EXTENDED QUANTUM ENVELOPING ALGEBRAS OF $\mathfrak{s l}(2)$

WU ZHIXIANG
Mathematics Department, Zhejiang University, Hangzhou 310027, P.R. China
e-mail: wzx@zju.edu.cn

(Received 24 April 2008; revised 23 December 2008; accepted 8 January 2009)

Abstract

In present paper we define a new kind of quantized enveloping algebra of $\mathfrak{s l}(2)$. We denote this algebra by $U_{r, t}$, where r, t are two non-negative integers. It is a non-commutative and non-cocommutative Hopf algebra. If $r=0$, then the algebra $U_{r, t}$ is isomorphic to a tensor product of the algebra of infinite cyclic group and the usual quantum enveloping algebra of $\mathfrak{s l}(2)$ as Hopf algebras. The representation of this algebra is studied.

2000 Mathematics Subject Classification. Primary 17B67, Secondary 17B10.

1. Introduction. Quantized enveloping algebras for Kac-Moody algebras were introduced independently by Drinfel'd and Jimbo [1, 3] in studying the quantum Yang-Baxter equation and two-dimensional solvable lattice models. There is a rich mathematical theory developed for these objects and their representations with connections to many areas of both mathematics and physics.

Suppose the Kac-Moody algebra is $\mathfrak{s l}(2)$. Then the usual quantum enveloping algebra is generated by E, F, K, K^{-1}. The four generators satisfy some relations. We obtain the extended quantum enveloping algebra $U_{r, t}$ of $\mathfrak{s l}(2)$ by adding new generators $J, J^{-1} . U_{r, t}$ is an algebra generated as an algebra over a field by six generators $E, F, K, K^{-1}, J, J^{-1}$. They satisfy the following relations:

$$
\begin{gather*}
K^{-1} K=K K^{-1}=J J^{-1}=J^{-1} J=1, \tag{1.1}\\
K E K^{-1}=q^{2} E, \tag{1.2}\\
K F K^{-1}=q^{-2} F, \tag{1.3}\\
E F-F E=\frac{K-K^{-1} J^{r}}{q-q^{-1}}, \tag{1.4}
\end{gather*}
$$

This algebra can be obtained from the weak quantum enveloping algebra of $\mathfrak{s l}(2)$ defined in [11]. We can introduce co-multiplication and counit on the $U_{r, t}$ to make it into a Hopf algebra. It is a non-commutative and non-cocommutative Hopf algebra. If $r=0$, then the algebra $U_{r, t}$ is isomorphic to a tensor product of the algebra of an infinite cyclic group and the usual quantum enveloping algebra of $\mathfrak{s l}(2)$ as Hopf algebras. We will study the representation of this algebra in this paper.

Let us outline the structure of this paper. In Section 2, we give the definition of $U_{r, t}$ and obtain some properties of $U_{r, t}$. For example, we prove that $U_{r, t}$ is a Noetherian domain, a Hopf algebra. In Section 3, we study the representation of $U_{r, t}$. Using the theory developed in Section 3, we character the centre of $U_{r, t}$ in Section 4. Unlike the representation theory of usual quantum enveloping $U_{q}(\mathfrak{s l}(2))$ of $\mathfrak{s l}(2)$, there exist
finite-dimensional non-semisimple $U_{r, t}$-modules. But we can prove that the tensor product of two simple $U_{r, t}$-modules is semisimple, in Section 5. We also obtain a decomposition theory about the tensor product of two simple $U_{r, t}$-modules. In Section 6, we briefly discuss the representation of $U_{r, t}$ in the case where q is a root of unity. In Section 7, we use the $U_{r, t}$ to construct a Hopf algebra with dimension $l e^{3}$ for any positive integers l, e, where $e \geq 2$.

Throughout this paper \mathbf{k} is a fixed algebraically closed field with characteristic zero; \mathbf{N} is the set of natural numbers; \mathbf{Z} is the set of all integers. For the other undefined terms we refer to [5-7, 9].
2. The definition of $U_{r, t}$ and its basic properties. In this section, we will define the extended quantum enveloping algebra $U_{r, t}$ of the Lie algebra $\mathfrak{s l}(2)$ and study its basic properties. Recall that the three matrices $E=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), F=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ consist of a basis of $\mathfrak{s l}(2)$. Before giving the definition of extended quantum enveloping algebra of $\mathfrak{s l}(2)$, we introduce some notations first. Let us fix two indeterminates q, J.

For any integer n, set

$$
[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}=q^{n-1}+q^{n-3}+\cdots+q^{-n+3}+q^{-n+1}
$$

We have the following version of factorials and binomial coefficients. For integers $0 \leq k \leq n$, set [0]! $=1$,

$$
[k]!=[1][2] \ldots[k],
$$

if $k>0$, and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

With this new notation we can prove the following proposition by induction:
Lemma 2.1. If x and y are variables subject to the relation $y x=q^{2} x y$, then

$$
(x+y)^{n}=\sum_{k=0}^{n} q^{(n-k) k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} y^{n-k}
$$

for any positive integer n.
Let \mathbf{k} be an algebraically closed field with characteristic zero. We use \mathbf{k}_{q} to denote the fraction field of the domain $\mathbf{k}\left[q, q^{-1}\right]$.

Definition 2.2. Let r, t be two fixed non-negative integers. We define $U_{r, t}=$ $U_{r, t}(\mathfrak{s l}(2))$ as the \mathbf{k}_{q}-algebra generated by six variables E, F, K, K^{-1}, J^{-1}, J, where J and J^{-1} are in the centre of $U_{r, t}$, with the relations

$$
\begin{gather*}
K^{-1} K=K K^{-1}=J J^{-1}=J^{-1} J=1, \tag{2.1}\\
K E K^{-1}=q^{2} E, \tag{2.2}\\
K F K^{-1}=q^{-2} F \tag{2.3}\\
E F-F E=\frac{K-K^{-1} J^{r}}{q-q^{-1}} . \tag{2.4}
\end{gather*}
$$

From the definition, we can prove that there is an algebra automorphism ω_{s} of $U_{r, t}$ such that $\omega_{s}(E)=F J^{s}, \omega_{s}(F)=E J^{-s}, \omega_{s}(K)=K^{-1} J^{r}, \omega_{s}\left(K^{-1}\right)=K J^{-r}, \omega_{s}(J)=$ J, $\omega_{s}\left(J^{-1}\right)=J^{-1}$ for any integer s. Moreover, we have the following proposition:

Proposition 2.1. There exists a unique algebra anti-automorphism ω of $U_{r, t}$ such that $\omega(E)=K F, \omega(F)=E K^{-1}, \omega(K)=K, \omega\left(K^{-1}\right)=K^{-1}, \omega(J)=J, \omega\left(J^{-1}\right)=J^{-1}$.

Proof. To show this proposition, we only need to check the following relations:

$$
\begin{gathered}
\omega(K) \omega(E)=q^{-2} \omega(E) \omega(K), \quad \omega(K) \omega(F)=q^{2} \omega(F) \omega(K), \\
{[\omega(F), \omega(E)]=\frac{\omega(K)-\omega\left(K^{-1}\right) \omega\left(J^{r}\right)}{q-q^{-1}}=\frac{K-K^{-1} J^{r}}{q-q^{-1}} .}
\end{gathered}
$$

The first two relations result directly from definition. We compute the third one as

$$
[\omega(F), \omega(E)]=E K^{-1} K F-K F E K^{-1}=E F-F E=\frac{K-K^{-1} J^{r}}{q-q^{-1}}
$$

by relations (2.2) and (2.3).
Lemma 2.3. Let $m \geq 0$, and $n \in \mathbf{Z}$. The following relations hold in $U_{r, t}$:

$$
\begin{align*}
& E^{m} K^{n}=q^{-2 m n} K^{n} E^{m}, \quad F^{m} K^{n}=q^{2 m n} K^{n} F^{m} \tag{2.5}\\
& \begin{aligned}
E F^{m}-F^{m} E & =[m] F^{m-1} \frac{q^{-(m-1)} K-q^{m-1} K^{-1} J^{r}}{q-q^{-1}} \\
& =[m] \frac{q^{m-1} K-q^{-(m-1)} K^{-1} J^{r}}{q-q^{-1}} F^{m-1}, \\
E^{m} F-F E^{m} & =[m] \frac{q^{-(m-1)} K-q^{m-1} K^{-1} J^{r}}{q-q^{-1}} E^{m-1} \\
& =[m] E^{m-1} \frac{q^{m-1} K-q^{-(m-1)} K^{-1} J^{r}}{q-q^{-1}}
\end{aligned}
\end{align*}
$$

Proof. The first two relations result trivially from relations (2.2) and (2.3). The third one is proved by induction on m using

$$
\left[E, F^{m}\right]=\left[E, F^{m-1}\right] F+F^{m-1}[E, F]
$$

Similarly, we can prove (2.7).
Theorem 2.4. The algebra $U_{r, t}$ is Noetherian and has no zero divisor. The set $\left\{E^{i} F^{j} K^{l} J^{s}\right\}_{i, j \in \mathbf{N}, l, s \in \mathbf{Z}}$ is a basis of $U_{r, t}$.

Proof. Let $A_{0}=\mathbf{k}_{q}\left[K, K^{-1}, J, J^{-1}\right]$. Since A_{0} is a homomorphic image of a Noetherian algebra, it is a Noetherian algebra. Moreover, the family $\left\{K^{l} J^{s} \mid l, s \in \mathbf{Z}\right\}$ is a basis of A_{0}.

Consider the automorphism α_{1} of A_{0} determined by $\alpha_{1}(K)=q^{2} K, \alpha_{1}(J)=J$ and the corresponding Ore extension $A_{1}=A_{0}\left[F, \alpha_{1}, 0\right]$: the latter has a basis consisting of the monomials $\left\{F^{j} K^{l} J^{s} \mid j \in \mathbf{N}, l, s \in \mathbf{Z}\right\}$.

It is easy to prove that A_{1} is the algebra generated by $F, F^{-1}, K, K^{-1}, J, J^{-1}$ and the relations

$$
F K=q^{2} K F, \quad F J=J F
$$

Define

$$
\begin{gather*}
\alpha\left(F^{j} K^{l} J^{s}\right)=q^{-2 l} F^{j} K^{l} J^{s}, \tag{2.8}\\
\delta\left(K^{l}\right)=\delta\left(J^{s}\right)=0, \tag{2.9}\\
\delta\left(F^{j} K^{l} J^{s}\right)=\sum_{i=0}^{j-1} F^{j-1} \delta(F)\left(q^{-2 i} K\right) K^{l} J^{s}, \tag{2.10}
\end{gather*}
$$

where $\delta(F)\left(q^{-2 i} K\right)=\frac{q^{-2 i} K-q^{2 i} K^{-1} J^{r}}{q-q^{-1}}$, and $j \geq 1$. We claim that δ extends to an $\alpha-$ derivation of A_{1}. We must check that for all $j, m \in \mathbf{N}$, and $l_{1}, l_{2}, s_{1}, s_{2} \in \mathbf{Z}$, we have

$$
\begin{equation*}
\delta\left(F^{j} K^{l_{1}} J^{s_{1}} \cdot F^{m} K^{l_{2}} J^{s_{2}}\right)=\alpha\left(F^{j} K^{l_{1}} J^{s_{1}}\right) \delta\left(F^{m} K^{l_{2}} J^{s_{2}}\right)+\delta\left(F^{j} K^{l_{1}} J^{s_{1}}\right) F^{m} K^{l_{2}} J^{s_{2}} . \tag{2.11}
\end{equation*}
$$

Let us compute the right-hand side of the above equation. We have

$$
\begin{aligned}
\alpha(& \left.F^{j} K^{l_{1}} J^{s_{1}}\right) \delta\left(F^{m} K^{l_{2}} J^{s_{2}}\right)+\delta\left(F^{j} K^{l_{1}} J^{s_{1}}\right) F^{m} K^{l_{2}} J^{s_{2}} \\
= & q^{-2 l_{1}} F^{j} K^{l_{1}} J^{s_{1}} \sum_{i=0}^{m-1} F^{m-1} \delta(F)\left(q^{-2 i} K\right) K^{l_{2}} J^{s_{2}} \\
& +\sum_{i=0}^{j-1} F^{j-1} \delta(F)\left(q^{-2 i} K\right) K^{l_{1}} J^{s_{1}} F^{m} K^{l_{2}} J^{s_{2}} \\
= & \sum_{i=0}^{m-1} q^{-2 l_{1} m} F^{j+m-1} \delta(F)\left(q^{-2 i} K\right) K^{l_{1}+l_{2}} J^{s_{1}+s_{2}} \\
& +\sum_{i=m}^{m+j-1} q^{-2 l_{1} m} F^{j+m-1} \delta(F)\left(q^{-2 i} K\right) K^{l_{1}+l_{2}} J^{s_{1}+s_{2}} \\
= & q^{-2 l_{1} m} \delta\left(F^{m+l} K^{l_{1}+l_{2}} J^{s_{1}+s_{2}}\right) \\
= & \delta\left(F^{j} K^{l_{1}} J^{s_{1}} F^{m} K^{l_{2}} J^{s_{2}}\right) .
\end{aligned}
$$

We now build an Ore extension $A_{2}=A_{1}[E, \alpha, \delta]$. Then the following relations hold in A_{2} :

$$
\begin{gathered}
E K=\alpha(K) E+\delta(K)=q^{-2} K E \\
E J=\alpha(J) E+\delta(J)=J E
\end{gathered}
$$

and

$$
E F=\alpha(F) E+\delta(F)=F E+\frac{K-K^{-1} J^{r}}{q-q^{-1}}
$$

From these one easily concludes that A_{2} is isomorphic to $U_{r, t}$. Then the properties of $U_{r, t}$ are warranted by the properties of the Ore extension.

To make the algebra $U_{r, t}$ into the Hopf algebra, we define the following three maps

$$
\begin{gather*}
\Delta(E)=J^{-r t} \otimes E+E \otimes K J^{r t}, \tag{2.12}\\
\Delta(F)=K^{-1} J^{r(t+1)} \otimes F+F \otimes J^{-r t}, \tag{2.13}\\
\Delta(K)=K \otimes K, \quad \Delta\left(K^{-1}\right)=K^{-1} \otimes K^{-1}, \tag{2.14}\\
\Delta(J)=J \otimes J, \quad \Delta\left(J^{-1}\right)=J^{-1} \otimes J^{-1}, \tag{2.15}\\
\varepsilon(K)=\varepsilon\left(K^{-1}\right)=\varepsilon(J)=\varepsilon\left(J^{-1}\right)=1, \tag{2.16}\\
\quad \varepsilon(E)=\varepsilon(F)=0, \tag{2.17}
\end{gather*}
$$

and

$$
\begin{array}{cl}
S(E)=-E K^{-1}, & S(F)=-K F J^{-r}, \quad S(J)=J^{-1} \\
S\left(J^{-1}\right)=J, & S(K)=K^{-1}, \quad S\left(K^{-1}\right)=K \tag{2.19}
\end{array}
$$

Theorem 2.5. Relations (2.12)-(2.19) endow $U_{r, t}$ with a Hopf algebra.
Proof. (a) We first show that Δ defines a morphism of algebras from $U_{r, t}$ into $U_{r, t} \otimes U_{r, t}$. It is enough to check that

$$
\begin{gathered}
\Delta(K) \Delta\left(K^{-1}\right)=\Delta\left(K^{-1}\right) \Delta(K)=1 \otimes 1, \\
\Delta(J) \Delta\left(J^{-1}\right)=\Delta\left(J^{-1}\right) \Delta(J)=1 \otimes 1, \\
\Delta(K) \Delta(E) \Delta\left(K^{-1}\right)=q^{2} \Delta(E), \\
\Delta(K) \Delta(F) \Delta\left(K^{-1}\right)=q^{-2} \Delta(F), \\
\Delta(E) \Delta(F)-\Delta(F) \Delta(E)=\frac{\Delta(K)-\Delta\left(K^{-1}\right) \Delta\left(J^{r}\right)}{q-q^{-1}},
\end{gathered}
$$

and

$$
\Delta(X) \Delta(J)=\Delta(J) \Delta(X)
$$

for $X=E, F, K, K^{-1}$. We give a sample calculation for $\Delta(E) \Delta(F)-\Delta(F) \Delta(E)=$ $\frac{\Delta(K)-\Delta\left(K^{-1}\right) \Delta\left(J^{\prime}\right)}{q-q^{-1}}$ as follows:

$$
\begin{aligned}
{[\Delta(E), \Delta(F)]=} & \left(J^{-r t} \otimes E+E \otimes K J^{r t}\right)\left(K^{-1} J^{r(t+1)} \otimes F+F \otimes J^{-r t}\right) \\
& -\left(K^{-1} J^{r(t+1)} \otimes F+F \otimes J^{-r t}\right)\left(J^{-r t} \otimes E+E \otimes K J^{r t}\right) \\
= & K^{-1} J^{r} \otimes \frac{K-K^{-1} J^{r}}{q-q^{-1}}+\frac{K-K^{-1} J^{r}}{q-q^{-1}} \otimes K \\
= & \frac{\Delta(K)-\Delta\left(K^{-1} J^{r}\right)}{q-q^{-1}} .
\end{aligned}
$$

(b) Next, we show that Δ is coassociative. It suffices to do it on the six generators. We give a sample calculation for E. On the one hand, we have

$$
\begin{aligned}
(\Delta \otimes i d) \Delta(E) & =(\Delta \otimes i d)\left(J^{-r t} \otimes E+E \otimes K J^{r t}\right) \\
& =J^{-r t} \otimes J^{-t r} \otimes E+J^{-r t} \otimes E \otimes K J^{t r}+E \otimes K J^{t r} \otimes K J^{r t} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
(i d \otimes \Delta) \Delta(E) & =(i d \otimes \Delta)\left(J^{-r t} \otimes E+E \otimes K J^{r t}\right) \\
& =J^{-r t} \otimes J^{-t r} \otimes E+J^{-r t} \otimes E \otimes K J^{t r}+E \otimes K J^{t r} \otimes K J^{r t}
\end{aligned}
$$

which is the same.
(c) It is easy to prove that ε defines a morphism of algebras from $U_{r, t}$ to \mathbf{k}_{q} and satisfies the counit axiom.
(d) It remains to see that S defines an antipode of $U_{r, t}$. We have first to check that S is a morphism of algebras from $U_{r, t}$ into $U_{r, t}^{\text {opp }}$, namely the following relations hold:

$$
\begin{gather*}
S(K) S\left(K^{-1}\right)=S\left(K^{-1}\right) S(K)=1, \quad S(J) S\left(J^{-1}\right)=S\left(J^{-1}\right) S(J)=1, \\
S\left(K^{-1}\right) S(E) S(K)=q^{2} S(E), \quad S\left(K^{-1}\right) S(F) S(K)=q^{-2} S(F), \\
{[S(F), S(E)]=\frac{S(K)-S\left(K^{-1}\right) S\left(J^{r}\right)}{q-q^{-1}},} \tag{2.20}
\end{gather*}
$$

and $S(X) S(J)=S(J) S(X)$ for $X=E, F, K, K^{-1}, J^{-1}$.
We only give the computation for (2.20). We have

$$
\begin{aligned}
{[S(F), S(E)] } & =K F J^{-r} E K^{-1}-E F J^{-r} \\
& =(F E-E F) J^{-r} \\
& =\frac{S(K)-S\left(K^{-1}\right) S\left(J^{r}\right)}{q-q^{-1}}
\end{aligned}
$$

It is easy to check that

$$
\sum_{(x)} x_{(1)} S\left(x_{(2)}\right)=\sum_{(x)} S\left(x_{(1)}\right) x_{(2)}=\varepsilon(x) 1
$$

holds when x is any of the generators $E, F, K^{-1}, K, J, J^{-1}$. Since S is an antiautomorphism of $U_{r, t}, S$ is an antipode.

Proposition 2.2. (1) If $r=0$, then $U_{0, t}$ is isomorphic to $\mathbf{k}_{q}[\mathbf{Z}] \otimes U_{q}(\mathfrak{s l}(2))$ as Hopf algebras, where $\mathbf{k}_{q}[\mathbf{Z}]$ is the group algebra of infinite cyclic group $\mathbf{Z}, U_{q}(\mathfrak{s l}(2))$ is the usual quantum enveloping algebra of $\mathfrak{s l}(2)$.
(2) We have $S^{2}(u)=K u K^{-1}$ for any $u \in U_{r, t}$.

Proof. Obvious.
Proposition 2.3. For all $i, j \in \mathbf{N}$ and all $l, s \in \mathbf{Z}$, we have

$$
\begin{aligned}
\Delta\left(E^{i} F^{j} K^{l} J^{s}\right)= & \sum_{u=0}^{i} \sum_{v=0}^{j} q^{u(i-u)+v(j-v)-2(i-u)(j-v)}\left[\begin{array}{l}
i \\
u
\end{array}\right]\left[\begin{array}{l}
j \\
v
\end{array}\right] \\
& \times\left(J^{r(t+1) v(j-v)-r u t+s} \otimes J^{r t(i-u-v)+s}\right) \\
& \times\left(E^{i-u} F^{v} K^{l-j+v} \otimes E^{u} F^{j-v} K^{l+i-u}\right)
\end{aligned}
$$

Proof. First observe that

$$
\begin{aligned}
\Delta\left(E^{i} F^{j} K^{l} J^{s}\right) & =\Delta(E)^{i} \Delta(F)^{j} \Delta(K)^{l} \Delta(J)^{s} \\
& =\left(J^{-r t} \otimes E+E \otimes K J^{r t}\right)^{i}\left(K^{-1} J^{-r(t+1)} \otimes F+F \otimes J^{-r t}\right)^{j}\left(K^{l} J^{s} \otimes K^{l} J^{s}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left(J^{-r t} \otimes E\right)\left(E \otimes K J^{r t}\right)=q^{-2}\left(E \otimes K J^{r t}\right)\left(J^{-r t} \otimes E\right), \\
\Delta(E)^{i} & =\left(J^{-r t} \otimes E+E \otimes K J^{r t}\right)^{i} \\
& =\sum_{u=0}^{i} q^{u(i-u)}\left[\begin{array}{l}
i \\
u
\end{array}\right]\left(J^{-r t} \otimes E\right)^{u}\left(E \otimes K J^{r t}\right)^{i-u} \\
& =\sum_{u=0}^{i} q^{u(i-u)}\left[\begin{array}{c}
i \\
u
\end{array}\right]\left(J^{-r t u} \otimes 1\right)\left(E^{i-u} \otimes E^{u} K^{i-u}\right)\left(1 \otimes J^{r(i-u) t}\right),
\end{aligned}
$$

by Lemma 2.1. Similarly, we have

$$
\begin{aligned}
\Delta(F)^{j} & =\left(K^{-1} J^{r(t+1)} \otimes F+F \otimes J^{-r t}\right)^{i} \\
& =\sum_{v=0}^{j} q^{v(j-v)}\left[\begin{array}{l}
j \\
v
\end{array}\right]\left(F \otimes J^{-r t}\right)^{v}\left(K^{-1} J^{r(t+1)} \otimes F\right)^{j-v} \\
& =\sum_{v=0}^{j} q^{v(j-v)}\left[\begin{array}{l}
j \\
v
\end{array}\right]\left(J^{r(t+1)(j-v)} \otimes J^{-r t v}\right)\left(F^{v} K^{j-v} \otimes F^{j-v}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\Delta\left(E^{i} F^{j} K^{l} J^{s}\right)= & \sum_{u=0}^{i} \sum_{v=0}^{j} q^{u(i-u)+v(j-v)}\left[\begin{array}{c}
i \\
u
\end{array}\right]\left[\begin{array}{l}
j \\
v
\end{array}\right] \\
& \times\left(J^{-r u t+r(j-v)(t+1)} \otimes J^{-v r t+r t(i-u)}\right) \\
& \times\left(E^{i-u} \otimes E^{u} K^{i-u}\right)\left(F^{v} K^{-(j-v)} \otimes F^{j-v}\right)\left(K^{l} J^{s} \otimes K^{l} J^{s}\right) \\
= & \sum_{u=0}^{i} \sum_{v=0}^{j} q^{u(i-u)+v(j-v)}\left[\begin{array}{c}
i \\
u
\end{array}\right]\left[\begin{array}{c}
j \\
v
\end{array}\right]\left(J^{-r(u t-(j-v)(t+1))+s}\right. \\
& \left.\otimes J^{r t(i-u-v)+s}\right)\left(E^{i-u} F^{v} K^{-(j-v)} K^{l} \otimes E^{u} K^{i-u} F^{j-v} K^{l}\right) \\
= & \sum_{u=0}^{i} \sum_{v=0}^{j} q^{u(i-u)+v(j-v)-2(i-u)(j-v)}\left[\begin{array}{c}
i \\
u
\end{array}\right]\left[\begin{array}{c}
j \\
v
\end{array}\right] \\
& \times\left(J^{r(t+1) v(j-v)-r u t+s} \otimes J^{r(t i-u-v)+s}\right) \\
& \times\left(E^{i-u} F^{v} K^{l-j+v} \otimes E^{u} F^{j-v} K^{l+i-u}\right) .
\end{aligned}
$$

By now the proof is completed.
Finally in this section, we give some remarks.
Remark 2.6. Suppose G is an abelian group, and $g, h \in G$ are two fixed elements. Then we can define a Hopf algebra $U_{g, h}$ as follows:
(1) As vector spaces $U_{g, h}$ is isomorphic to the tensor product of $\mathbf{k}[G]$, the group algebra of G over the field \mathbf{k}, and $U_{q}(\mathfrak{s l}(2))$, the usual quantum enveloping algebra of
$\mathfrak{s l}(2)$, which is generated by four variables E, F, K, K^{-1}. Any element of $\mathbf{k}[G]$ is in the centre of $U_{g, h}$. The other generators satisfy the following relations:

$$
\begin{gather*}
K^{-1} K=K K^{-1}=1, \tag{2.21}\\
K E K^{-1}=q^{2} E, \tag{2.22}\\
K F K^{-1}=q^{-2} F, \tag{2.23}\\
E F-F E=\frac{K-K^{-1} g}{q-q^{-1}} . \tag{2.24}
\end{gather*}
$$

(2) The other operations of Hopf algebra $U_{g, h}$ are defined as follows:

$$
\begin{gather*}
\Delta(E)=h^{-1} \otimes E+E \otimes h K \tag{2.25}\\
\Delta(F)=K^{-1} h g \otimes F+F \otimes h^{-1} \tag{2.26}\\
\Delta(K)=K \otimes K, \quad \Delta\left(K^{-1}\right)=K^{-1} \otimes K^{-1}, \tag{2.27}\\
\Delta(a)=a \otimes a, \quad a \in G, \tag{2.28}\\
\varepsilon(K)=\varepsilon\left(K^{-1}\right)=\varepsilon(a)=1, \quad a \in G, \tag{2.29}\\
\varepsilon(E)=\varepsilon(F)=0, \tag{2.30}
\end{gather*}
$$

and

$$
\begin{gather*}
S(E)=-E K^{-1}, \quad S(F)=-K F g^{-1}, \tag{2.31}\\
S(a)=a^{-1}, \quad a \in G, \quad S(K)=K^{-1}, \quad S\left(K^{-1}\right)=K . \tag{2.32}
\end{gather*}
$$

Remark 2.7. By using the above method, we can construct extensions of quantum enveloping algebras of others Lie algebras (or Kac-Moody algebras [4]) by group algebras.

REmARK 2.8. We can assume that q is an element of \mathbf{k}. If $q^{2} \neq 1$, then $U_{r, t}$ is a Hopf algebra over \mathbf{k}. In the remainder of this paper we always assume that q is an element in \mathbf{k} and $q^{2} \neq 1$.

Remark 2.9. One can study the dual algebra $U_{r, t}^{*}$ of $U_{r, t}$. In the case $r=0$,

$$
U_{0, t}^{*}=\operatorname{Hom}_{\mathbf{k}}\left(U_{0, t}, \mathbf{k}\right) \simeq \operatorname{Hom}_{\mathbf{k}}\left(\mathbf{k}[\mathbf{Z}], U_{q}(\mathfrak{s l}(2))^{*}\right),
$$

by Proposition 2.2. Moreover, one can determine whether $U_{r, t}$ is quasi-triangular or not.
3. The representation of $U_{r, t}$. In this section, let q be an element in the algebraically closed field \mathbf{k} with characteristic zero. Moreover, we assume that q is not a root of unity. We shall determine all finite-dimensional simple $U_{r, t}$-modules in this section.

For any two elements $\lambda, \alpha \in \mathbf{k}$ and any $U_{r, t}$-module V, we denote by

$$
V^{\lambda, \alpha}=\left\{v \in V \mid K v=\lambda v, J v=\alpha^{2} v\right\} .
$$

The pair (λ, α) is called a weight of V if $V^{\lambda, \alpha} \neq 0$.

Lemma 3.1. We have $E V^{\lambda, \alpha} \subseteq V^{q^{2} \lambda, \alpha}$ and $F V^{\lambda, \alpha} \subseteq V^{q^{-2} \lambda, \alpha}$.
Proof. For any $v \in V^{\lambda, \alpha}$, we have

$$
\left\{\begin{array}{l}
K E v=q^{2} E K v=q^{2} \lambda E v \\
J E v=E J v=\alpha^{2} E v
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
K F v=q^{-2} F K v=q^{-2} \lambda F v \\
J F v=F J v=\alpha^{2} F v
\end{array}\right.
$$

So this lemma holds.
Definition 3.2. Let V be a $U_{r, t}$-module and (λ, α) is a pair of scalars. An element $v \neq 0$ of V is the highest weight vector of weight (λ, α) if $E v=0, K v=\lambda v$ and $J v=\alpha^{2} v$. A $U_{r, t}$-module is the highest weight module of highest weight (λ, α) if it is generated by the highest vector v of weight (λ, α).

Proposition 3.1. Any non-zero finite-dimensional $U_{r, t}$-module contains a highest weight vector. Moreover the endomorphisms induced by E and F are nilpotent.

Proof. Since \mathbf{k} is algebraically closed, V is finite-dimensional and $J K=K J$, there exists a non-zero vector w and (μ, α) such that

$$
K w=\mu w, \quad J w=\alpha^{2} w
$$

If $E w=0$, then the vector w is the highest weight vector and we are done. If not, let us consider the sequence of vectors $E^{n} w$, where n runs over the non-negative integers. According to Lemma 3.1, it is a sequence of eigenvectors with distinct eigenvalues. Consequently, there exists an integer n such that $E^{n} w \neq 0$ and $E^{n+1} w=0$. The vector $E^{n} w$ is the highest weight vector.

In order to prove that the action of E on V is nilpotent, it suffices to check that 0 is the only eigenvalue of E. Now, if v is a non-zero eigenvector for E with eigenvalue $\lambda \neq 0$, then so is $K^{n} v$ with eigenvalue $q^{-2 n} \lambda$. The endomorphism E would then have infinitely many distinct eigenvalues which is impossible. The same argument works for F.

Lemma 3.3. Let v be a highest weight vector of weight (λ, α). Set $v_{0}=v$ and $v_{p}=\frac{1}{[p]!} F^{p}$ v for $p>0$. Then

$$
K v_{p}=q^{-2 p} \lambda v_{p}, \quad J v_{p}=\alpha^{2} v_{p}, \quad F v_{p-1}=[p] v_{p}
$$

and

$$
\begin{equation*}
E v_{p}=\frac{q^{-(p-1)} \lambda-q^{p-1} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}} v_{p-1} \tag{3.1}
\end{equation*}
$$

Proof. We only check equation (3.1). By Lemma 2.3, we have

$$
\begin{aligned}
E v_{p} & =\frac{1}{[p]!}\left(F^{p} E+[p] F^{p-1} \frac{q^{-(p-1)} K-q^{p-1} K^{-1} J^{r}}{q-q^{-1}}\right) v_{0} \\
& =\frac{q^{-(p-1)} \lambda-q^{p-1} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}} v_{p-1} .
\end{aligned}
$$

Theorem 3.4. (a) Let V be a finite-dimensional $U_{r, t}$-module generated by the highest weight vector v of weight (λ, α). Then
(i) $\lambda=\epsilon q^{n} \alpha^{n}$, where $\epsilon= \pm 1$ and n is the integer defined by $\operatorname{dim} V=n+1$.
(ii) Setting $v_{p}=\frac{1}{[p]!} F^{p} v$, we have $v_{p}=0$ for $p>n$ and in addition the set $\{v=$ $\left.v_{0}, v_{1}, \ldots, v_{n}\right\}$ is a basis of V.
(iii) The operator K acting on V is diagonalizable with $(n+1)$ distinct eigenvalues

$$
\left\{\epsilon q^{n} \alpha^{r}, \epsilon q^{n-2} \alpha^{r}, \ldots, \epsilon q^{-n+2} \alpha^{r}, \epsilon q^{-n} \alpha^{r}\right\}
$$

and the operator J acts on V by a scalar α^{2}.
(iv) Any other highest weight vector in V is a scalar multiple of v and is of weight (λ, α).
(v) The module is simple.
(b) Any simple finite-dimensional $U_{r, t}$-module is generated by the highest weight vector. Two finite-dimensional $U_{r, t}$-modules generated by highest vectors of the same weight are isomorphic.

Proof. According to Lemma 3.3, the sequence $\left\{v_{p} \mid p \geq 0\right\}$ is a sequence of eigenvectors for K with distinct eigenvalues. Since V is finite-dimensional, there is an integer n such that $v_{n} \neq 0$ and $v_{n+1}=0$. Then from the formulas

$$
E v_{p}=\frac{q^{-(p-1)} \lambda-q^{p-1} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}} v_{p-1}
$$

we obtain $v_{m}=0$ for all $n>m$ and $v_{m} \neq 0$ for all $m \leq n$. Moreover,

$$
0=E v_{n+1}=\frac{q^{-n} \lambda-q^{n} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}} v_{n}
$$

Hence $\lambda^{2}=q^{2 n} \alpha^{2 r}$, which is equivalent to $\lambda=\epsilon q^{n} \alpha^{r}$. The rest of the proof of (i)-(iii) is easy. So we omit it.
(iv) Let v^{\prime} be another highest weight vector. It is an eigenvector for the action of K and J; hence it is a scalar multiple of some vector v_{i}. But the vector v_{i} is killed by E if and only if $i=0$.
(v) Let V^{\prime} be a non-zero $U_{r, t}$-submodule of V and let v^{\prime} be the highest weight vector of V^{\prime}. Then v^{\prime} also is the highest weight vector for V. By (iv), v^{\prime} has to be a non-zero scalar multiple of v. Therefore v is in V^{\prime}. Since v generates V, we must have $V=V^{\prime}$, which proves that V is simple.
(b) By Proposition 3.1, any simple finite-dimensional $U_{r, t}$-module V contains a highest weight vector v. Let V^{\prime} be the submodule of V generated by v. Since V is simple, $V=V^{\prime}$ and hence V is generated by the highest weight vector v. The rest results of (b) follow from (a).

We denote the $(n+1)$-dimensional simple $U_{r, t}$-module-generated highest weight vector v by $V_{\epsilon, n, \alpha}$, where v satisfies

$$
E v=0, \quad J v=\alpha^{2} v, \quad K v=\epsilon q^{n} \alpha^{r} v
$$

Let $\rho_{\epsilon, n, \alpha}$ be the corresponding morphism of algebras from $U_{r, t}$ to $\operatorname{End}\left(V_{\epsilon, n, \alpha}\right)$.
Observe that the formulas of Lemma 3.3 may be rewritten as follows for $V_{\epsilon, n, \alpha}$:

$$
K v_{p}=\epsilon q^{n-2 p} \alpha^{r} v_{p}, \quad J v_{p}=\alpha^{2} v_{p}, \quad F v_{p-1}=[p] v_{p}
$$

and

$$
\begin{equation*}
E v_{p}=\epsilon \frac{q^{n-(p-1)} \alpha^{r}-q^{p-1-n} \alpha^{r}}{q-q^{-1}} v_{p-1}=\epsilon \alpha^{r}[n-p+1] v_{p-1} \tag{3.2}
\end{equation*}
$$

As a special case, we have $V_{\epsilon, 0, \alpha}=\mathbf{k}$. The morphism $\rho_{\epsilon, 0, \alpha}$ is given by

$$
\rho_{\epsilon, 0, \alpha}(K)=\epsilon \alpha^{r}, \quad \rho_{\epsilon, 0, \alpha}(E)=\rho_{\epsilon, 0, \alpha}(F)=0, \quad \rho_{\epsilon, 0, \alpha}(J)=\alpha^{2} .
$$

Lemma 3.5. There exists an element C of the centre of $U_{r, t}$ acting by 0 on $V_{\epsilon, 0, \alpha}$ and by a non-zero scalar on $V_{\epsilon^{\prime}, n, \alpha}$ when n is an integer greater than zero, and $\epsilon, \epsilon^{\prime}= \pm 1$.

Proof. Define $C=C_{p}-\epsilon \frac{\alpha^{r}\left(q+q^{-1}\right)}{\left(q-q^{-1}\right)^{2}}$, where $C_{p}=E F+\frac{q^{-1} K+q K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}}$. First we show that C_{p} is in the centre of $U_{r, t}$. Let us calculate $K C_{p} K^{-1}$ and $E C_{p}$.

$$
\begin{aligned}
K C_{p} K^{-1} & =K E F K^{-1}+\frac{q^{-1} K+q K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}} \\
& =E F+\frac{q^{-1} K+q K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}} \\
& =C_{p}
\end{aligned}
$$

Since

$$
[E, F]=\frac{K-K^{-1} J^{r}}{q-q^{-1}}, \quad C_{p}=F E+\frac{q K+q^{-1} K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}}
$$

Hence

$$
\begin{aligned}
E C_{p} & =E F E+E \frac{q K+q^{-1} K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}} \\
& =E F E+\frac{q^{-1} K+q K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}} E \\
& =C_{p} E
\end{aligned}
$$

Similarly we can prove $F C_{p}=C_{p} F$. So C_{p} is in the centre of $U_{r, t}$. Consequently C is in the centre of $U_{r, t}$.
C acts on $V_{\epsilon, 0, \alpha}$ by

$$
\frac{q \epsilon \alpha^{r}+q^{-1} \epsilon \alpha^{r}}{\left(q-q^{-1}\right)^{2}}-\epsilon \frac{q \alpha^{r}+q^{-1} \alpha^{r}}{\left(q-q^{-1}\right)^{2}}=0
$$

Since C acts on $V_{\epsilon^{\prime}, n, \alpha}$ by

$$
\beta=\frac{q^{n+1} \epsilon^{\prime} \alpha^{r}+q^{-1-n} \epsilon^{\prime} \alpha^{r}}{\left(q-q^{-1}\right)^{2}}-\epsilon \frac{q \alpha^{r}+q^{-1} \alpha^{r}}{\left(q-q^{-1}\right)^{2}}=0
$$

we have to show that $\beta \neq 0$ when $n>0$. If $\beta=0$, we would have $\left(q^{n+2}-\epsilon \epsilon^{\prime}\right)\left(q^{n}-\right.$ $\left.\epsilon \epsilon^{\prime}\right)=0$, which would be contrary to the assumption, that q is not a root of unity.

Theorem 3.6. When q is not a root of unity, any two-dimensional $U_{r, t}$-module V is isomorphic to either $V_{\epsilon, 0, \alpha} \oplus V_{\epsilon^{\prime}, 0, \beta}$, or $V_{\epsilon, 1, \alpha}$, or a module $V(\alpha, \epsilon, y)$ with basis $\left\{v_{1}, v_{2}\right\}$ such that $\rho(E)=\rho(F)=0$, and $\rho(J)=\left(\begin{array}{cc}\alpha^{2} & y \\ 0 & \alpha^{2}\end{array}\right), \rho(K)=\left(\begin{array}{cc}\epsilon \alpha^{r} & \frac{w}{2} \in \alpha^{r-2} \\ 0 & \epsilon \alpha^{r}\end{array}\right)$, where ρ is the algebra homomorphism determined by $V(\alpha, \epsilon, y)$.

Proof. Suppose V is simple. Then V is isomorphic to $V_{\epsilon, 1, \alpha}$ by Theorem 3.4. Otherwise there exists a proper submodule V^{\prime} of V. Since the dimension of V^{\prime} is equal to one, we can assume that $\left\{v_{1}, v_{2}\right\}$ is a basis of V satisfying

$$
\begin{aligned}
K v_{1}=\epsilon \alpha^{r} v_{1}, & K v_{2} & =\epsilon^{\prime} \beta^{r} v_{2}+x v_{1}, \\
J v_{1}=\alpha^{2} v_{1}, & J v_{2} & =\beta^{2} v_{2}+y v_{1} .
\end{aligned}
$$

Since $\epsilon^{\prime} \beta^{r}\left(\beta^{2} v_{2}+y v_{1}\right)+x \alpha^{2} v_{1}=J K v_{2}=K J v_{2}=\beta^{2}\left(\epsilon^{\prime} \beta^{r} v_{2}+x v_{1}\right)+y \epsilon \alpha^{r} v_{1}, x\left(\alpha^{2}-\right.$ $\left.\beta^{2}\right)=y\left(\epsilon^{\prime} \beta^{r}-\epsilon \alpha^{r}\right)$.

If $\epsilon \alpha^{r} \neq \epsilon^{\prime} \beta^{r}$ and $\alpha^{2} \neq \beta^{2}$, then $v_{1}, v_{2}^{\prime}=v_{2}+\frac{x}{\epsilon^{\prime} \beta^{r}-\epsilon \alpha} v_{1}=v_{2}+\frac{y}{\beta^{2}-\alpha^{2}} v_{1}$ is another basis of V. Since $K v_{2}^{\prime}=\epsilon^{\prime} \beta v_{2}^{\prime}$ and $J v_{2}^{\prime}=\beta^{2} v_{2}^{\prime}, V \stackrel{\epsilon \beta^{-\epsilon \alpha}}{=} \mathbf{k} v_{1} \oplus \mathbf{k} v_{2}^{\prime}$ is a direct sum of $U_{r, t}-$ modules.

If $\alpha^{2}=\beta^{2}$ and $\epsilon^{\prime} \beta^{r} \neq \epsilon \alpha^{r}$, then $y=0$. Let $v_{2}^{\prime}=v_{2}+\frac{x}{\epsilon^{\prime} \beta^{r}-\epsilon \alpha^{r}} v_{1}$. Then $J v_{2}^{\prime}=\beta^{2} v_{2}^{\prime}$ and $K v_{2}^{\prime}=\epsilon^{\prime} \beta^{r} v_{2}^{\prime}$. Consequently $V=\mathbf{k} v_{1} \oplus \mathbf{k} v_{2}^{\prime}$ is a direct sum of $U_{r, t}$-modules.

If $\alpha^{2} \neq \beta^{2}$ and $\epsilon^{\prime} \beta^{r}=\epsilon \alpha^{r}$, then $x=0$. Let $v_{2}^{\prime}=v_{2}+\frac{y}{\beta^{2}-\alpha^{2}} v_{1}$. Then $J v_{2}^{\prime}=\beta^{2} v_{2}^{\prime}$ and $K v_{2}^{\prime}=\epsilon^{\prime} \beta^{r} v_{2}^{\prime}$. Consequently $V=\mathbf{k} v_{1} \oplus \mathbf{k} v_{2}^{\prime}$ is a direct sum of $U_{r, t}$-modules.

Next we assume that $\epsilon \alpha^{r}=\epsilon^{\prime} \beta^{r}$, and $\alpha^{2}=\beta^{2}$. Since $E v_{1}$ is an eigenvector for K with eigenvalue $\epsilon q^{2} \alpha^{r} \neq \epsilon \alpha^{r}$, it is zero. Let us prove that $E v_{2}$ is zero too. Indeed, writing $E v_{2}=\lambda v_{1}+\mu v_{2}$, we have
$\epsilon \alpha^{r} \lambda v_{1}+\mu\left(\epsilon \alpha^{r} v_{2}+x v_{1}\right)=K E v_{2}=q^{2} E K v_{2}=q^{2} E\left(\epsilon \alpha^{r} v_{2}+x v_{1}\right)=q^{2} \epsilon \alpha^{r}\left(\lambda v_{1}+\mu v_{2}\right)$.
Hence

$$
\left\{\begin{array}{l}
\epsilon \alpha^{r} \lambda+x \mu=q^{2} \epsilon \alpha^{r} \lambda \tag{3.3}\\
\mu \epsilon \alpha^{r}=q^{2} \mu \epsilon \alpha^{r} .
\end{array}\right.
$$

Since $q^{2} \neq 1$, we obtain $\lambda=\mu=0$ from (3.3). One can show in a similar way that F acts as zero on V. Since $[E, F]$ acts as zero, we have $K=K^{-1} J^{r}$ on V. In particular, since $K^{-1} v_{2}=\epsilon \alpha^{-r} v_{2}-x \alpha^{-2 r} v_{1}$,

$$
J^{r} K^{-1} v_{2}=\epsilon \alpha^{-r} J^{r} v_{2}-x \epsilon \alpha^{r} v_{1}=\epsilon \alpha^{r} v_{2}+\left(\epsilon r y \alpha^{r-2}-x\right) v_{1} .
$$

Hence $\epsilon r y \alpha^{r-2}-x \underset{\alpha^{2}}{ }=x$ and $x=\frac{r y}{2} \epsilon \alpha^{r-2}$. So $\rho(E)=\rho(F)=0$, and $\rho(J)=$ $\left(\begin{array}{cc}\alpha^{2} & y \\ 0 & \alpha^{2}\end{array}\right), \rho(K)=\left(\begin{array}{cc}\epsilon \alpha^{r} & \frac{\hbar \pi}{2} \in \alpha^{r-2} \\ 0 & \epsilon \alpha^{r}\end{array}\right)$, where ρ is the algebra homomorphism determined by $V(\alpha, \epsilon, y)$.

Remark 3.7. If $y \neq 0$, then $V(\alpha, \epsilon, y)$ is not a semisimple $U_{r, t}$-module.

REmark 3.8. Suppose that the submodule V^{\prime} of a module V is simple of dimension greater than 1 and the dimension of V / V_{1} is 1 . Then there exists a one-dimensional module V_{2} such that $V=V_{1} \oplus V_{2}$. In fact, let the one-dimensional quotient module V / V^{\prime} has weight $\left(\epsilon \alpha^{r}, \alpha\right)$. Let us consider the operator

$$
C=C_{p}-\epsilon \frac{q \alpha^{r}+q^{-1} \alpha^{r}}{\left(q-q^{-1}\right)^{2}}
$$

it acts by zero on V / V^{\prime}. Consequently, we have $C V \subseteq V^{\prime}$. On the other hand, C acts on V^{\prime} as multiplication by a scalar $y \neq 0$. It follows that $\frac{1}{y} C$ is the identity on V^{\prime}. Therefore the map $\frac{1}{y} C$ is a projector of V onto V^{\prime}. This projector is a $U_{r, t}$-linear since C is central. Let $V_{2}=\operatorname{ker}\left(\frac{1}{y} C\right)$. Then $V=V^{\prime} \oplus V_{2}$.

Theorem 3.9. The dual module $V_{\epsilon, n, \alpha}^{*}$ of the simple $U_{r, t}$-module $V_{\epsilon, n, \alpha}$ is a simple module, and $V_{\epsilon, n, \alpha}^{*} \simeq V_{\epsilon, n, \alpha^{-1}}$.

Proof. Since $U_{r, t}$ is a Hopf algebra, the dual of any $U_{r, t}$-module is still a $U_{r, t}$-module. First we prove that V is a simple module if and only if $V^{*}:=\operatorname{Hom}_{\mathbf{k}}(V, \mathbf{k})$ is a simple module. Since V is finite dimensional, $V \simeq V^{* *}$. We only need to verify the implication that V^{*} is simple if V is simple. Let L be a non-zero submodule of V^{*}. If $L \neq V^{*}$, then $W=\{x \in V \mid f(x)=0$ for all $x \in L\} \neq 0$. For any $x \in W$ and any $f \in L$, we have $f(K x)=\left(K^{-1} f\right)(x)=0, f(J x)=\left(J^{-1} f\right)(x)=0,0=(-E f)(K x)=f(E x)$ and $0=(-F K f)\left(J^{r} x\right)=f(F x)=0$. Hence W is a submodule of V. Consequently, $W=V$. So $L=0$. This is contrary to our original assumption. Hence V^{*} is simple. Now suppose $V_{\epsilon, n, \alpha}$ is spanned by $\left\{v_{0}, \ldots, v_{n}\right\}$ with relations

$$
K v_{p}=\epsilon q^{n-2 p} \alpha^{r} v_{p}, \quad J v_{p}=\alpha^{2} v_{p}, \quad F v_{p-1}=[p] v_{p}
$$

and

$$
E v_{p}=\epsilon \frac{q^{n-(p-1)} \alpha^{r}-q^{p-1-n} \alpha^{r}}{q-q^{-1}} v_{p-1}=\epsilon \alpha^{r}[n-p+1] v_{p-1}
$$

Let $\left\{v_{0}^{*}, \ldots, v_{n}^{*}\right\}$ be the dual basis of $\left\{v_{0}, \ldots, v_{n}\right\}$. Then

$$
\begin{gathered}
\left(E v_{n}^{*}\right)\left(v_{i}\right)=-v_{n}^{*}\left(E K^{-1} v_{i}\right)=\epsilon \alpha^{r} q^{2 i-n}[n-i+1] v_{n}^{*}\left(v_{i-1}\right)=0, \\
\left(K v_{n}^{*}\right)\left(v_{i}\right)=v_{n}^{*}\left(K^{-1} v_{i}\right)=q^{2 i-n} \epsilon \alpha^{-r} v_{n}^{*}\left(v_{i}\right)=q^{n} \epsilon \alpha^{-r} v_{n}^{*}\left(v_{i}\right)
\end{gathered}
$$

and

$$
\left(J v_{n}^{*}\right)\left(v_{i}\right)=v_{n}^{*}\left(J^{-1} v_{i}\right)=\alpha^{-2} v_{n}^{*}\left(v_{i}\right) .
$$

Thus, v_{n}^{*} is the highest weight vector with weight $\left(q^{n} \alpha^{-r}, \alpha^{-1}\right)$ of $V_{\epsilon, n, \alpha}^{*}$ and hence $V_{\epsilon, n, \alpha}^{*} \simeq V_{\epsilon, n, \alpha^{-1}}$.

Finally in this section, for any given finite-dimensional semisimple $U_{r, t}$-module V, we construct a scalar product, i.e. a non-degenerated symmetric bilinear form (,) on V such that

$$
\begin{equation*}
\left(x v, v^{\prime}\right)=\left(v, \omega(x) v^{\prime}\right) \tag{3.4}
\end{equation*}
$$

for all $x \in U_{r, t}$ and $v, v^{\prime} \in V$. The linear map ω has been defined in Proposition 2.1. This is done in the following theorem:

Theorem 3.10. On the simple $U_{r, t}$-module $V_{\epsilon, n, \alpha}$ generated by the highest weight vector v, there exists a unique scalar product such that $(v, v)=1$. If we define the vectors $v_{i}:=\frac{1}{[i]} F^{i} v$ for all $i \geq 0$, then they are pairwise orthogonal and we have

$$
\left(v_{i}, v_{j}\right)=q^{i(i+1-n)}\left[\begin{array}{c}
n \\
i
\end{array}\right] \delta_{i j} .
$$

Proof. Let us first assume that there exists a scalar product on $V_{\epsilon, n, \alpha}$ such that $(v, v)=1$. Next we will show that $\left.\left(v_{i}, v_{j}\right)=q^{i(i+1)-n i}{ }_{[}^{\eta}\right] \delta_{i j}$. By definition and (3.4) we have

$$
\left(v_{i}, v_{j}\right)=\frac{1}{[i]!}\left(F^{i} v, v_{j}\right)=\frac{1}{[i]!}\left(v, \omega\left(F^{i}\right) v_{j}\right)=\frac{1}{[i]!}\left(v,\left(E K^{-1}\right)^{i} v_{j}\right) .
$$

By (2.5) we can prove that $\left(E K^{-1}\right)^{i}=q^{i(i+1)} K^{-i} E^{i}$ for any $i>0$. Consequently, the vector $\omega\left(F^{i}\right) v_{j}$ is a scalar multiple of $E^{i} v_{j}$, which is equal to zero as soon as $i>j$. Therefore $\left(v_{i}, v_{j}\right)=0$ if $i>j$. By symmetry, we also have $\left(v_{i}, v_{j}\right)=0$ if $i<j$.

We need the formula

$$
E^{i} v_{j}=\left(\epsilon \alpha^{r}\right)^{i} \frac{[n-j+i]}{[n-j]} v_{j-i}
$$

to compute $\left(v_{i}, v_{i}\right)$. We have

$$
\begin{aligned}
\left(v_{i}, v_{i}\right) & =\frac{1}{[i]!} q^{i(i+1)}\left(v, K^{-i} E^{i} v_{i}\right) \\
& =\left(\epsilon \alpha^{r}\right)^{i} q^{i(i+1)} \frac{[n]!}{[i]![n-i]!}\left(v, K^{-i} v\right) \\
& =q^{i(i+1)-n i} \frac{[n]!}{[i]![n-i]!} .
\end{aligned}
$$

This proves the uniqueness of the scalar product. Let us now prove its existence.
Clearly, there exists a non-degenerate symmetric bilinear form such that

$$
\left(v_{i}, v_{j}\right)=q^{i(i+1-n)}\left[\begin{array}{c}
n \tag{3.5}\\
i
\end{array}\right] \delta_{i j} .
$$

We have to check that it satisfies relation (3.4). It is enough to check this for $x=E, F, K, K^{-1}, J$ and J^{-1}. We shall do this for $x=E$ and $x=F$, since the other computations are easy.

For the case $x=E$. On the one hand, we have

$$
\left(E v_{i}, v_{j}\right)=\epsilon \alpha^{r}[n-i+1]\left(v_{i-1}, v_{j}\right)=\epsilon \alpha^{r} q^{(i-1)(i-n)} \frac{[n]!}{[i-1]![n-i]!} \delta_{i-1 j}
$$

One the other hand, by Proposition 2.1 and by (3.4), we have

$$
\begin{aligned}
\left(v_{i}, \omega(E) v_{j}\right) & =\left(v_{i}, K F v_{j}\right) \\
& =[j+1]\left(v_{i}, K v_{j+1}\right) \\
& =\epsilon \alpha^{r} q^{i(i+1-n)+n-2(j+1)}[j+1] \frac{[n]!}{[i]![n-i]!} \delta_{i j+1} \\
& =\epsilon \alpha^{r} q^{(i-1)(i-n)} \frac{[n]!}{[i-1]![n-i]!} \delta_{i j+1} \\
& =\left(E v_{i}, v_{j}\right) .
\end{aligned}
$$

For the case $x=F$. On the one hand, we have

$$
\left(F v_{i}, v_{j}\right)=[i+1]\left(v_{i+1}, v_{j}\right)=q^{(i+1)(i+2-n)} \frac{[n]!}{[i]![n-i-1]!} \delta_{i+1 j}
$$

One the other hand, by Proposition 2.1 and by (3.4), we have

$$
\begin{aligned}
\left(v_{i}, \omega(F) v_{j}\right) & =\left(v_{i}, E K^{-1} v_{j}\right) \\
& =\epsilon \alpha^{-r} q^{2 j-n}\left(v_{i}, E v_{j}\right) \\
& =q^{2 j-n}[n-j+1]\left(v_{i}, v_{j-1}\right) \\
& =q^{i(i+1-n)+2(i+1)-n}[n-i] \frac{[n]!}{[i]![n-i]!} \delta_{i j-1} \\
& =q^{(i+1)(i+2-n)} \frac{[n]!}{[i]![n-i-1]!} \delta_{i j-1} \\
& =\left(F v_{i}, v_{j}\right) .
\end{aligned}
$$

This completes the proof of this theorem.
4. The Harish-Chandra homomorphism and the centre of $U_{r, t}$. Our objective in this section is to describe the centre Z of $U_{r, t}$ in case q is not a root of unity. We assume this throughout this section.

Let us fix (λ, α), where $\alpha \lambda \neq 0$. Consider an infinite-dimensional vector space $V(\lambda, \alpha)$ with denumerable basis $\left\{v_{i} \mid i \in \mathbf{N}\right\}$. For $p \geq 0$, set

$$
\begin{align*}
& \left\{\begin{array}{l}
K v_{p}=q^{-2 p} \lambda v_{p}, \quad J v_{p}=\alpha^{2} v_{p}, \\
E v_{p+1}=\frac{q^{-p} \lambda-q^{p} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}} v_{p}, \\
E v_{0}=0, \quad F v_{p}=[p+1] v_{p+1} .
\end{array}\right. \tag{4.1}\\
& K^{-1} v_{p}=q^{2 p} v_{p}, \quad J^{-1} v_{p}=\alpha^{-2} v_{p} . \tag{4.2}
\end{align*}
$$

Lemma 4.1. Relations in (4.1) and (4.2) define a $U_{r, t}$-module structure on $V(\lambda, \alpha)$. The element v_{0} generates $V(\lambda, \alpha)$ as a $U_{r, t}$-module and is the highest weight vector of weight (λ, α).

Proof. Immediate computation yield

$$
\begin{gathered}
K^{-1} K v_{p}=K K^{-1} v_{p}=v_{p}, \quad J^{-1} J v_{p}=J J^{-1} v_{p}=v_{p}, \\
K E K^{-1} v_{p}=q^{2} E v_{p}, \quad K F K^{-1} v_{p}=q^{-2} F v_{p},
\end{gathered}
$$

$$
\begin{align*}
{[E, F] v_{p} } & =\left([p+1] \frac{q^{-p} \lambda-q^{p} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}}-[p] \frac{q^{-p+1} \lambda-q^{p-1} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}}\right) v_{p} \\
& =\frac{q^{-2 p} \lambda-q^{2 p} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}} v_{p} \tag{4.3}\\
& =\frac{K-K^{-1} J^{r}}{q-q^{-1}} v_{p}
\end{align*}
$$

This show that the relations in (4.1) and (4.2) define a $U_{r, t}$-module structure on $V(\lambda, \alpha)$. The proof is complete.

Let U^{K} be the subalgebra of $U_{r, t}$ of all elements commuting with K.
Lemma 4.2. An element of $U_{r, t}$ belongs to U^{K} if and only if it is of the form

$$
\sum_{i \geq 0} F^{i} P_{i} E^{i}
$$

where P_{0}, P_{1}, \ldots are elements of $\mathbf{k}\left[K, K^{-1} ; J, J^{-1}\right]$.
Proof. This is a consequence of the fact that $\left\{F^{i} K^{l} J^{s} E^{j} \mid i, j \in \mathbf{N}, l, s \in \mathbf{Z}\right\}$ is a basis of $U_{r, t}$ and that

$$
K\left(F^{i} K^{l} J^{s} E^{j}\right) K^{-1}=q^{2(j-s)} F^{i} K^{l} J^{s} E^{i} .
$$

Lemma 4.3. We have $I=U_{r, t} E \cap U^{K}=F U_{r, t} \cap U^{K}$ and

$$
U^{K}=\mathbf{k}\left[K, K^{-1} ; J, J^{-1}\right] \oplus I .
$$

Proof. Let $u=\sum_{i \geq 0} F^{i} P_{i} E^{i} \in U_{r, t}$ be an element of U^{K}. If u also lies in $U_{r, t} E$, then $P_{0}=0$. Hence u belongs to $F U_{r, t} \cap U^{K}$ and conversely. Since the form $\sum_{i \geq 0} F^{i} P_{i} E^{i}$ is unique for any element of U^{K}, we get the desired direct sum.

It results from $I=U_{r, t} E \cap U^{K}=F U_{r, t} \cap U^{K}$ that I is a two-sided ideal and the projector φ from U^{K} onto $\mathbf{k}\left[K, K^{-1} ; J, J^{-1}\right]$ is a morphism of algebras. The map φ is called the Harish-Chandra homomorphism. It permits one to express the action of the centre Z on the highest weight module.

Proposition 4.1. Let $V(\lambda, \alpha)$ be the highest weight module of $U_{r, t}$ with highest weight (λ, α). Then, for any central element $z \in Z$ and any $v \in V$, we have

$$
z v=\varphi(z)\left(\lambda, \alpha^{2}\right) v .
$$

Recall that $\varphi(z)$ is a Laurent polynomial in K, J, and $\varphi(z)\left(\lambda, \alpha^{2}\right)$ is its value at $K=\lambda$ and $J=\alpha^{2}$.

Proof. Let v_{0} be the highest weight vector generating $V(\lambda, \alpha)$ and z a central element of $U_{r, t}$. The element z can be written in the form

$$
z=\varphi(z)+\sum_{i>0} F^{i} P_{i} E^{i}
$$

Since

$$
\left\{\begin{array}{l}
E v_{0}=0, \\
K v_{0}=\lambda v_{0}
\end{array}\right.
$$

we get $z v_{0}=\varphi(z)\left(\lambda, \alpha^{2}\right) v_{0}$. If v is an arbitrary element of $V(\lambda, \alpha)$, we have $v=x v_{0}$ for some $x \in U_{r, t}$, hence $z v=x z v_{0}=\varphi(z)\left(\lambda, \alpha^{2}\right) v$.

Lemma 4.4. Let $z \in Z$. If $\varphi(z)=0$, then $z=0$.
Proof. Let z be an element in the centre such that $\varphi(z)=0$. Assume $z \neq 0$. Since $z \in U^{K}$, we can assume that $z=\sum_{i=k}^{l} F^{i} P_{i} E^{i} \in F U_{r, t}$ for some $k \geq 1$, where $P_{k}, P_{k+1}, \ldots, P_{l}$ are non-zero Laurant polynomials in K and J. Consider a Verma module $V(\lambda, \alpha)$, The relations in (4.1) and (4.2) show that $E v_{p}=0$ if and only if $p=0$. Let us apply z to the vector v_{k} of $V(\lambda, \alpha)$. On the one hand

$$
z v_{k}=\varphi(z)\left(\lambda, \alpha^{2}\right) v_{k}=0
$$

On the other hand, we get

$$
z v_{k}=F^{k} P_{k} E^{k} v_{k}=c P_{k}\left(\lambda, \alpha^{2}\right) v_{k}
$$

where c is a non-zero constant. It follows that $P\left(\lambda, \alpha^{2}\right)=0$ for any non-zero λ and α. Thus $P_{k}=0$. This is impossible.

Theorem 4.5. When q is not a root of unity, the centre Z of $U_{r, t}$ is a polynomial algebra generated by the element C_{p} over the algebra $\mathbf{k}\left[J, J^{-1}\right]$. The restriction of HarishChandra homomorphism to Z is an isomorphism onto the subalgebra of $\mathbf{k}\left[K, K^{-1}, J^{-1}, J\right]$ generated by $q K+q^{-1} K^{-1} J^{r}$.

Proof. For any integer $n>0$, consider the Verma module $V\left(q^{n-1} \alpha^{r}, \alpha\right)$ for any non-zero element α. By (4.1) we have $E v_{n}=0$. Thus v_{n} is the highest weight vector of weight ($q^{-n-1} \alpha^{r}, \alpha$). By Proposition 4.1 a central element z acts on the module generated by v_{n} as the multiplication by scalar $\varphi(z)\left(q^{-(n-1)} \alpha^{r}, \alpha^{2}\right)$; but since v_{n} is in $V\left(q^{n-1} \alpha^{r}, \alpha\right)$, the element z also acts as the scalar $\varphi\left(q^{n-1} \alpha^{r}, \alpha^{2}\right)$. Thus

$$
\begin{equation*}
\varphi(z)\left(q^{n-1} \alpha^{r}, \alpha^{2}\right)=\varphi(z)\left(q^{-(n+1)} \alpha^{r}, \alpha^{2}\right) \tag{4.4}
\end{equation*}
$$

for any $\alpha \neq 0$ and any $n>0$. Suppose $\varphi(z)=P\left(K, K^{-1}, J, J^{-1}\right)$. Then (4.4) implies

$$
\begin{equation*}
P\left(q^{n-1} \alpha^{r}, q^{-(n-1)} \alpha^{-r}, \alpha^{2}, \alpha^{-2}\right)=P\left(q^{-(n+1)} \alpha^{r}, q^{n+1} \alpha^{-r}, \alpha^{2}, \alpha^{-2}\right) \tag{4.5}
\end{equation*}
$$

Let

$$
\psi_{\alpha}(x)=P\left(q^{-1} \alpha^{r} x, q \alpha^{r} x^{-1}, \alpha^{2}, \alpha^{-2}\right) .
$$

Then $\psi_{\alpha}\left(q^{n}\right)=\psi_{\alpha}\left(q^{-n}\right)$ for any integer n by (4.5). Hence

$$
\psi_{\alpha}(x)=\sum_{i \geq 0} a_{i}(\alpha)\left(x+x^{-1}\right)^{i},
$$

where $a_{i}(\alpha) \in \mathbf{k}\left[\alpha, \alpha^{-1}\right]$. Therefore

$$
\begin{equation*}
\psi_{\alpha}\left(q K \alpha^{-r}\right)=\sum_{i \geq 0} a_{i}(\alpha)\left(q K \alpha^{-r}+q^{-1} K^{-1} \alpha^{r}\right)^{i}=P\left(K, K^{-1}, \alpha^{2}, \alpha^{-2}\right) \tag{4.6}
\end{equation*}
$$

for any non-zero α. Since

$$
\begin{gathered}
P\left(K, K^{-1},(-\alpha)^{2},(-\alpha)^{-2}\right)=P\left(K, K^{-1}, \alpha^{2}, \alpha^{-2}\right), \\
\sum_{i \geq 0} a_{i}(\alpha) \alpha^{-r i}\left(q K+q^{-1} K^{-1} \alpha^{2 r}\right)^{i}=\sum_{i \geq 0} a_{i}(-\alpha) \alpha^{-r i}\left(q K+q^{-1} K^{-1} \alpha^{2 r}\right)^{i} .
\end{gathered}
$$

Hence $a_{i}(\alpha)=\alpha^{i r} b_{i}\left(\alpha^{2}\right)$. So

$$
\begin{equation*}
\sum_{i \geq 0} b_{i}\left(\alpha^{2}\right)\left(q K+q^{-1} K^{-1} \alpha^{2 r}\right)^{i}=P\left(K, K^{-1}, \alpha^{2}, \alpha^{-2}\right) \tag{4.7}
\end{equation*}
$$

Consequently,

$$
\varphi(z)=\sum_{i \geq 0} c_{i}\left(J, J^{-1}\right)\left(q K+q^{-1} K^{-1} J^{r}\right)^{i}
$$

Since $\varphi\left(C_{p}\right)=\frac{q K+q^{-1} K^{-1} J^{r}}{\left(q-q^{-1}\right)^{2}}, \varphi(J)=J$ and $\varphi\left(J^{-1}\right)=J^{-1}, \varphi$ is a surjective map from Z to the subalgebra of $\mathbf{k}\left[K, K^{-1}, J^{-1}, J\right]$ generated by $q K+q^{-1} K^{-1} J^{r}$. Using Lemma 4.4, we obtain the proof of the remaining results of this theorem.
5. The generalized quantum Clebsch-Gordan formula. We now prove a generalized quantum Clebsch-Gordan formula for the finite-dimensional simple $U_{r, t}$ modules. Since

$$
V_{\epsilon, n, \alpha} \simeq V_{\epsilon, 0, \alpha} \otimes V_{1, n, 1},
$$

and $V_{1, n, 1}$ can view a module over $U_{r, t} /(J-1) \simeq U_{q}(\mathfrak{s l}(2))$, we get the following lemma by using the quantum Clebsch-Gordan formula for the usual quantum enveloping algebra $U_{q}(\mathfrak{s l}(2))$ of $\mathfrak{s l}(2)$.

Lemma 5.1. Let $n \geq m$ be two non-negative integers. There exists an isomorphism of $U_{r, t}$-modules

$$
V_{\epsilon, n, \alpha} \otimes V_{\epsilon^{\prime}, n, \beta} \simeq V_{\epsilon \epsilon^{\prime}, n+m, \alpha \beta} \oplus V_{\epsilon \epsilon^{\prime}, n+m-2, \alpha \beta} \oplus \cdots \oplus V_{\epsilon \epsilon^{\prime}, n-m, \alpha \beta} .
$$

Proof. It is obvious that $V_{\epsilon, 0, \alpha} \otimes V_{\epsilon^{\prime}, 0, \beta} \simeq V_{\epsilon \epsilon^{\prime}, 0, \alpha \beta}$. Thus this lemma follows from the above remark.

In the remainder of this section, we always assume that $n \geq m$ and $\epsilon=\epsilon^{\prime}=1$. In the case $\alpha^{r}=1$, we can determine the all highest weight vectors of $V_{\epsilon, n, \alpha} \otimes V_{\epsilon^{\prime}, n, \beta}$ in the following lemma.

Lemma 5.2. Let $v^{(n)}$ be the highest weight vector of weight $\left(q^{n} \alpha^{r}, \alpha\right)$ in $V_{1, n, \alpha}$ and $v^{(m)}$ be the highest weight vector of weight $\left(q^{m} \beta^{r}, \beta\right)$ in $V_{1, m, \beta}$. Let us define $v_{p}^{(n)}=\frac{1}{[p]!} F^{p} v^{(n)}$, $v_{p}^{(m)}=\frac{1}{[p]!} F^{p} v^{(m)}$, for all $p \geq 0$. Suppose $\alpha^{r}=1$. Then

$$
v^{(n+m-2 p)}=\sum_{i=0}^{p}(-1)^{i} \frac{[m-p+i]![n-i]!}{[m-p]![n]!} q^{-i(m-2 p+i+1)} \beta^{2 r t(n-i)} v_{i}^{(n)} \otimes v_{p-i}^{(m)}
$$

is the highest weight vector of weight $\left(q^{n+m-2 p} \beta^{r}, \alpha \beta\right)$.

Proof. It is clear that $v_{i}^{(n)} \otimes v_{p-i}^{(m)}$ has weight $\left(q^{n+m-2 p} \beta^{r}, \alpha \beta\right)$. Let us check that $E v^{(n+m-2 p)}=0$. Recall that

$$
\Delta(E)=J^{-r t} \otimes E+E \otimes K J^{r t}
$$

It follows that

$$
\begin{aligned}
E v^{(n+m-2 p)}= & \sum_{i=0}^{p}(-1)^{i} \frac{[m-p+i]![n-i]!}{[m-p]![n]!} q^{-i(m-2 p+i+1)}[m-p+i+1] \\
& \times \beta^{2 r t(n-i)+r} v_{i}^{(n)} \otimes v_{p-i-1}^{(m)} \\
+ & \sum_{i=0}^{p}(-1)^{i} \frac{[m-p+i]![n-i]!}{[m-p]![n]!} q^{-i(m-2 p+i+1)+(m-2 p+2 i)}[n-i+1] \\
& \times \beta^{2 r t(n-i+1)+r} v_{i-1}^{(n)} \otimes v_{p-i}^{(m)} \\
= & \sum_{i=0}^{p}(-1)^{i} \frac{[m-p+i]![n-i+1]!}{[m-p]![n]!} q^{-(i-1)(m-2 p+i)}\left(\beta^{2 r t(n-i+1)+r}\right. \\
& -\beta^{2 r t(n-i+1)+r) v_{i}^{(n)} \otimes v_{p-i}^{(m)}}= \\
= & 0 .
\end{aligned}
$$

Thus this lemma is true.
We wish to go one step further and address the following problem. We now have two bases of $V_{1, n, \alpha} \otimes V_{1, m, \beta}$ at our disposal. They are of different natures, the first one, adapted to the tensor product, is the set

$$
\left\{v_{i}^{(n)} \otimes v_{j}^{(m)} \mid 0 \leq i \leq n, 0 \leq j \leq m\right\} ;
$$

the second one, formed by the vectors

$$
v_{k}^{(n+m-2 p)}=\frac{1}{[k]!} F^{k} v^{(n+m-2 p)}
$$

with $0 \leq p \leq m$ and $0 \leq k \leq n+m-2 p$, is better adapted to the $U_{r, t}$-module structure. Comparing both bases leads us to the so-called generalized quantum Clebsch-Gordan coefficients $\left\{\begin{array}{lll}n & m & n+m-2 p \\ i & j & k\end{array}\right\}$ defined for $0 \leq p \leq m$, and $0 \leq k \leq n+m-2 p$ by

$$
v_{k}^{(n+m-2 p)}=\sum_{0 \leq i \leq n ; 0 \leq j \leq m}\left\{\begin{array}{ccc}
n & m & n+m-2 p \\
i & j & k
\end{array}\right\} v_{i}^{(n)} \otimes v_{j}^{(m)}
$$

In particular,

$$
\begin{aligned}
\left\{\begin{array}{ccc}
n & m & n+m-2 p \\
i & j & 0
\end{array}\right\} & =(-1)^{i} \frac{[m-p+i]![n-i]!!}{[m-p]![n]!} q^{-i(m-2 p+i+1)} \beta^{2 r t(n-i)} \\
& =\left[\begin{array}{ccc}
n & m & n+m-2 p \\
i & j & 0
\end{array}\right] \beta^{2 r t(n-i)},
\end{aligned}
$$

where $\left[\begin{array}{cc}n & m \\ i & j \\ n+m-2 p\end{array}\right]$ is the usual quantum Clebsch-Gordan coefficients, is also called quantum $3 j$-symbols in the physics literature.

Proposition 5.1. Fix p and k. The vector $v_{k}^{(n+m-2 p)}$ is a linear combination of vectors of the form $v_{i}^{(n)} \otimes v_{p-i+k}^{(m)}$. Therefore we have $\left\{\begin{array}{cc}n \\ i & \underset{j}{n} \\ j & n+m-2 p\end{array}\right\}=0$ when $i+j \neq p+k$. We also have the induction relation

$$
\begin{aligned}
\left\{\begin{array}{c}
n \underset{i j+1}{n+m-2 p} \\
i j+1
\end{array}\right\}= & \frac{[j+1] q^{2 i-n}}{[k+1]}\left\{\begin{array}{ccc}
n & m & n+m-2 p \\
i & j & k
\end{array}\right\} \\
& +\frac{[i]}{[k+1]}\left\{\begin{array}{ccc}
n & m & n+m-2 p \\
i-1 & j+1 & k
\end{array}\right\} \beta^{-2 r t}
\end{aligned}
$$

Proof. This goes by induction on k. The assertion holds for $k=0$ by Lemma 5.2. Supposing

$$
v_{k}^{(n+m-2 p)}=\sum_{i} x_{i} v_{i}^{(n)} \otimes v_{p-i+k}^{(m)},
$$

we have

$$
\begin{aligned}
{[k+1] v_{k+1}^{(n+m-2 p)}=} & F v_{k}^{(n+m-2 p)} \\
= & \sum_{i} x_{i}\left(J^{r(t+1)} K^{-1} v_{i}^{(n)} \otimes F v_{p-i+k}^{(m)}+F v_{i}^{(n)} \otimes J^{-r t} v_{p-i+k}^{(m)}\right) \\
= & \sum_{i} x_{i}\left([p-i+k+1] q^{2 i-n} v_{i}^{(n)} \otimes v_{p-i+k+1}^{(m)}\right. \\
& \left.+[i+1] \beta^{-2 r t} v_{i+1}^{(n)} \otimes v_{p-i+k}^{(m)}\right) \\
= & \sum_{i}\left(x_{i}[p-i+k+1] q^{2 i-n}+x_{i-1}[i] \beta^{-2 r t}\right) \\
& \times v_{i}^{(n)} \otimes v_{p-i+k+1}^{(m)} .
\end{aligned}
$$

The rest follows easily.
We now prove some orthogonality relations for the generalized quantum ClebschGordan coefficients. Let us equip $V_{1, n, \alpha}$ and $V_{1, m, \beta}$ with the scalar product (,) defined in Section 4. Consider the symmetric bilinear form on $V_{1, n, \alpha} \otimes V_{1, m, \beta}$ given by

$$
\left(v_{1} \otimes v_{1}^{\prime}, v_{2} \otimes v_{2}^{\prime}\right)=\left(v_{1}, v_{2}\right)\left(v_{1}^{\prime}, v_{2}^{\prime}\right),
$$

where $v_{1}, v_{2} \in V_{1, n, \alpha}$ and $v_{1}^{\prime}, v_{2}^{\prime} \in V_{1, m, \beta}$.
PRoposition 5.2. (a) We have

$$
\begin{aligned}
& v_{k}^{(n+m-2 p)}=\frac{1}{[k]!} \sum_{i=0}^{p} \sum_{s=0}^{k}(-1)^{i} \frac{[m-p+i]![n-i]![s+i]![p+k-i-s]!}{[m-p]![n]![i]![p-i]!} \\
& \\
& \times q^{-i(m-2 p+i+1)+(k-s)(s+2 i-n)} \beta^{2 r t(n-i-s)} v_{i+s}^{(n)} \otimes v_{p+k-i-s}^{(m)} . \\
& \text { (b) }\left(v_{k}^{(n+m-2 p)}, v_{l}^{(n+m-2 q)}\right)=0 \text { whenever } p+k \neq q+l .
\end{aligned}
$$

Proof. Since $\Delta(F)=J^{r(t+1)} K^{-1} \otimes F+F \otimes J^{-r t}$,

$$
\Delta\left(F^{k}\right)=\sum_{s=0}^{k} q^{s(k-s)}\left[\begin{array}{l}
k \\
s
\end{array}\right]\left(J^{r(t+1)(k-s)} F^{s} K^{-(k-s)} \otimes J^{-r t s} F^{k-s}\right)
$$

Hence

$$
\begin{aligned}
v_{k}^{(n+m-2 p)}= & \frac{1}{[k]!} \sum_{i=0}^{p} \sum_{s=0}^{k}(-1)^{i}\left[\begin{array}{c}
k \\
s
\end{array}\right] \frac{[m-p+i]![n-i]!}{[m-p]![n]!} \\
& \times q^{-i(m-2 p+i+1)+(k-s) s} \beta^{2 r t(n-i)} \\
& \times F^{s} K^{-(k-s)} v_{i}^{(n)} \otimes J^{-r t s} F^{k-s} v_{p-i}^{(m)} \\
= & \frac{1}{[k]!} \sum_{i=0}^{p} \sum_{s=0}^{k}(-1)^{i}\left[\begin{array}{c}
k \\
s
\end{array}\right] \frac{[m-p+i]![n-i]!}{[m-p]![n]!} \times \\
& q^{-i(m-2 p+i+1)+(2 i-n+s)(k-s)} \beta^{2 r t(n-i)-2 r t s} F^{s} v_{i}^{(n)} \otimes F^{k-s} v_{p-i}^{(m)} \\
= & \frac{1}{[k]!} \sum_{i=0}^{p} \sum_{s=0}^{k}(-1)^{i}\left[\begin{array}{c}
k \\
s
\end{array}\right] \frac{[m-p+i]![n-i]![i+s]![p+k-i-s]!}{[m-p]![n]![i]![k-s]!} \\
& \times q^{-i(m-2 p+i+1)+(2 i-n+s)(k-s)} \beta^{2 r t(n-i-s)} v_{i+s}^{(n)} \otimes v_{p+k-s-i}^{(m)} .
\end{aligned}
$$

By Theorem 3.10, $\left(v_{i+s}^{(n)}, v_{j+u}^{(n)}\right)\left(v_{p+k-i-s}^{(m)}, v_{q+l-j-u}^{(m)}\right)=0$ either $i+s \neq j+u$ or $p+k-$ $i-s \neq q+l-j-u$. If $i+s=j+u$ and $p+k-i-s=q+l-j-u$, then $p+k=$ $q+l$. Hence $\left(v_{k}^{(n+m-2 p)}, v_{l}^{(n+m-2 q)}\right)=0$ whenever $p+k \neq q+l$.

REMARK 5.3. Similarly to [3], one can study the categorification of tensor products of arbitrary finite-dimensional irreducible modules over the $U_{r, t}$.
6. In the case q is a root of unity. Our main aim is to find all finite-dimensional simple $U_{r, t}$ in the case when the parameter q is a root of unity $\neq \pm 1$. Denote by d the order of q, i.e. the smallest integer greater than 1 such that $q^{d}=1$. Since we assume $q^{2} \neq 1, d>2$. Define

$$
e= \begin{cases}d & \text { if } d \text { is odd } \\ \frac{d}{2} & \text { when } d \text { is even. }\end{cases}
$$

It is easy to check that $[n]=0$ if and only if $n \equiv 0(\bmod e)$.
Lemma 6.1. The elements E^{e}, F^{e} and K^{e} belong to the centre of $U_{r, t}$.
Proof. K^{e} commutes with E and F because $q^{2 e}=1$. So K^{e} is in the centre of $U_{r, t}$. Since $[e]=0$,

$$
\left[E^{e}, F\right]=[e] \frac{q^{-(e-1)} K-q^{e-1} K^{-1} J^{r}}{q-q^{-1}} E^{e-1}=0
$$

Moreover $K E^{e} K^{-1}=\left(K E K^{-1}\right)^{e}=\left(q^{2} E\right)^{e}=E$. So E^{e} belongs to the centre of $U_{r, t}$. Similar arguments can be applied to F^{e}.

Lemma 6.2. There is no simple finite-dimensional $U_{r, t}$ module of dimension greater than e.

Proof. Let us assume that there exists a simple finite-dimensional module greater than e. We shall prove that V has a non-zero submodule of dimension less than or equal to e. Hence, a contradiction.
(a) Suppose there exists a non-zero vector $v \in V$ such that $K v=\lambda v, J v=\alpha^{2} v$ and $F v=0$. We claim that the subspace V^{\prime} spanned by $v, E v, \ldots, E^{e-1} v$ is a submodule of dimension less than or equal to e. It is enough to check that V^{\prime} is stable under the action of generators E, F, K, J. This is clear for K, J. Let us prove that V^{\prime} is stable under the action of E. The vector $E\left(E^{p} v\right)=E^{p-1} v$ belongs to V^{\prime} if $p<e-1$. If $p=e-1$, then the action of E^{e} on the irreducible module V is given by a scalar c, as E^{e} is in the centre of $U_{r, t}$. So $E\left(E^{e-1}\right) v=c v$ belongs to V^{\prime}. Finally, V^{\prime} is stable under the F by $F v=0$ and Lemma 2.3.
(b) Suppose there is no common eigenvector v of K and J satisfying $F v=0$. We claim that the subspace V^{\prime} spanned by $v, F v, \ldots, F^{e-1} v$ is a submodule of V, where v satisfies $K v=\lambda v, J v=\alpha^{2} v$. Since F^{e} is in the centre of $U_{r, t}, F^{e} v=c v$ for some $c \in \mathbf{k}$ and $c \neq 0$. Thus V^{\prime} is stable under the action of F. It is easy to prove that V^{\prime} is stable under the actions of J, K. Let us show that V^{\prime} is stable under the action of E. Recall that $C_{p}=E F+\frac{q^{-1} K+q K^{-1} J^{r}}{\left(q+q^{-1}\right)^{2}}=F E+\frac{q K+q^{-1} K^{-1} J^{r}}{\left(q+q^{-1}\right)^{2}}$ is in the centre of $U_{r, t}$. Hence there exists $a \in \mathbf{k}$ such that $C_{p} w=a w$ for any vector $w \in V$. Hence $E v=\frac{1}{c} E F^{e} v=\frac{1}{c}\left(C_{p}-\frac{q^{-1} K+q K^{-1} J^{2}}{\left(q+q-q^{-1}\right)^{2}}\right) F^{e-1} v=\frac{1}{c}\left(a-\frac{q \lambda+q-1 \lambda^{-1} \alpha^{2}}{\left(q+q^{-1}\right)^{2}}\right) F^{e-1} v$. For any $p \geq 0, E F^{p+1} v=\left([p+1] \frac{q^{p} K+q^{-p} K^{-1} J^{r}}{q-q^{-1}} F^{p}+F^{p+1} E\right) v=\left(\frac{q^{-p} \lambda+q^{p} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}}[p+1]+\right.$ $\left.a-\frac{q \lambda+q-1 \lambda^{-1} \alpha^{2^{r}}}{\left(q+q^{-1}\right)^{2}}\right) F^{p} v$. From the above computation, we show that V^{\prime} is stable under the action of E. Hence V^{\prime} is a submodule of V.

Theorem 6.3. Any non-zero simple finite-dimensional $U_{r, t}$ is isomorphic to a module of the form
(i) $V_{\epsilon, n, \alpha}$ with $0 \leq n<e-1$,
(ii) $V_{\lambda, \alpha, a}$, where $V_{\lambda, a}$ has a basis $\left\{v_{0}, v_{1}, \ldots, v_{e-1}\right\}$ such the action of the generators of $U_{r . t}$ given by

$$
\begin{gather*}
K v_{p}=q^{2 p} v_{p}, 0 \leq p \leq e-1, \tag{6.1}\\
J v_{p}=\alpha^{2} v_{p}, 0 \leq p \leq e-1, \tag{6.2}\\
F v_{p+1}=\frac{q^{-p} \lambda^{-1} \alpha^{2 r}-q^{p} \lambda}{q-q^{-1}}[p+1] v_{p}, 0 \leq p<e-1, \tag{6.3}\\
E v_{p}=v_{p+1}, 0 \leq p<e-1, \tag{6.4}\\
F v_{0}=0, E v_{e-1}=a v_{0}, \tag{6.5}
\end{gather*}
$$

(iii) $V_{\lambda, \alpha, a, b}$, where $b \neq 0$ and $V_{\lambda, \alpha, a, b}$ has a basis $\left\{v_{0}, v_{1}, \ldots, v_{e-1}\right\}$ such the action of the generators of $U_{r . t}$ given by

$$
\begin{gather*}
K v_{p}=q^{-2 p} v_{p}, 0 \leq p \leq e-1, \tag{6.6}\\
J v_{p}=\alpha^{2} v_{p}, 0 \leq p \leq e-1, \tag{6.7}\\
E v_{p+1}=\left(\frac{q^{p} \lambda-q^{-p} \lambda^{-1} \alpha^{2 r}}{q-q^{-1}}[p+1]+a b\right) v_{p}, 0 \leq p<e-1, \tag{6.8}\\
F v_{p}=v_{p+1}, 0 \leq p<e-1, \tag{6.9}\\
F v_{e-1}=b v_{0}, E v_{0}=a v_{e-1}, \tag{6.10}
\end{gather*}
$$

Proof. Suppose the simple module V with $\operatorname{dim} V<e$. Then we can prove V is isomorphic to $V_{\epsilon, n, \alpha}$, as we have done in the proof of Theorem 3.4.

Suppose the simple module V with $\operatorname{dim} V=e$. Then we can obtain that V is isomorphic to either $V_{\lambda, \alpha, a}$, or $V_{\lambda, \alpha, a, b}$ from the proof of Lemma 6.2

Remark 6.4. In Sections 3 and 6, we describe the irreducible representations of $U_{r, t}$. An irreducible representation of the quantum group $U_{q}(\mathfrak{s l l}(2))$ can be realized in terms of the space of functions on some algebraic varieties [2]. We will study the representations of $U_{r, t}$ on some spaces of functions, and establish the relations between the representations of $U_{r, t}$ and hypergeometric series as in refs. [7, 10] in the future paper.
7. Finite-dimensional Hopf algebra. The basic problem in the theory of Hopf algebras is to classify finite-dimensional Hopf algebras (see [8] and references therein). So one need to construct various Hopf algebras. Our main aim in this section is to construct a kind of finite-dimensional Hopf algebras by using the algebra $U_{r, t}$. We assume that the parameter q is a root of unity $\neq \pm 1$. The definitions of e and q were given in Section 6.

Lemma 7.1. Let $U^{\prime}=U_{r, t} /\left(E^{e}, F^{e}\right)$. Then U^{\prime} has a basis $\left\{E^{i} F^{j} K^{m} J^{n} \mid 0 \leq i, j \leq e-\right.$ $1, m, n \in \mathbf{Z}\}$.

Proof. From Theorem 2.4, we know that U^{\prime} is generated by $\left\{E^{i} F^{j} K^{m} J^{n} \mid 0 \leq\right.$ $i, j \leq e-1, m, n \in \mathbf{Z}\}$. We only need to prove the elements in $\left\{E^{i} F^{j} K^{m} J^{n} \mid 0 \leq i, j \leq\right.$ $e-1, m, n \in \mathbf{Z}\}$ are linearly independent. Suppose

$$
Z=\sum_{0 \leq i, j \leq e-1, r_{1} \leq m \leq s_{1}, r_{2} \leq n \leq s_{2}} a_{i j m n} E^{i} F^{j} K^{m} J^{n}=0 .
$$

Let V be a $U_{r, t}$-module with basis $\left\{v_{0}, v_{1}, \ldots, v_{e-1}\right\}$ such that $E v_{e-1}=0, E v_{i}=$ v_{i+1} for $0 \leq i<e-1, F v_{p+1}=\frac{q^{-p} \lambda^{-1} \alpha^{2 r}-p^{q} \lambda}{q-q^{-1}}[p+1] v_{p}$ for $0 \leq p<e-1$, and $F v_{0}=0$, $K v_{p}=q^{2 p} \lambda v_{p}, J v_{p}=\alpha^{2} v_{p}$, where λ is neither zero nor a root of unity. Then

$$
Z v_{e-1}=\sum_{1 \leq i \leq e-1, r_{1} \leq m \leq s_{1}, r_{2} \leq n \leq s_{2}} a_{i e-1 m n} \alpha^{2} n \lambda^{m} v_{i}=0
$$

Hence

$$
\begin{equation*}
\sum_{r_{1} \leq m \leq s_{1}}\left(\sum_{r_{2} \leq n \leq s_{2}} a_{i e-1 m n} \alpha^{2 r}\right) \lambda^{m}=0 \tag{7.1}
\end{equation*}
$$

for any $0 \leq i \leq e-1$. Writing (7.1) for $s_{1}-r_{1}+1$ distinct elements $\lambda \in \mathbf{k}$, we get a linear system whose determinant is not equal to zero. Consequently,

$$
\begin{equation*}
\sum_{r_{2} \leq n \leq s_{2}} a_{i e-1 m n} \alpha^{2 n}=0 \tag{7.2}
\end{equation*}
$$

for any m. Similarly we can prove $a_{i e-1 m n}=0$ for any n from (7.2).
Next, we apply Z to the vector v_{e-2}. We get $a_{i e-2 m n}=0$ for all i, m, n by the same argument as above. Applying Z successively to the vector v_{e-2} down to v_{0}, one shows that all coefficients $a_{i j m n}$ vanish.

Lemma 7.2. Let $U^{\prime \prime}=U_{r, t} /\left(E^{e}, F^{e}, K^{e}-1\right)$. Then $U^{\prime \prime}$ has a basis $\left\{E^{i} F^{j} K^{m} J^{n} \mid 0 \leq\right.$ $i, j, m \leq e-1, n \in \mathbf{Z}\}$.

Proof. We use $d(Z)$ (resp. $\delta(Z)$) to denote the degree in K (resp. K^{-1}) of the element $Z \in U^{\prime}$. It is clear that the set $\left\{E^{i} F^{j} K^{m} J^{n} \mid 0 \leq i, j, m \leq e-1, n \in \mathbf{Z}\right\}$ span the algebra $U^{\prime \prime}$. It remains to check that they are linearly independent. If

$$
Z=\sum_{0 \leq i, j, m \leq e-1, r_{1} \leq n \leq s_{1}} a_{i j m n} E^{i} F^{j} K^{m} J^{n}=0
$$

in $U^{\prime \prime}$, then in U^{\prime}

$$
\begin{align*}
Z= & \left(K^{e}-1\right) Y \\
= & \sum_{0 \leq i, j \leq e-1, m, n \in \mathbf{Z}} b_{\ddot{j} m n} E^{i} F^{j} K^{m+e} J^{n} \tag{7.3}\\
& -\sum_{0 \leq i, j \leq e-1, m, n \in \mathbf{Z}} b_{\ddot{\ddot{j} m n}} E^{i} F^{j} K^{m} J^{n},
\end{align*}
$$

where $Y=\sum_{0 \leq i, j \leq e-1, m, n \in \mathbf{Z}} b_{\ddot{j} m n} E^{i} F^{j} K^{m} J^{n}$. Since

$$
Z=\sum_{0 \leq i, j, m \leq e-1, r_{1} \leq n \leq s_{1}} a_{\text {ïmn }} E^{i} F^{j} K^{m} J^{n},
$$

$0 \leq \delta(Z) \leq d(Z)<e$. From (7.3) we obtain $d(Z)=d(Y)+e$ and $\delta(Z)=\delta(Y)$. Thus $d(Y)=d(Z)-e<0 \leq \delta(Z)=\delta(Y)$. This is impossible, hence $Z=0$ in U^{\prime}. Therefore all coefficients $a_{i j m n}$ vanish.

Lemma 7.3. Let $U_{r, t, l}=U_{r, t} /\left(E^{e}, F^{e}, K^{e}-1, J^{l}-1\right)$. Then $U_{r, t, l}$ has a basis $\left\{E^{i} F^{j} K^{m} J^{n} \mid 0 \leq i, j, m \leq e-1,0 \leq n \leq l-1\right\}$.

Proof. The proof is similar to that of Lemma 7.2.
Theorem 7.4. Let $U_{r, t, l}=U_{r, t} /\left(E^{e}, F^{e}, K^{e}-1, J^{l}-1\right)$. Then $U_{r, t, l}$ has a unique Hopf algebra structure such that the canonical projection from $U_{r, t}$ to $U_{r, t, l}$ is a morphism of Hopf algebras. Moreover the dimension of $U_{r, t, l}$ is equal to $l e^{3}$.

Proof. We only need to check that

$$
\begin{gather*}
\Delta\left(E^{e}\right)=\Delta\left(F^{e}\right)=\Delta\left(K^{e}\right)-1=\Delta\left(J^{l}\right)-1=0, \tag{7.4}\\
\varepsilon\left(E^{e}\right)=\varepsilon\left(F^{e}\right)=\varepsilon\left(K^{e}-1\right)=\varepsilon\left(J^{l}-1\right)=0, \tag{7.5}\\
S\left(E^{e}\right)=S\left(F^{e}\right)=S\left(K^{e}\right)-1=S\left(J^{l}\right)-1=0 \tag{7.6}
\end{gather*}
$$

The only non-trivial computations concern the vanishing $\Delta\left(E^{e}\right)=\Delta\left(F^{e}\right)=0$. Following Proposition 2.3,

$$
\Delta\left(E^{e}\right)=\sum_{u=0}^{e} q^{u(e-u)}\left[\begin{array}{l}
e \\
u
\end{array}\right]\left(J^{-r t u} E^{e-u} \otimes J^{r t(e-u)} E^{u}\right)
$$

Since $\left.{ }_{c}^{e}\right]=0$ for $0<u<e, \Delta\left(E^{e}\right)=E^{e} \otimes J^{r t e}+J^{-r t e} \otimes E^{e}$. Thus $\Delta\left(E^{e}\right)=0$ as $E^{e}=0$. One can prove that $\Delta\left(F^{e}\right)=0$ in a similar way.

By Lemma 7.3, we obtain a Hopf algebra $U_{r, t, l}$ with dimension $l e^{3}$.
Acknowledgements. The author would like to thank the referee for careful reading and useful comments on this paper.

REFERENCES

1. V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985), 254-258.
2. I. Frankel, M. Khovanov and C. Stroppel, A categorification of finite-dimensional irreducible representations of quantum $\mathfrak{s l}_{2}$ and their tensor products, Selecta Math. 12(3-4) (2006), 379-431.
3. M. Jimbo, A q-difference analogue of $U(\mathcal{G})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
4. V. G. Kac, Infinite dimensional Lie algebras, 3rd edition (Cambridge University Press, Cambridge, 1990).
5. G. Lusztig, Introduction to quantum group (Birkhäuser, Boston, 1993).
6. M. Rosso, Finite-dimensional representations of the quantum analog of enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1998), 581-593.
7. A. Savage, The tensor product of representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$ via quivers, Adv. Math. 177(2) (2003), 297-340.
8. Ng. Siu-Hung, Hopf algebras of dimension pq, J. Algebra 319(7) (2008), 2772-2788.
9. T. Tanisaki, Harish-Chandra isomorphisms for quantum algebras, Comm. Math. Phys. 127 (1990), 555-571.
10. Y. Vivek and Y. Savasvati, On the models of certain p, q-algebra representations: The p, q-oscillator algebra, J. Math. Phys. 49(5) (2008), 053504, 1-12.
11. Zhixiang Wu, A class of weak Hopf algebras related to a Borcherds-Cartan Matrix, J. Phys. A Math. gen. 39 (2006), 14611-14626.
