points of P1×P1 are in multiplicity 1 generic position if and only if they are not both
on the same horizontal or vertical rule of P1 × P1. As a consequence, if s ≥ 3 points
are in multiplicity 1 generic position, then no two of them lie on the same horizontal
or vertical rule. For s = 3, the converse is also true (since any such three points are
equivalent under an isomorphism of P1 × P1), but for s ≥ 4 points the condition
that no two lie on the same horizontal or vertical rule is not sufficient to ensure that
the points are in multiplicity 1 generic position. (This is because given three points
in multiplicity 1 generic position, there is, up to multiplication by scalars, a unique
form of degree (1, 1) that vanishes on the three points. In order for four points to be
in multiplicity 1 generic position, the fourth point cannot be in the zero-locus of the
(1, 1)-form associated with the other three points.)

2.3 Divisors on Blow Ups and a Connection to P2

Given a finite set of distinct points P1, . . . , Ps ∈ P1 × P1, let π : X → P1 × P1 be
the birational morphism obtained by blowing up the points Pi . Let Cl(X) be the
divisor class group of X. Let H and V be the pullback to X of general members of the
rulings on P1 × P1 (horizontal and vertical, respectively), and for each point Pi let
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Ei be the exceptional divisor of the blow up of Pi . Every divisor is linearly equivalent
to a unique divisor of the form aH + bV − m1E1 − · · · − msEs. Because of this, we
can regard Cl(X) as the free abelian group on the set {H,V, E1, . . . , Es}. This basis is
called an exceptional configuration. In particular, when we have a divisor of the form
aH + bV − m1E1 − · · · − msEs, we will leave it to context whether we really mean
a divisor or its linear equivalence class in Cl(X). We also recall that the intersection
form on Cl(X) is determined by H · Ei = V · Ei = H2 = V 2 = Ei · E j = 0 for all
i 6= j, and−H ·V = E2

i = −1 for i > 0.
Given a divisor F on X, it will be convenient to write hi(X, F) in place of

hi(X,OX(F)), and we will refer to a divisor class as being effective if it is the class
of an effective divisor. We also sometimes merely say that a divisor is effective when
we mean only that it is linearly equivalent to an effective divisor. (When we mean
that a divisor is actually effective and not just linearly equivalent to an effective divi-
sor, we will say the divisor is strictly effective.) We denote the subsemigroup of classes
of effective divisors by EFF(X) ⊆ Cl(X). We recall that a divisor or divisor class D
is nef if D · C ≥ 0 for every effective divisor C , and we denote the subsemigroup of
classes of nef divisors by NEF(X) ⊆ Cl(X).

Problems involving fat points Z =
∑

i miPi with support at distinct points
Pi ∈ P1 × P1 can be translated into problems involving divisors on X. Given
I = I(Z) and (i, j), then, as a vector space, I(Z)(i, j) can be identified with
H0(X, iH + jV −

∑
i miEi), which itself can be regarded as a vector subspace of the

space of sections H0(P1 × P1,OP1×P1 (i, j)). Thus given (i, j), it is convenient to de-
fine the divisor F(Z, (i, j)) = iH + jV −

∑
i miEi , in which case we have, under the

identifications above,

I(Z) =
⊕
i, j

I(Z)(i, j) =
⊕
i, j

H0
(

X, F
(

Z, (i, j)
))
.

Remark 2.3.1 It can be useful to reinterpret problems involving points of P1 × P1

as problems involving points of P2. Let Y be a finite set of points p1, . . . , ps of P2. Let
Z be the image of Y under the birational transformation from P2 to P1×P1 given by
blowing up two points ps+1, ps+2 ∈ P2 such that none of the points pi , i < s + 1 is on
the line A through ps+1 and ps+2 and blowing down the proper transform E of A. The
divisors L, E1, . . . , Es+2, where L is a line and Ei is the exceptional curve obtained by
blowing up the point pi , give a basis of the divisor class group Cl(X) for the surface X
obtained by blowing up the points pi , also called an exceptional configuration. The
birational transformation from P2 to P1 × P1 described above induces a birational
morphism X → P1×P1 given by contracting E1, . . . , Es, L−Es+1−Es+2. We also have
an exceptional configuration on X coming from blowing up points P0, P1, . . . , Ps ∈
P1×P1 to obtain X; this basis is given by H = L−Es+1,V = L−Es+2, E1, . . . , Es, E =
L− Es+1 − Es+2, where H and V give the rulings on P1 × P1. We can identify Pi with
pi for i = 1, . . . , s; P0 is the point obtained by contracting the proper transform of
the line through ps+1 and ps+2. Thus

H0
(

X, aH+bV−m(E1+· · ·+Es)
)

= H0
(

X, (a+b)L−m(E1+· · ·+Es)−aEs+1−bEs+2

)
.

If I is the ideal of the fat points mP1 + · · ·+ mPs, we note that α(I(m)) is then the least
t such that t = a + b and h0(X, (a + b)L−m(E1 + · · · + Es)− aEs+1 − bEs+2) > 0.
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Alternatively, suppose P1, . . . , Ps ∈ P1×P1 are such that no two of the points Pi lie
on the same horizontal or vertical rule. Let X → P1×P1 be the birational morphism
obtained by blowing up the points Pi . Then there is also a birational morphism
X → P2. If H,V, E1, . . . , Es is the exceptional configuration for X → P1 × P1,
the exceptional configuration for X → P2 can be taken to be L = H + V − Es,
E ′1 = E1, . . . , E ′s−1 = Es−1, E ′s = H − Es, and E ′s+1 = V − Es.

Lemma 2.3.2 Let P1, . . . , Ps ∈ P1 × P1 be distinct points and let X → P1 × P1 be
the birational morphism obtained by blowing these points up. Then a divisor C ⊂ X is
a prime divisor with C2 < 0 if and only if C2 = C · KX = −1 if either s ≤ 8 and the
points are generic or s ≤ 7 and the points are general. For s ≤ 7 general points, then in
terms of the exceptional configuration for X → P1 × P1 the classes of these curves C are
(up to permutations of the Ei and swapping H and V ) precisely the following:

E1,

H − E1,

H + V − E1 − E2 − E3,

2H + V − E1 − · · · − E5,

2H + 2V − 2E1 − E2 − · · · − E6,

3H + V − E1 − · · · − E7,

3H + 2V − 2E1 − 2E2 − E3 − · · · − E7,

3H + 3V − 2E1 − · · · − 2E4 − E5 − E6 − E7,

4H + 3V − 2E1 − · · · − 2E6 − E7,

4H + 4V − 3E1 − 2E2 − · · · − 2E7.

Proof Since s ≤ 8 and the points are either general or generic, we can regard X → P2

as being the blow up of s + 1 ≤ 9 points p1, . . . , ps+1 in P2, and that there is a smooth
cubic curve D ⊂ P2 passing through these points. Thus up to linear equivalence we
have D = −KX = 3L − E ′1 − · · · − E ′s with respect to the exceptional configuration
L, E ′1, . . . , E

′
s+1 of the morphism X → P2. Since D is irreducible with D2 ≥ 0, D

is nef, so for any prime divisor C we have D · C ≥ 0. By the adjunction formula
C2−C ·D = 2pC −2, we see that C2 ≥ −2, with C ·D = 1 if C2 = −1 and C ·D = 0
if C2 = −2.

There are only finitely many possible classes of reduced irreducible curves C with
C · D = 0 when s ≤ 7 (see [10, Proposition 4.1]). For each of these classes, C is not
effective if the points pi are general, so in fact no such C is effective if s ≤ 7 and the
points pi are general. (For example, (L− E ′1 − E ′2 − E ′3) · D = 0; if L− E ′1 − E ′2 − E ′3
is the class of a strictly effective divisor C , then the points p1, p2, p3 are collinear and
hence not general.) For s = 8 there are infinitely many possible such classes, so it is
not enough to assume that the points are general, but if the points are generic, then
there are no prime divisors C 6= D with C · D = 0 (since C · D = 0 implies the
coordinates of the points satisfy an algebraic relation coming from the group law on
D). Thus the only prime divisors C with C2 < 0 are those that satisfy C2 = C · KX =
−1. Conversely, if C is a divisor with C2 = C · KX = −1, then by Serre duality
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h2(X,C) = h0(X,−D−C) but h0(X,−D−C) = 0, since D · (−D−C) < 0. Now by
Riemann–Roch for surfaces we have h0(X,C)− h1(X,C) = 1 + (C2 + D ·C)/2 = 1,
so C is effective. Up to linear equivalence, if F is a prime divisor with F · D = 0, then
F = D (otherwise, as above, we would get an algebraic condition on the points pi),
and so D2 = 0 (hence s = 8). Now if C is not a prime divisor, then from D ·C = 1 it
follows that C = G + rD with r > 0 and D2 = 0, where G is the unique component
of C with D ·G = 1. But then G2 = (C − rD)2 = −1− 2r < −1, contrary to what is
proved above.

Finally, suppose s ≤ 7. Let C be a prime divisor on X with C2 = C · KX = −1.
Let Y be the surface obtained by blowing up an arbitrary point Ps+1 ∈ P1 × P1.
Then, denoting the pullback of C to Y also by C , we have (C − Es+1) · KY = 0 and
(C−Es+1)2 = −2. It is not hard to check that the subgroup K⊥Y of classes orthogonal
to KY is, for s < 7, negative definite, and, if s = 7, negative semi-definite, with the
only classes F having F · KY = F2 = 0 being the multiples of KY . Thus for s < 7
it follows by negative definiteness that there are only finitely many classes C with
(C − Es+1) · KY = 0 and (C − Es+1)2 = −2, and it is not hard to find them all. For
s = 7, the quotient K⊥Y /〈KY 〉 is negative definite, so modulo KY there are only finitely
many classes C with (C − Es+1) · KY = 0 and (C − Es+1)2 = −2. But C must satisfy
C · KY = −1 and C2 = −1, so there is at most one such representative in each coset
of K⊥Y /〈KY 〉. Again it is not hard to find all C .

Note that a prime divisor C with C2 = C · KX = −1 is called an exceptional curve.
Exceptional curves are smooth rational curves.

Lemma 2.3.3 Let P1, . . . , Ps ∈ P1 × P1 be distinct points, let I ⊂ k[P1 × P1]
be the ideal generated by all bi-homogeneous forms that vanish at all of the points
Pi . Let X be the blow up of these s points of P1 × P1, with exceptional configuration
H,V, E1, . . . , Es. If for some λ and m we have an effective divisor C = λ(H + V ) −
m(E1 + · · · + Es), then γ(I) ≤ 2λ

m . If moreover for some t and r we have a nef divisor
D = t(H + V )− r(E1 + · · · + Es) with C · D = 0, then

γ(I) =
2λ

m
=

sr

t
.

Proof If C is effective, so is lC and thus α(I(lm)) ≤ 2λl for all l ≥ 1, and therefore

α(I(lm))

lm
≤ 2λl

lm
=

2λ

m
.

Now assume that D is nef. From C · D = 0 we get

2λ

m
=

sr

t
.

Now, given α(I( j)), we can find a ≥ 0 and b ≥ 0 with α(I( j)) = a + b such that
(I( j))(a,b) 6= 0. Moreover, C ′ = aH + bV − j(E1 + · · · + Es) is effective, so C ′ · D =

t(a + b)− jrs ≥ 0; hence α(I( j))
j ≥ rs

t , and therefore

rs

t
≤ α(I(lm))

lm
≤ 2λl

lm
=

rs

t
.
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Taking the limit as l→∞ gives the conclusion.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1 Let X be the blow up of P1 × P1 at the s points with excep-
tional configuration H,V, E1, . . . , Es.

The case s = 1 follows from Proposition 2.1.2, since in this case α(I) = 1, so
consider s = 2. Then C = D = H + V − E1 − E2 is effective (since C = (H − E1) +
(V − E2) is a sum of effective divisors) and nef (since D = (H − E1) + (V − E2) is a
sum of prime divisors, each of which D meets non-negatively). Since C · D = 0, we
have γ(I) = 2 by Lemma 2.3.3.

Consider s = 3. Then C = H + V − E1 − E2 − E3 is effective (being exceptional,
by Lemma 2.3.2), and D = 3H + 3V − 2(E1 + E2 + E3) = H + V + 2C is nef with
C · D = 0 so γ(I) = 2.

Consider s = 4. Then C = 4(H + V ) − 3(E1 + E2 + E3 + E4) = C1 +
C2 + C3 + C4 is effective (being the sum of the four exceptional curves Ci , where
Ci = (H + V − E1 − E2 − E3 − E4) + Ei) and D = 3H + 3V − 2(E1 + E2 + E3 + E4) =
2C4 + (H − E4) + (V − E4) is nef with C · D = 0 so γ(I) = 8/3.

Consider s = 5. Then

C = 3(H +V )−2(E1 + · · ·+E5) = (2H +V −E1−· · ·−E5)+(H +2V −E1−· · ·−E5)

is effective (being the sum of two exceptional curves), and D = 10(H + V )− 6(E1 +
· · ·+E5) = D1 + · · ·+D5 is nef, where Di = 2H +2V −(E1 + · · ·+E5)−Ei (and where
we see D is nef since each Di is a sum of two exceptionals, each of which D meets non-
negatively; for example, D1 = (H + V − E1 − E2 − E3) + (H + V − E1 − E4 − E5)).
Since C · D = 0, we have γ(I) = 3.

Consider s = 6. Then C = 12(H +V )−7(E1 + · · ·+ E6) = C1 + · · ·+C6 is effective
(since each Ci = 2(H +V )− (E1 + · · ·+ E6)−Ei is exceptional), and D = 7(H +V )−
4(E1 +· · ·+E6) = (4H+3V−2(E1 +· · ·+E6))+(3H+4V−2(E1 +· · ·+E6)) is nef (since
4H+3V−2(E1+· · ·+E6) = (2H+V−(E1+· · ·+E5))+(2(H+V )−(E1+· · ·+E5)−2E6)
is a sum of two exceptional curves, and likewise for (3H + 4V − 2(E1 + · · · + E6)),
each of which D meets non-negatively). Since C · D = 0, we have γ(I) = 24/7.

Consider s = 7. Then C = 28(H + V ) − 15(E1 + · · · + E7) = C1 + · · · + C7

is effective (since each Ci = 4(H + V ) − 2(E1 + · · · + E7) − Ei is exceptional), and
D = 15(H + V ) − 8(E1 + · · · + E7) is nef (since 4D = 2C + (3H + V − (E1 + · · · +
E7)) + (H + 3V − (E1 + · · · + E7)) is a sum of exceptionals, each of which D meets
non-negatively). Since C · D = 0, we have γ(I) = 56/15.

Consider s = 8. In this case C = D = 2(H + V ) − (E1 + · · · + E8) = −KX is
effective, since 8 points impose at most 8 conditions on the 9-dimensional space of
forms of degree (2, 2). Since the blow up X of P1 × P1 at 8 general points is a blow
up of P2 at 9 general points, and since there is an irreducible cubic through 9 general
points of P2, we see that−KX is nef. Since C · D = 0, we have γ(I) = 4.

Now assume s ≥ 9. Since 2(H + V ) − (E1 + · · · + E8) is nef from the preceding
case, it follows whenever aH + bV −m(E1 + · · · + Es) is effective that 2(a + b) ≥ 8m
and hence that α(I(m)) ≥ 4m, so γ(I) ≥ 4. Next we obtain bounds depending on s.
Let C = d(H + V )−m(E1 + · · · + Es). If C2 > 0, then tC is effective for t � 0, so by
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Lemma 2.3.3 we have γ(I) ≤ 2d/m. It follows that γ(I) ≤
√

2s. It is easy to compute
α(I) for any given s. In fact, since the points are general, they impose independent
conditions on forms of every bi-degree (i, j); i.e., there are forms of bi-degree (i, j)
vanishing at the s points if and only if (i + 1)( j + 1) > s. But for a given degree
t = i + j, the maximum value of (i + 1)( j + 1) occurs when i = j, and so there are
no forms in I of total degree t if (t/2 + 1)2 ≤ s. But (t/2 + 1)2 ≤ s is equivalent to
t ≤ 2(

√
s− 1). Thus α(I) > 2(

√
s− 1), hence we get

√
s− 1 < α(I)/2 ≤ γ(I) from

the bound given in [16, Section 2].

3 Additional Results for General Points of P1 × P1

In this section, we consider the problem of whether Im = I(m) for all m when I is the
ideal of s general points of P1 × P1. For s = 1, 2, 3, 5, we verify Im = I(m) for all m.
For s ≥ 6, we prove that I2 6= I(2). For s = 4, computer calculations suggest that
I2 = I(2); we show that I3 6= I(3).

3.1 Equality of I(m) and Im

We first consider the case of a set of two points Z ⊆ P1×P1 in multiplicity 1 generic
position. For this case, the problem reduces to a question of monomial ideals.

Theorem 3.1.1 Let I = I(Z), where Z ⊆ P1×P1 consists of two points in multiplicity
1 generic position. Then I(m) = Im for all m ≥ 1.

Proof Let Z = P1 + P2. We can assume, after a change of coordinates, that I(P1) =
(x0, y0) and I(P2) = (x1, y1). We then apply [16, Lemma 4.1] for the conclusion.

We now consider three points in multiplicity 1 generic position.

Theorem 3.1.2 Let I = I(Z), where Z ⊆ P1 × P1 consists of three points in multi-
plicity 1 generic position. Then I(m) = Im for all m ≥ 1.

Proof For specificity, say that the three points are Pi = Pi1 × Pi2, i = 1, 2, 3, for
points Pi j ∈ P1 and that k[P1 × P1] = k[a, b, c, d] = k[a, b] ⊗k k[c, d] = k[P1] ⊗
k[P1]. Up to change of coordinates, we may as well assume that P11 = P12 = [0 :1],
P21 = P22 = [1 :1], and P31 = P32 = [1 :0].

Since the points are multiplicity 1 generic, we know dim I(1,1) = 1 , so there is
(up to scalar multiples) a unique form F of degree (1, 1) in I. We will show that
I(m) ⊆ I(m−1)I+FI(m−1) for each m ≥ 2. Formally, we can write the right-hand side as
I(m−1)(I+F). Iterating m−1 times gives I(m) ⊆ I(I+F)m−1 = Im+FIm−1+· · ·+Fm−1I.
Since F ∈ I, we see that FiIm−i ⊆ Im, hence I(m) ⊆ Im. But Im ⊆ I(m), so we have
I(m) = Im.

We now show I(m) ⊆ I(m−1)I + FI(m−1). This is clear if m = 1, so assume that
m ≥ 2. We will consider (I(m))(i, j) for various cases. If (I(m))(i, j) = 0, then clearly
I(m) ⊆ I(m−1)I + FI(m−1), so we may assume that (I(m))(i, j) 6= 0.

If i + j < 3m, then apply Bézout’s theorem: for any element G ∈ (I(m))(i, j) the sum
of the intersection multiplicities of F with G over all points P ∈ P1×P1 is at least 3m,
since G vanishes at each point Pi with order at least m while F vanishes with order 1,

https://doi.org/10.4153/CJM-2012-045-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-045-3


Symbolic Powers and Regular Powers 833

so summing over the three points gives at least 3m. But G has degree (i, j) and F has
degree (1, 1), so at most i + j common zeros are possible unless F divides G. Since
i + j < 3m, we see that F divides G, say G = FH. Then H has degree (i − 1, j − 1)
and vanishes at least m − 1 times at each of the three points (since G vanishes at
least m times and F vanishes once at each point). Thus H ∈ (I(m−1))(i−1, j−1), so
(I(m))(i, j) ⊆ F(I(m−1))(i−1, j−1) ⊂ I(m−1)I + FI(m−1).

Hereafter assume that i + j ≥ 3m. If j = 0, then (I(m))(i, j) is the space of poly-
nomials in a and b of degree (i, 0) divisible by ambm(a − b)m. Thus (I(m))(i, j) =
(I(3,0))mI(i−3m,0), hence (I(m))(i, j) ⊆ Im ⊆ I(m−1)I. Similarly, if i = 0, swapping c and
d for a and b, we again have (I(m))(i, j) ⊆ Im ⊆ I(m−1)I.

Now assume i > 0 and j > 0, in addition to i + j ≥ 3m. The cases i ≥ j and j ≥ i
are symmetric, so assume i ≥ j. We work on the surface X obtained by blowing up
the points Pi . We have the birational morphism π : X → P1 × P1 with exceptional
configuration H,V, E1, E2, E3, with respect to which we can identify (I(m))(i, j) with
H0(X, iH + jV − (m− 1)E), where E = E1 + E2 + E3.

If 1 ≤ j < m, then we can write iH + jV −mE = (i−3m + j)H + j(2H +V −E) +
(m− j)(3H−E). Note that 3H−E = (H−E1)+(H−E2)+(H−E3) is a sum of three
disjoint exceptional curves, disjoint also from (i−3m+ j)H and j(2H +V −E). Thus
(i− 3m + j)H + j(2H +V − E) is the nef part (with |(i− 3m + j)H + j(2H +V − E)|
non-empty and fixed component free) and (m− j)(3H−E) is the negative (and fixed)
part of a Zariski decomposition of iH + jV − mE. The unique element of |3H − E|
corresponds to an element Q ∈ I(3,0), and since m− j > 0 and |3H − E| is the fixed
part of |iH + jV −mE|, Q is a factor of every element of (I(m))(i, j). Since Q vanishes
with order 1 at each point P1, P2, P3, we have (I(m))(i, j) = Q(I(m−1))(i−3, j) ⊂ I(m−1)I,
as we wanted to show.

So now we may assume that i ≥ j ≥ m > 1 and i + j ≥ 3m. We will show that
under multiplication we have a surjection µ : (I(m−1))(i−2, j−1)⊗k (I)(2,1) → (I(m))(i, j)

and hence (I(m))(i, j) ⊂ I(m−1)I. But surjectivity of µ is equivalent to surjectivity of
the corresponding map

λ : H0
(

X, (i−2)H+( j−1)V−(m−1)E
)
⊗H0(X, 2H+V−E)→ H0(X, iH+ jV−mE).

Under our assumptions, we have (i−m) + ( j −m) ≥ m and i−m ≥ j −m ≥ 0,
so we can pick integers 0 ≤ s ≤ r ≤ i −m and s ≤ j −m such that r + s = m. Thus

iH + jV −mE = r(2H + V − E) + s(H + 2V − E) + (i −m− r)H + ( j −m− s)V,

and moreover r ≥ 1 (since r ≥ m/2 > 0). Note also that |2H + V − E| is non-
empty and fixed component free (since we can write 2H + V − E as a sum of three
exceptional curves (H−Eu)+(H−Ev)+(V−Ew) in three different ways using various
permutations of {u, v,w} = {1, 2, 3}, showing that none of the curves occurring as
summands is a fixed component), and likewise for H + 2V − E. Since |2H + V − E|,
|H + 2V − E|, |H| and |V | are non-empty and fixed component free, 2H + V − E,
H + 2V − E, H and V are nef. Since r ≥ 1 and m ≥ 2,∣∣ (i − 2)H + ( j − 1)V − (m− 1)E

∣∣ =∣∣ (r − 1)(2H + V − E) + s(H + 2V − E) + (i −m− r)H + ( j −m− s)V
∣∣
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is also non-empty and fixed component free, so (i − 2)H + ( j − 1)V − (m − 1)E is
nef.

As discussed in Remark 2.3.1, we have a birational morphism p : X → P2 with
exceptional configuration L ′ = H + V − E3, E ′1 = E1, E ′2 = E2, E ′3 = H − E3,
and E ′4 = V − E3, so H = L ′ − E ′4, V = L ′ − E ′3, E1 = E ′1, E2 = E ′2, and E3 =
L ′ − E ′3 − E ′4. Let p1, . . . , p4 ∈ P2 be the points such that E ′l = p−1(pl). Because
the points P1, P2, P3 are multiplicity 1 generic, no three of the points pl are collinear.
Thus the proper transform E ′uv of the line through the points pu and pv for u 6= v is
an exceptional curve. By contracting E ′14, E ′24, E ′12 and E ′3 we get another birational
morphism X → P2, obtained by blowing up four distinct general points p ′ ′u , this one
having exceptional configuration L ′ ′ = 2L ′ − E ′1 − E ′2 − E ′4, E ′ ′1 = E ′14, E ′ ′2 = E ′24,
E ′ ′3 = E ′34, and E ′ ′4 = E ′3. Note that 2H + V − E = 2L ′ − E ′1 − E ′2 − E ′4 = L ′ ′.

Thus λ can be written as λ : H0(X,G) ⊗ H0(X, L ′ ′) → H0(X, L ′ ′ + G), where
G = (i− 2)H + ( j − 1)V − (m− 1)E is nef. Since X is the blow up of four points p ′ ′u
and therefore |2L ′ ′ − E ′ ′1 − E ′ ′2 − E ′ ′3 − E ′ ′4 | 6= ∅, it follows by [2, Proposition 2.4]
that λ is surjective, as claimed.

Remark 3.1.3 Li and Swanson [24, Theorem 3.6] have given a criterion under
which a radical ideal I in a reduced Noetherian domain has the property that I(m) =
Im for all m ≥ 1. It is possible that the criterion applies for ideals of any sets of two,
three or five multiplicity 1 generic points of P1×P1 in any characteristic, but it seems
difficult to verify. However, for a specific choice of ground field and a specific choice
of points one can use Macaulay2 to check the criterion. I. Swanson, for example,
shared with us such a Macaulay2 script, which shows over Q that the ideal I of a re-
duced set of three points in multiplicity 1 generic position in P1×P1 does satisfy the
conditions of [24, Theorem 3.6], whence I(m) = Im for all m ≥ 1.

Let I be the ideal of five multiplicity 1 generic points P1, . . . , P5 ∈ P1 × P1. We
will show that I(m) = Im for all m ≥ 1. The basic argument is the same as we used for
the proof of Theorem 3.1.2, but it is now more complicated.

Theorem 3.1.4 Let I = I(Z) with Z ⊆ P1 × P1 be five multiplicity 1 generic points.
Then I(m) = Im for all m ≥ 1.

Proof We will show that (I(m))(i, j) ⊂ I(m−1)I for all i and j, and hence that I(m) ⊆ Im.
Since we know that Im ⊆ I(m), this shows equality. By symmetry, we may assume
i ≥ j. We also know that I(5,0) is 1-dimensional, whose single basis element is the
form G = H1 · · ·H5, where Hs is a form of bi-degree (1, 0) defining the horizontal
rule through the point Ps. Any form F ∈ (I(m))(i, j) restricts for each s to a form of
degree j on Hs, but with order of vanishing at least m. If j < m, then F must vanish
on the entire horizontal rule through each Ps, and hence each Hs divides F, so G
divides F. That is, if j < m, then (I(m))(i, j) = G(I(m−1))(i−5, j) ⊂ I(m−1)I.

We also know that I(2,1) is 1-dimensional, with basis a form D defining a smooth
rational curve C vanishing with order 1 at each point Ps. Likewise, if i + 2 j < 5m,
then any form F ∈ (I(m))(i, j) vanishes on C , and hence D divides F, so (I(m))(i, j) =
D(I(m−1))(i−2, j−1) ⊂ I(m−1)I.
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We may now assume that i ≥ j ≥ m ≥ 2 and i + 2 j ≥ 5m. This implies that
2i + j ≥ i + 2 j ≥ 5m, and it also implies that i + j > 3m. (To see the latter, given
m ≥ 2, consider the system of inequalities i ≥ j, j ≥ m, i + j ≤ 3m. The solution
set is a triangular region in the (i, j)-plane with vertices (3m/2, 3m/2), (m,m), and
(2m,m). Since each vertex has i + 2 j < 5m, we see that i ≥ j ≥ m ≥ 2 and
i + 2 j ≥ 5m imply i + j > 3m.)

There is a natural map

µ(i, j) :
(

I(m−1)
)

(i−3, j−1)
⊗ I(3,1) →

(
I(m)
)

(i, j)
.

Since Im(µ(i, j)) = (I(m−1))(i−3, j−1)I(3,1), to finish, it is enough to show that
(I(m))(i, j) ⊆ I(m−1)I whenever µ(i, j) is not surjective. We can identify (I(m))(i, j) with
H0(X,A), and I(3,1) with H0(X, L), where A = iH + jV −mE, L = 3H + V − E, and
E = E1 + · · · + E5 are divisors on the blow up X of P1 × P1 at the points P1, . . . , P5

with respect to the usual exceptional configuration H,V, E1, . . . , E5. Surjectivity of
µ(i, j) is equivalent to surjectivity of the map H0(X,A − L) ⊗ H0(X, L) → H0(X,A),
which we will also denote by µ(i, j).

Using Lemma 2.3.2, the inequalities i ≥ j ≥ m ≥ 2, i + 2 j ≥ 5m, 2i + j ≥ 5m,
and i + j > 3m show that A · B ≥ 0 for every exceptional curve B on X, and hence
A is effective and nef (since for a blow up X of P1 × P1 at five multiplicity 1 generic
points, and thus 6 general points of P2, using the results of [10] one checks that
the only prime divisors of negative self-intersection are the exceptional curves, but
any divisor meeting every exceptional curve non-negatively is effective and nef [10,
Proposition 4.1]).

Note that the exceptional configuration

L, E ′1 = H−E1, E
′
2 = H−E2, E

′
3 = H−E3, E

′
4 = H−E4, E

′
5 = H−E5, E

′
6 = 2H+V−E

corresponds to a birational morphism X → P2 obtained by blowing up 6 general
points of P2 and that L is the pullback of a line in P2. By [15], µ(i, j) always has
maximal rank. Determining whether µ(i, j) is surjective or injective is now purely
numerical, and by [9, Theorem 3.4], µ(i, j) is surjective if A − L is nef, unless either
A−L = 5L−2E ′1−· · ·−2E ′6 = H + 3V −E or A−L = t(−KX−E ′s ) for t > 0. Note
that−KX−E ′s = H +2V−E+Es for 1 ≤ s ≤ 5, while−KX−E ′6 = V . Since each term
Es of A − L has the same coefficient, A − L = t(−KX − E ′s ) is impossible for s 6= 6.
Thus µ(i, j) is surjective if A−L is nef, unless either A−L = H +3V −E or A−L = tV
for t > 0, i.e., unless either A = 4H + 4V − 2E or A = 3H + tV − E for t > 1. But
A = 3H + tV − E is not relevant, since we are interested in cases with m > 1. For the
case A = 4H +4V −2E = −2KX , we have surjectivity of H0(X,−KX)⊗2 → H0(X,A)
by [19, Proposition 3.1(a)]. Thus (I(2))(4,4) = (I(2,2))2 ⊂ I2.

So it now suffices to show that (I(m))(i, j) ⊆ I(m−1)I whenever A− L is not nef but
A is nef and m ≥ 2. First we must find all such A.

Either by hand or using software such as Normaliz [6], we can find generators
for the semigroup of all (i, j,m) such that i ≥ j ≥ m ≥ 0 and i + 2 j ≥ 5m.
The result is that every such (i, j,m) is a non-negative integer linear combination of
(1, 0, 0), (1, 1, 0), (2, 2, 1), (3, 1, 1), (4, 3, 2), and (5, 5, 3). So consider A = a(1, 0, 0)+
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b(1, 1, 0) + c(2, 2, 1) + d(3, 1, 1) + e(4, 3, 2) + f (5, 5, 3), where we use (i, j,m) as
shorthand for iH + jV −mE.

Note that A − L is nef for any A = a(1, 0, 0) + b(1, 1, 0) + c(2, 2, 1) + d(3, 1, 1) +
e(4, 3, 2) + f (5, 5, 3) with d > 0, since (3, 1, 1) = L. So we may assume that d = 0.
However, f (5H + 5V − 3E)− L = (t − 1)(5H + 5V − 3E) + 2(H + 2V − E), where
H+2V−E is an exceptional curve by Lemma 2.3.2 with (5H+5V−3E)·(H+2V−E) =
0, so A− L is effective but never nef for A = f (5H + 5V − 3E).

In contrast, (e(4H + 3V − 2E) − L) · (H + 2V − E) < 0 for e = 1, but for e > 1
we have e(4H + 3V − 2E)− L = (5H + 5V − 3E) + (e − 2)(4H + 3V − 2E), so, for
e > 0, A− L is not nef for A = e(4H + 3V − 2E) if and only if e = 1. In particular, if
e > 1, then A−L is nef for A = a(1, 0, 0)+b(1, 1, 0)+c(2, 2, 1)+e(4, 3, 2)+ f (5, 5, 3)
regardless of the values of a, b, c, and f . However,(

(4H + 3V − 2E) + f (5H + 5V − 3E)− L
)
· (H + 2V − E) < 0

for all f ≥ 0, A− L is never nef for A = (4H + 3V − 2E) + f (5H + 5V − 3E).
Similarly, for c ≥ 0, c(2H + 2V −E)−L is nef if and only if c > 1, and (2H + 2V −

E) + f (5H + 5V −3E)−L is never nef, but (2H + 2V −E) + (4H + 3V −2E)−L is nef.
Thus the only cases with A = c(2, 2, 1) + d(3, 1, 1) + e(4, 3, 2) + f (5, 5, 3) for which
A − L is not nef, but m ≥ 2 are: A = f (5, 5, 3), f ≥ 1 ; A = (4, 3, 2) + f (5, 5, 3),
f ≥ 0; and A = (2, 2, 1) + f (5, 5, 3), f ≥ 1.

The only other possible cases are obtained from these by adding on to one of these
multiples of either (1, 0, 0) or (1, 1, 0). But (A − L) + (1, 0, 0) for any of these A is
nef, so we do not get any additional cases by allowing a > 0 or b > 0. That is, we
must check that (I(m))(i, j) ⊆ I(m−1)I only when (i, j,m) is either (2, 2, 1) + f (5, 5, 3),
(4, 3, 2) + f (5, 5, 3), or f (5, 5, 3).

First, we show that (I(m))(i, j) ⊆ I(m−1)I holds for the cases f (5, 5, 3). Let F =
5H + 5V − 3E. The divisor E ′6 = 2H + V − E is linearly equivalent to the exceptional
curve that is the proper transform C ′ of the curve above denoted as C . Likewise,
H + 2V − E is linearly equivalent to an exceptional curve; denote this exceptional
curve by C ′ ′. Note that F = 2C ′ + (H + 3V − E) = 2C ′ ′ + (3H + V − E). Thus
(I(2,1))2I(1,3) ⊆ (I(3))(5,5) and (I(1,2))2I(3,1) ⊆ (I(3))(5,5), but

dim I(1,2) = dim I(2,1) = 1 and dim I(3,1) = dim I(1,3) = 3,

while dim(((I(2,1))2I(1,3)) ∩ ((I(1,2))2I(3,1))) = 0 since F − 2C ′ − 2C ′ ′ is not linearly
equivalent to an effective divisor. Thus

dim
((

(I(2,1))
2I(1,3)

)
+
(

(I(1,2))
2I(3,1)

))
= 6 = dim(I(3))(5,5),

hence (I(3))(5,5) ⊂ I3. Moreover, F = 5H + 5V − 3E is normally generated by [19,
Proposition 3.1(a)], which means that H0(X, F)⊗n → H0(X, nF) is surjective. Thus
(I(3 f ))(5 f ,5 f ) = ((I(3))(5,5)) f and hence (I(3 f ))(5 f ,5 f ) ⊂ (I3) f = I3 f , as we needed to
show.

Now consider (I(2))(4,3). We have I(1,2)I(3,1) ⊆ (I(2))(4,3) and I(2,1)I(2,2) ⊆ (I(2))(4,3),
but dim I(1,2)I(3,1) = 3, dim I(2,1)I(2,2) = dim I(2,2) = 4, and

dim
((

I(1,2)I(3,1)

)
∩
(

I(2,1)I(2,2)

))
= dim H0(X,H) = 2,
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so dim((I(1,2)I(3,1)) + (I(2,1)I(2,2))) = 4 + 3− 2 = 5 = dim(I(2))(4,3), hence (I(2))(4,3) =
((I(1,2)I(3,1)) + (I(2,1)I(2,2))) ⊂ I2, as we needed to show.

Note that 4H + 3V − 2E = 3L − E ′1 − · · · − E ′5. Since the points are general,
|3L− E ′1− · · · − E ′5| and hence |4H + 3V − 2E| contains the class of a smooth elliptic
curve, Q. Let F = 5H + 5V − 3E. Tensoring 0 → OX(−Q) → OX → OQ → 0 by
OX(Q + f F) and taking global sections gives

0→ H0(X, f F)→ H0(X,Q + f F)→ H0
(

Q,OQ(Q + f F)
)
→ 0.

Tensoring by H0(X, F) = ΓX(F) and applying the natural multiplication maps gives
the following commutative diagram (see [26], or [11, Lemma 2.3.1]):

0 → H0(X, f F)⊗ ΓX(F) → H0(X,Q + f F)⊗ ΓX(F) → H0(Q,OQ(Q + f F))⊗ ΓX(F) → 0
↓ ↓ ↓

0 → H0(X, ( f + 1)F) → H0(X,Q + ( f + 1)F) → H0(Q,OQ(Q + ( f + 1)F)) → 0

Since F−Q is linearly equivalent to an exceptional curve and hence h1(X, F−Q) =
0, the sequence 0→ OX(F−Q)→ OX(F)→ OQ(F)→ 0 is exact on global sections.
Thus the map H0(Q,OQ(Q+ f F))⊗ΓX(F)→ H0(Q,OQ(Q+( f +1)F)) has the same
image as H0(Q,OQ(Q + f F))⊗ ΓQ(F)→ H0(Q,OQ(Q + ( f + 1)F)), and the latter is
surjective by [26, Theorem 6] (or see [20, Proposition II.5(c)]). We saw above that F
is normally generated, and hence that the map H0(X, f F)⊗ΓX(F)→ H0(X, ( f +1)F)
is surjective. Now apply the snake lemma to the above diagram to conclude that
H0(X,Q + f F)⊗ ΓX(F)→ H0(X,Q + ( f + 1)F) is surjective. By induction, we have
surjectivity for all f ≥ 0 and hence

(I(2+3 f ))(4+5 f ,3+5 f ) = (I(2))(4,3)

(
(I(3))(5,5)

) f ⊂ I2I3 f = I2+3 f .

Finally we consider the case of (2, 2, 1) + f (5, 5, 3). The proof here is the same as
for (4, 3, 2) + f (5, 5, 3), except now Q is a smooth elliptic curve linearly equivalent
to −KX = 3L − E ′1 − · · · − E ′6, and F − Q is linearly equivalent to the sum C ′ + C ′ ′

of two disjoint exceptional curves, so as before we have h1(X, F − Q) = 0. Thus
(I(1+3 f ))(2+5 f ,2+5 f ) = (I)(2,2)((I(3))(5,5)) f ⊂ I1+3 f .

3.2 Non-equality of I(m) and Im

While computer calculations suggest that I(2) = I2 for the ideal I of four multiplicity
1 generic points in P1 × P1, it is not hard to see that I(3) 6= I3. This is because
α(I) = 3, so α(I3) = 9, but there is a unique curve of bi-degree (1, 1) through any
three of the four points (corresponding to the divisors H+V−E1−E2−E3−E4 +Ei in
Lemma 2.3.2), hence the sum of these four curves corresponds to a non-trivial form
in (I(3))(4,4). Thus α(I(3)) ≤ 8, so I(3) 6⊆ I3.

In fact, the case of four multiplicity 1 generic points is part of a much larger family,
namely a set Z of s points in multiplicity 1 generic position when s = t2 for some
integer t ≥ 2. For this family, we can, in a similar way, verify failures of containments
of certain symbolic powers of the ideal I(Z) of the points in various ordinary powers
of the ideal.
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Theorem 3.2.1 Let I = I(Z), where Z ⊆ P1 × P1 is a set of s = t2 points in
multiplicity 1 generic position with t ≥ 2. Then for all integers n ≥ 1,

I((s−1)(2t−1)n) 6⊆ I2s(t−1)n+1.

Proof We begin by showing that the symbolic power I((s−1)(2t−1)n) has a nonzero
element of bidegree ((t − 1)s(2t − 1)n, (t − 1)s(2t − 1)n). For each point Pi ∈ Z, let
Yi = Z \ {Pi}. Then Yi is a set of s − 1 points in multiplicity 1 generic position for
each i = 1, . . . , s, and hence

dim
(

I(Yi)(t−1,t−1)

)
= max

{
t2 − |Yi |, 0

}
= max

{
s− (s− 1), 0

}
= 1.

Thus, for each i = 1, . . . , s, there is a form Fi (unique up to scalar multiplication)
that vanishes at all of the points of Yi . Moreover, Fi does not vanish at Pi . Indeed,
if Fi(Pi) = 0, then Fi ∈ I(Z)(t−1,t−1), but I(Z)(t−1,t−1) = 0, since dim(I(t−1,t−1)) =
max{t2 − |Z|, 0} = 0.

Set F =
∏s

i=1 Fi . The form F has degree ((t − 1)s, (t − 1)s) and passes through all
the points of Z with multiplicity at least s− 1, so F ∈ I(s−1). Thus

F(2t−1)n ∈ (I(s−1))(2t−1)n ⊆ I((s−1)(2t−1)n)

and

deg F(2t−1)n =
(

(t − 1)s(2t − 1)n, (t − 1)s(2t − 1)n
)

for each n ≥ 1.
To show I((s−1)(2t−1)n) 6⊆ I2s(t−1)n+1, it is now enough to check that

(I2s(t−1)n+1)((t−1)s(2t−1)n,(t−1)s(2t−1)n) = 0.

Because the points of Z are in multiplicity 1 generic position, then for i + j = 2(t−1),
i, j ≥ 0, we have (i + 1)( j + 1) ≤ t2 = |Z|, so dim(I(i, j)) = 0. Thus, viewing I as a
singly graded ideal, we have α(I) ≥ 2t − 1, hence

α
(

I2s(t−1)n+1
)
≥
(

2s(t − 1)n + 1
)

(2t − 1) > 2s(t − 1)n(2t − 1)

and so (I2s(t−1)n+1)(s(t−1)n(2t−1),s(t−1)n(2t−1)) = 0.

We round out this section by comparing the symbolic squares and ordinary
squares of ideals of six or more points in multiplicity 1 generic position.

Proposition 3.2.2 Let I = I(Z) with Z ⊆ P1 × P1 be a set of 6 points in multiplicity
1 generic position. Then I2 6= I(2).

Proof Since 2Z imposes at most 6
(2+1

2

)
= 18 conditions on forms of bidegree (3, 4),

we see that dim((I(2))(3,4)) ≥ 2. Thus α(I(2)) ≤ 7, but, using the fact that I is multi-
plicity 1 generic, we compute that α(I) = 4 so α(I2) = 8, and hence I2 ( I(2).

To extend this result to 7 or more points, we require [31, Theorem 1]. We state
only the part we need.
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Lemma 3.2.3 Let Z ⊆ P1 × P1 be a set of s points in multiplicity 1 generic position,
with defining ideal I = I(Z). If (i, j) 6∈ {(2, s− 1), (s− 1, 2)}, then

dim(I(2))(i, j) = max
{

0, (i + 1)( j + 1)− 3s
}
.

We now proceed to the case of 7 or more points.

Theorem 3.2.4 Let I = I(Z) with Z ⊆ P1 × P1 be a set of s = |Z| ≥ 7 points in
multiplicity 1 generic position. Then I2 6= I(2).

Proof Let I = I(Z). To show that I2 6= I(2), we find a bidegree (i, j), where
(I2)(i, j) 6= (I(2))(i, j), which we verify by showing that the two graded pieces have
different dimensions.

We divide s by 2 and by 3 to write s as s = 2q1 + r1 and s = 3q2 + r2, where
0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 2. Because Z is in multiplicity 1 generic position,

HZ(1, q1) = min{2(q1 + 1), 2q1 + r1} = 2q1 + r1,

HZ(2, q2) = min{3(q2 + 1), 3q2 + r2} = 3q2 + r2.

It then follows from the Hilbert function that

dim(I(1,q1)) = 2(q1 + 1)−HZ(1, q1) = 2− r1

dim(I(2,q2)) = 3(q2 + 1)−HZ(2, q2) = 3− r2.

We will use this information, and Lemma 3.2.3 to compare the ideals I2 and I(2) in
bidegree (3, q1 + q2). We require two claims.

Claim 1 dim((I2)(3,q1+q2)) ≤ (2− r1)(3− r2).

Proof of Claim 1 We first note that

(I2)(3,q1+q2) =
∑

0≤a,b,c,d
a+c=3, b+d=q1+q2

I(a,b)I(c,d).

The claim will follow if we show that for (a, b) 6∈ {(1, q1), (2, q2)}, we have
I(a,b)I(c,d) = 0. This would then show that (I2)(3,q1+q2) = I(1,q1)I(2,q2), and thus

dim
(

(I2)(3,q1+q2)

)
≤ dim(I(1,q1)) dim(I(2,q2)) = (2− r1)(3− r2).

If a = 0, then I(a,b) = 0, since Z is in multiplicity 1 generic position and 0 ≤ b ≤
q1 + q2 ≤ s− 1. Likewise, I(c,d) = 0 if c = 0.

If a = 1 and b 6= q1, then there are two cases. If b < q1, then I(a,b) = 0, since
HZ(a, b) = min{(a+1)(b+1), 2q1 +r1} = (a+1)(b+1). On the other hand, if b > q1,
then I(c,d) = 0, since c = 2 and d = q1 +q2−b < q2, so (c+1)(d+1) ≤ 3q2 ≤ 3q2 +r2,
whence HZ(c, d) = (c + 1)(d + 1). Likewise, I(a,b)I(c,d) = 0 if c = 1 and d 6= q1.

Finally, if a ≥ 2, then c ≤ 1, so the same arguments apply.
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Claim 2 dim(I(2))(3,q1+q2) = q2 + 4− 2r1 − r2.

Proof of Claim 2 By Lemma 3.2.3, we have

dim(I(2))(3,q1+q2) = max
{

0, 4(q1 + q2 + 1)− 3s
}
.

By the definition of q1 and q2, we have s ≤ 2q1 + 1 and s ≤ 3q2 + 2. So

4(q1 + q2 + 1)− 3s = 4q1 + 4q2 + 4− 3s

= (2q1 + 1) + (2q1 + 1) + (3q2 + 2) + q2 − 3s ≥ 0.

Thus dim(I(2))(3,q1+q2) = 4(q1 + q2 + 1)− 3s. Now we get

4(q1 + q2 + 1)− 3s = 4q1 + 4q2 + 4− 2(2q1 + r1)− (3q2 + r2) = q2 + 4− 2r1 − r2

by using the fact that s = 2q1 + r1 and s = 3q2 + r2.

To complete the proof, it suffices to show that

dim(I(2))(3,q1+q2) = q2 + 4− 2r1 − r2 > (2− r1)(3− r2) ≥ dim(I2)(3,q1+q2).

But q2 + 4−2r1− r2 > (2− r1)(3− r2) is equivalent to q2−1 > (r1−1)(r2−1). The
maximum value of (r1 − 1)(r2 − 1) is 1, and it occurs only for r1 = r2 = 0, whereas
q2 − 1 > 1 unless s = 7 or 8, and in both of these cases we have q1 − 1 = 1 ≥ 0 ≥
(r1 − 1)(r2 − 1).

Remark 3.2.5 We cannot use the above proof for the case s = 6, because q2 + 4 −
2r1 − r2 = (2 − r1)(3 − r2) when s = 6 but the proof needs q2 + 4 − 2r1 − r2 >
(2− r1)(3− r2).

Now, we are able to prove the second main result of this paper.

Proof of Theorem 1.2 That I(m) = Im for all m ≥ 1 for s general points for s =
1, 2, 3, 5, follows from Theorems 2.1.2, 3.1.1, 3.1.2, and 3.1.4, respectively. That
I(m) 6= Im for some m for all other s follows for s = 4 by Theorem 3.2.1 (apply
the theorem with t = 2), for s = 6 by Proposition 3.2.2 and for s > 6 by Theorem
3.2.4.
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