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RATIONAL HAUPTMODULS ARE REPLICABLE 

C. J. CUMMINS AND S. P. NORTON 

ABSTRACT. It is shown that if/ is a Hauptmodul with rational integer coefficients 
for a group G < PGL2(Q)+, of genus zero, containing a f0(A/) with finite index and 
z *—• z+k precisely when k is an integer, then/ is replicable. Examples of such functions 
are given by the Moonshine functions described by Conway and Norton [CN]. 

1. Introduction. The modular group T = SL2(Z) acts on 77*, the extended upper 
half plane HU Q U {/oo}, by fractional linear transformations. The normalized generator, 
or Hauptmodul, of the function field of H*/T is they function, 

j(z) = q~
l + 744 + 196884^ + 21493760?2 + 864299970?3 + • • • 

where q = exp(2iriz). In this paper we will normalize Hauptmoduls to have zero constant 
term, so we take J =j — 744 as the normalized Hauptmodul for T. As noted by McKay 
the coefficient 196884 is almost the dimension of the smallest nontrivial complex repre
sentation of the Monster group Ml, moreover other coefficients are the dimensions, dn, 
of representations V„ of Ml. Other series are be obtained by replacing the dn by character 
values on Vn of other conjugacy classes of Ml (Thompson [T]). For example for the class 
IB we obtain the series 

tiB = q~l+ 216q - 2048?2 + 11202?3 + • • • 

which is the Hauptmodul for the function field of the congruence subgroup To(2). Con
way and Norton [CN] made a number of remarkable conjectures about these series which 
they termed "Monstrous Moonshine": 

CONJECTURE 1.1. Each rational conjugacy class in M gives rise to a Hauptmodul 
for a genus zero subgroup o/PGL2(Q)+ containing a normal subgroup fo(N), for some 
N, of finite index. 

This conjecture has now been proved by Borcherds [Bl]. Conway and Norton also 
conjectured that the power map structure of Ml is mirrored in certain relationships be
tween the Moonshine functions. More generally Norton [Nl] initiated the study of q-
series of the form: 

(1. 1) Rz) = q~X +Hxq + H2q
2+H^ + • • • 
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where Ht G Q, / = 1,2,..., for which a "power map" structure like that of the Moonshine 
functions can be defined as follows: Given a ^-series of the form (1.1) define the n-th 
replicate off iteratively by 

(1.2) / » (« ) = - £ ' / a ) ( ^ ) + &,(/) 
ad=n V a / 

0<b<d 

where the primed sum means that the term with a = n is omitted and Qn is the unique 
polynomial in/(z) with q expansion 

Qn(f) = q~n + terms of degree > 0. 

This definition may produce replicates such that the ^-expansion of/^(z) has terms with 
fractional powers of q. If however we have that for all n,f^n\z) has ^-expansion 

/»)(Z) = q~l+ ti^q + É^q1 + • • • 

then we say tha t / is replicable. As mentioned above it was conjectured by Conway 
and Norton [CN] that in the case of the Moonshine functions f^n\z) coincides with the 
function on the n-th power of the conjugacy class corresponding to/(z) and again this 
has now been proved by Borcherds [Bl]. We note that the sum in equation (1.2) is, in 
many cases, a Hecke operator for an appropriate group. We shall not make use of this 
fact. 

Norton [Nl] defines the bivarial transformation off to be: 

(1-3) £ / W V " = -log(l -pqi,H£^4-) 
m,n>\ V i=l P — <1 ' 

so that the Hmn are polynomials in the //,-. He then calls a function replicable if it satisfies 
Hmyn = Hrj whenever mn = rs and (m,n) = (r, s). In the appendix it is shown that these 
two definitions coincide (see also [ACMS]). The latter definition is more convenient for 
numerical calculations and was used in [ACMS] to calculate all the replicable functions 
with rational integer coefficients which have only a finite number of distinct replicates, 
which are themselves replicable; a property that holds for Monstrous Moonshine func
tions. There are, excluding the trivial cases q~l + aq, 326 of them, of which 171 are 
Monstrous functions. (Note: it is believed that the "finiteness" condition is redundant in 
the non-trivial cases.) 

Norton conjectured the following: 

CONJECTURE 1.2. A function f = q~x + £/>i Htq
l with rational integer coefficients 

is replicable if and only if either f is trivial or it is the Hauptmodul for a group G < 
PGL2(Q)+ satisfying 

1. G has genus zero, 
2. G contains a f o(N) with finite index, 
3. G contains z \—• z + k if and only ifk G Z. 

This conjecture has also been extended to include the case of irrational coefficients 
[N2] and even to the case of higher genus [Sm, N2]. In this paper we shall prove part of 
this conjecture: 
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THEOREM 1.3. Iff is a Hauptmodul with rational coefficients for a group G < 
PGL2(Q)+, of genus zero, containing a TQ{N) with finite index andz i—» z + k precisely 
when k is an integer, thenf is replicable. 

Some partial results have been obtained by Ferenbaugh [F], Koike [K] and Norton 
[N2]. The last of these deals with the case of replication by an index prime to N, and 
extends to irrational coefficients and higher genus. The idea of the proof of Theorem 1.3 
is as follows. From the first definition of replicability, fis replicable if we can iteratively 
define its replication powers f&\ Suppose all lower replicates have been constructed. 
Then the obstruction to constructing f^ is that the q series 

+ b^ 

*>~£/«(=^)+<wn ad=n 
0<b<d 

may not be a series in qn, so we have to show t(z) = t(z+ £). However we can inductively 
show that both t(z) and t(z + I) are modular functions for some congruence group, G, 
with singularities only on Q and {/oo}. We show that t(z) — t(z + ^) is bounded on some 
fundamental domain of G and hence that t(z) — t(z + £). 

The structure of the rest of the paper is as follows. In Section 2 we derive some results 
on the Galois action on the coefficients of/. Details of the proof of Theorem 1.3 are in 
Section 3. In the appendix we give some properties of replicable functions. 

2. Galois action on automorphic functions. We start with some notation and ob
servations. Let 

r0(N) = 

and 

[a
c
 b

d] G SL2(Z) | c = 0 (mod N) 

T(N) = i f c d) £$L2(l)\b = c = 0 (modAo). 

Denote by f0(N) and f (N) the images of T0(N) and T(N) in PSL2(Z) = SL2(Z)/{db/}. 
Up to isomorphism PSL2(Z) is a subgroup of PGL2(Q)+ = GL2(Q)+/{Q*/} (the su
perscript denotes positive determinants). Similarly PGL2(Q)+ is, up to isomorphism, a 
subgroup of PGL2(R)+ ~ PSL2(IR). We identify these subgroups with their images and so 
we refer, for example, to f o(A0 and f (N) as subgroups of PGL2(!R)+. It will be convenient 
to make a distinction between matrices and the corresponding element of PGL2(IR)+. The 
former are written with round brackets and the latter with angular brackets. If a is a ma
trix we shall also write (a) for the corresponding element of PGL2(IR)+. 

A subgroup G of PGL2 (R) is a congruence group if it contains a f (N) with finite index. 
A point of R U {/oo} is called a cusp of G if it is fixed by a parabolic element of G. If G 
is a congruence group, it follows ([Sh] Proposition 1.30) that the set of cusps of G is the 
same as that of PSL2(Z), i.e. Q U {/oo}. Clearly if w is a cusp and m G G then m(w) is 
also a cusp. It is not difficult to use this fact to show that any element of G is a multiple 
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of a matrix with rational entries. Thus G is in fact a subgroup of PGL2(Q)+ and we may 
define \m\ as the determinant of m when written as a matrix over Z in its lowest terms. 

In the rest of this paper we shall consider only the following case: G will be a subgroup 
of PGL2(Q)+ containing a f 0(N) with finite index and z H-> Z + k precisely when k G Z. 
We will also take G to be genus zero with Hauptmodul/. In section 3 we shall restrict 
further to the case where/ has rational ^-coefficients. Our aim in the rest of this section 
is to derive a relation between elements of the group G and G * k, the fixing group of 
the modular function/ * k obtained from/ by applying the Galois transformation *k to 
the Fourier coefficients o f / We start by reviewing the results of [Sh] which we shall 
require. 

Let fajq be the field of modular functions of level N with Fourier coefficients in 
Q (exp(27r//TV)). In Sections 6.1 to 6.5 of [Sh] it is shown that: 

a 7N~ Q(j,fa I a £ (Z/7VZ)2). The functions/(z) are related to the elliptic curve 
C/(Z+zZ). 

b fa is a Galois extension of Q(/) = fa\ with Galois group GL2(l/NT)/ {±1}. The 
action of a G GL2(Z/ATZ) is given b y / »—•*/,<*. If a G SL2(Z) then/ o a =faa-

c Let k be an integer coprime to N and *£ the corresponding element of the group 

Gal(Q(exp(27rî/iV))/Q). ,rhen(rJ °A G GL2(Z/NI.) acts on faN by f y->f*k 

where/ * k is obtained from/ by applying *k to the coefficients off. 
d Let U = Up GL2(lp) x GL2(IR)+. For every u E U and every N, there exists an 

element a of M2(Z) Pi GL2(Q)+ such that up = amodN • M2(lp). Set au = aa 
for all a G (Z/7VZ)2. Then / i—->/M defines an element of Ga\(faN/ fa\), call it 
r(u). 

LEMMA 2.1. If M G G then any prime p dividing \M\ also divides N. 

PROOF. Suppose, to the contrary, that p divides \M\ but not N. Let Af be a matrix 
corresponding to M which is written in lowest terms over Z. Then the rank of M' con
sidered as a matrix over GF(/?), is 1. As (p,N) = 1, T(N) projects onto the whole of 
PSL2(p) when read modulo p, so that we can find matrices B and C in Y{N) such that 

BM'C = f j (mod /?). This implies that for any / G Z-° the matrix (BM'Cf is not 

zero mod/?, but/? divides det((5M /Q /) and so the cosets ({BM'Cy)t{N), i G Z-° are all 
distinct and so the index of f (TV) in G is infinite, which is a contradiction. • 

THEOREM 2.2 ([SH] P. 147). (a) For every a G GL2(Q)+ and every h G faN, h o a G 
^v' /> r some TV7. 

# ; # a G GL2(Q)+, p G GL2(Q)+, u e U,v G U andau = vf3 then ( / ' o a f ) = y o/3 
fl^teoaf(")=/ÛVo/3. 

COROLLARY 2.3. Tf/z G ^ am/ a G GL2(Q)+ fW2(Z) tf^ h o a G faNd^ay 

PROOF. Consider firsts G ^ . From Theorem 2.2(a), fa o a is a modular function of 
some level. Moreover, since r(7Vdet(a)) C a-lT(N)a9fa o a is a modular function of 
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level Afdet(a). We may find 7 G SL2(Z) such that l~la = a' is upper triangular. Then 

by comment b above,/, o a =fa o (7a7) =fcrfOaf. Since/n is an element of ^ , it has a 

Fourier expansion with respect to exp(27riz/N) with coefficients in Q (exp(27r//J/V)), thus 

fa-fOaf has a Fourier expansion with respect to exp(27r/z/A^det(a)) with coefficients in 

Qf exp(27r//Ardet(a)) j and so it, and hence fa o a, is in ^vdet(a). The corresponding 

result fory(z) is given in [Sh] Proposition 6.6 (5). Since JN is generated over Q by the/, 

andy the result follows. • 

PROPOSITION 2.4. Let k be coprime to N; if I a , \ G G and gcd(ka, b,c,d)= 1, 

PROOF. Leta=( a V/3=la ] and define w,v G £/by 

| ( i ï ) for/71 tf 

for/? / N and/7 = 00 

and 

[a for/7 /TV and/7 = 00 

Here w and v are well-defined since det(/3) = det(a) and by Lemma 2.1 the primes which 
divide det(a) also divide N. IfN' is integer such that any prime dividing N' also divides 

N then since up = I ft / mod Â ' • M2(ZP) for all primes /? we have, by comments c 

and d at the start of this section, that if h G ̂  then/zr(M) = h*k. Then by Lemma 2.1 and 

Corollary 2.3 (faoafu) = (fioa)*Jt. Let£ G T0(AO be such that 5 = ( k
Q °A modTV, 

then for any a G (Z/NT)2 we have^v o /3 = / ^ o 8~lf3 — (fa * k) o <S_1/3. Thus from 
Theorem 2.2 we have (fa°(x)*k= (fa* k)o8~l(3. Similarly (j o a) * k =joè~l(3. So for 
any h G JN we have (/z o a) * k = (/* * A:) o <$-1/3. Since/ G ̂ v and (a) fixes/ we have 
f*k= (fo a)* k = (f*k)o 6~lf3 and so (8~lf3) G G * k. However it is not difficult, 

using the fact that n , J normalizes To(N)modN, to show that G * k also contains 

r0(AO and so (/}) eG*k. m 

3. Replicability of rational Hauptmoduls. As in the last section G will denote a 
subgroup of PGL2(Q)+ containing some f o(JV) for some TV with finite index andz H-> z+k 
precisely when k G Z. We will also take G to be genus zero with Hauptmodul/ with 
rational coefficients. We use a= b + 0(1) to denote that the difference between a and b 
is bounded over some limiting process, which unless otherwise stated will be that t —> 0 
along the positive imaginary axis. 
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LEMMA 3.1. Iff and G are as above, andf is singular at r/m, where (r, m) = 1, 
then there exists M G G of the form 

d e 
M~ \-lm Ir 

with gcd(J, e, Im, Ir) = 1 and 

tr \ (2iïid\ (2mD\ _,<x 

where D — \M\. In particular D /11 and the fractional part of d j Im are independent of 
the particular choice ofM. Also for any k such that (k, tm) — 1 

n(rk \ (27ddk\ / 2iriD \ _ N 

where kk= 1 (mod tm). 

PROOF. It is clear that the form of M is as given above if M(r/m) = oo. Now since 
(k, tm) — 1, by left multiplication of M by a suitable translation we find 

eG 
-tm ir i 

where d' = kd (mod Im). Since G * k = G we have by Proposition 2.4 that 
d' e' \^r 

-Im Mr fe 

So 

J \ tm trrP-l1) 

= e x p ( — ) e x p ( ^ ) + 0 ( l ) 

and similarly 

\m / \m J 

J \ Im tm2l2/ 

= exp( — ) e x p ( ^ ) + 0 ( l ) 

as required. • 

LEMMA 3.2. For any non-zero integers m and L there exists a non-zero integer s 
such that (1 +sm,L) = 1 and(s,L) = (2,L)/((2,L),m). 

PROOF. Let m' = mj ((2, L\ m) and take s = k(2, L)j ((2, L\ m) where 

I I (mod/?) if/? \L9p\m and/? ^ 2 ; 

- 2m / - 1 (2 , ^ r 1 (mod/?) if/? j Z,/? | w and/? ^ 2; 

1 (mod(2,Z,)). 

Then s has the required properties. • 
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LEMMA 3.3. With G as above, if 

"-(-i. l)" 
is written in lowest terms, then I | (2/(2, m), £)d. 

PROOF. If m = 0 then r = 1 (recall (r,m) = 1) and by [Sh] Proposition 1.17 all 
elements of G that fix oo are either parabolic or the identity and we must have I — d. 

If r — 0 then we consider instead M ( ). Thus we may assume mr ^ 0. Then 

by Lemma 3.2 there exists a non-zero integer s such that (1 + sm, £m) = 1 and (s, I) \ 
(2Jm)/((2,em),m) | 2/(2, m\ and so (s, I) | (2/(2, m% l). Let k be such that 
k(l +sm) = 1 (mod Urn). In the notation of Lemma 3.1, 

and also by Lemma 3.1: 

rrk \ (2irid(l + sm)\ ( 2mD \ _ _ 

Hence £ \ sd and so £ | (s, £)d and the result follows. • 

LEMMA 3.4. If M E G then, written in lowest terms, 

M=( fL yl ) \ —yj\(j)i/ X(pa J 

where (8, §v) — (a, \j)v) = (?/;, </>) = 1, and (2, i/)ip<j> | 2. Also if 2 \ \j)(j> then 2 | A. 

PROOF. Write 

- C i 
Let À = ((a,c),(d,c)), <j> = (c,d)/X and i/> = (a,c)/\ so (0,VO = 1- Then l.c.m. 
(A</>, Ai/>) = A</n/> | c and so set v = —c/X^ip and also a = d/(c,d) and £ = a/(a,c). 
Then M has the required form with (S, <\>v) — (a, tyv) — (t/;, </>) = 1. 

G also contains 

\—c a 

Applying Lemma 3.3 to M and M~l we find using the properties above that </> \ 2/(2, u) 
and also xjj\2/(2,i/) and so (2, v)^§ | 2, since (</>, i/0 = 1. Finally to show that if 2 | ijxj) 
then 2 | A, first consider the case </> = 2, then - 0 = 1 and (2, z/) = (2,5) = 1 hence 

(-S^ 4a)S(o o) (m0d2) 

and 2 divides |M| so, using the same argument as in the proof of Lemma 2.1, 2 | A. A 
similar argument gives the result in the case that t/; = 2. • 
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Before proceeding to the main result we shall first derive some results on sums of 
roots of unity using modular functions. 

In what follows for r/m G Q define m' = m/(r,m) and r' = r/(r,m) and r(r,m) = 
x/m' for some x such that xr' = 1 (mod m') and x = 1 (mod 2), we shall not need 
this second condition until Lemma 3.12. Note that different choices of x change r by an 
integer which does not change exp(27r/T(r, m)) which is all we shall require. 

LEMMA 3.5. 

I exp(27rmr(r, m)) if g = (r, m)«; 
10 otherwise. 

^2 exp(27r/r(ar + 6m, dm)) 

(ar+bm,dm)=g 

PROOF. They function satisfies the identity, 
r az + bN 

ad=n 
0<b<d 

Evaluating at ^ + / and examining the singularity at / = 0 gives 

& ( / ( £ + ' ) ) = exp(27rmr(r,m)) e x p ( ^ ^ ) +0(1) 

and 

„ jar + bm at\ „ ^ / 7 , , x\ / 2717g2 \ 
22 J ( — 3 + "7 ) = £ £ exp(27r/r(ar + bm, dm)) exp - — -

ad=n \ dm d) g ad=n^
 v > \ tnm2 J 

0<b<d 0<b<d 
(ar+bm,dm)=g 

and the result follows by comparing coefficients. • 
LEMMA 3.6. Let s(n,g) = 12d\n(~^T^dK^/s) where fj,(x) is the Mobius function, 

defined to be zero for non-integral values ofx. Then s(n,g) = —bng + 2£«,2g (Kronecker 
delta). 

PROOF. Consider first s(n, 1 ). If n is odd then 

s(n, 1) = £(-iy/<V(</) = - X > W ) = - A i 
d\n d\n 

as required. If 4 | « then 

s(n, 1) = E (-W,dKd) + E (-lT,dKd) = T,Kd) = 0 
d\n, 4)fd d\n, A\d d\n 

as required. If 2 exactly divides n then 

S(n,i)= E (-iy,AW)+ E (-i)n/^w 
</|w, 2/ûf </|n, 2|J 

= E M(<0- E IM 
d\(n/2) d\n, 2\d 

= àn/2,\ ~ @n,a — *« /2 , l ) 

— 2^«/2,1 — ^ « , 2 
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as required. 
In general s(n9g) = T.d\^g\d(-\)

nldKd/g). Setting d = gd' we have s(n,g) = 

T,gd'\n(—W^gd' Kdf) = s(n/g, 1) and the result follows from the previous calculation. • 

LEMMA 3.7. 
<az + b > 

ils invariant under To(2). 

PROOF. We must show that right multiplication by M G r0(2) permutes the set of 
matrices of the form 

( o d ) ' ad = n,0<b<d 

up to left multiplication by elements of T while preserving a (mod 2). Let 

There exist/?, q, r, s with/w — qr — 1 such that the product 

(p q\fa b\(a f3] 
[r s J [O d) [21 6 J 

is again of the form 

(o' d')' a'd' = n^<b'<d'' 

From which we deduce that 

paa = a (mod 2) and raa = 0 (mod 2) 

If a = 0 (mod 2) then a! = 0. If a = 1 (mod 2) then r = 0 (mod 2) since a is odd, 
however (p,r) = I so 2 )(p so a' = \. m 

LEMMA 3.8. 

As z—>0 hn(z) 

Asz-too hn(z)= ( -1Y exp(27ri/iz) + 0( 1 ) 

— exp(27r/w jz) + 0( 1 ) ifn is odd; 
— exp(27r/« /z) + 2 exp(7T7« / 2z) + 0( 1 ) z/« /s eve«. 

PROOF. 1) For fixed a and d we have 

0<b<d V " 7 * 

so that the only negative exponent in the q expansion at infinity occurs for d = 1, k = — 1 
andtf = n. 
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2) We have that as z —> 0 

j{^)= exp(2«KÔ,<0) e x p ( ^ ^ ) + 0(1) 

h„(z)= E (-iyexp(27rf7<*,rf))expf^^-)+0(l) 

So 

0<6<d 

= E(-Dn/"( E exp(27rfK6,<0))exp(^-)+O(l) 
g|w

 xo<b<d ' \ nz J 
d\n (b,d)=g 

= E(E(-l)w/V(^/g)) exp(-^~) + 0(1) 
g\n Xd\n } nZ 

so using Lemma 3.6 

f — exp(27rm/z) + 0(1) if « is odd; 
" ^ ~" I — exp(2irin/z) + 2 exp(irin/2z) + 0(1) if « is even. 

LEMMA 3.9. If m1 is odd and n is even then 

I — exp( 2irinr(r, m)) */g = n(m, r); 
2 exp(27riAf r(r, m)) ï/g = «(m, r)/2; 
0 otherwise. 

(ar+bm,dm)=g 

where 2h = 1 (mod m'). 

PROOF. We compute the singular part of hn{^ + t) as f i—» 0 in two ways. Write 
r' = r/(m, r) and m' = m/(m, r). Then since m' is odd we may find integers x and y such 
thatjW + x(2r') = 1 so that 

Transforming by this element and using Lemmas 3.7 and 3.8 we find 

, / r' \ ( mm't \ 
hn(—+t)=hn[-

f4irixn\ (2mn\ ^ (nixn\ ( irin \ _ _ 

= - e x p ( -^-) e x p te) +2exK^r)exP(2^) + ° ( 1 ) 

Also 

*-(- + /)= E(-D"^(^^) 
V m / a^r „ V dm d I 

0<b<d 
1 c2 

— ^Z exp(27r/r(ar + bm, dm)} exp( j + 0( 1 ) 
ad=n V t n m ' 

0<b<d 

where g = (ar + bm, dm). Comparing coefficients yields the result. • 
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LEMMA 3.10. Ifm' and n are even then 

Ys (-l)n/dexv(27riT(ar + brn,dmj) = ( exp(2™r( r , m)) if g = n(m9r); 
d=n 10 otherwise. ad-

0<b<d 
(ar+bm,dm)=g 

PROOF. The argument is similar to the last Lemma. Since m' is even there exist x 

and y such that 

So 

\m' I \ m m'lt) 

= exp(—)exp(^) + 0( l ) 

and also 

/ , „ ( - + * ) = V (-\)n/dexp(27riT(ar + bm,dm))exp(^^)+0(l) 
\m J ad^n \tnm2) 

0<b<d 

where once again g = (ar + bm, dm). Again comparing coefficients yields the result. • 

LEMMA 3.11. Given r G Z and m,n G Z > 0 and a divisor kofn then there exists a 

matrix 

with ad = n and 0 < b < d such that (ar + bm, dm) = (r, m)k. 

PROOF. We can find coprime integers e a n d / such that er+fm = 0 (mod n) and 

hence a matrix 

S 

in SL2(Z). Let 

and 

0 k){g h) 

then (p, g) = (r, m)&. By premultiplying by a suitable element of SL2(Z) we can put M 

into the required form. • 

In the following lemma we make the definitions: 

C( \ _ f exp(27r/5 j<j>v) if 1 / m is on the same G-orbit as oo; 
I 0 otherwise. 
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where in the first case, m — ^v and 

M=( W £ ) 

is a matrix that maps \/m to oo. Keeping the same notation, if the element (M) of G 
maps 11m to oo define: 

A(m) = 2iri\M\/ilj2\2<l)2v2. 

LEMMA 3.12. fn) exists. Also 

/ " > ( - + * ) = C(nm'y^r/H)exp(A(nm')n2/t) + 0(1), 

f^ has no singularities in the upper half plane and is an automorphic function for T(M) 
for some M. 

PROOF. Induction on n. For n = 1 the only property that must be verified is that 

/ ( £ + t)= C(/n')r(r'm) exp(A(m')/t) + 0(1) 

When Cfjn') is a primitive m'-th root of 1 this follows from Lemma 3.1. However from 
Lemma 3.4 ((W) can be an m'/2-th or 2m1r-th primitive root of 1. Only the latter situation 
is a problem and it can only occur when m' is odd. Lemma 3.1 in this case implies that the 
exponent of C(/w') is congruent to r (mod m') and 1 (mod 2), but now the result follows 
from our definition of r(r, ni). 

Now assume that the result holds for all a < n (in fact we only need that it holds for 
all proper divisors of n). Let 

Uz) = Qn(f(z))- E ' / o f ^ V 
ad=n \ a J 

0<b<d 

We have to show that t„(z) = tn(z + £) so f^n\z) = tn(zjn) has integral ^-expansion i.e. 
the n-th replicate off exists. From above we have 

Qn ( / ( £ + / ) ) = {am'))"™ t*p(A(m')n/t) + 0(1) 

Using the inductive hypothesis, 

E' M ^ T + 7) = E E tfrnlgyr»***exv(A(nm/g)n/t) 
ad=n V " " 7 g a</=« 

- C(Mr("r,w) exp(i4(/i>i/f) + 0(1) 

where /x = nm/(nr,m). When Ç(nm/g) is a primitive nm/g-th root of 1 we can use 
Lemma 3.5 and, after applying a suitable Galois automorphism, Lemma 3.11 to show 
that 

E ' M Z l l +
 al\ = amTir,m) exp(A(m>)n/t) 

ad=n V a a ' 
0<b<d 

- C(^r(wr'w) exp(AQi)n/t) + 0(1) 
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However, as noted above, it might happen that (,(nm/g) is a 2nm/g-th or nm/2g-th root 
of 1. However in this case —((«w/g) *s a primitive nm/g-th root of 1 and we can use 
Lemma 3.10 and 3.11 to obtain the same result (recall that r(r, m) is odd), except in the 
case that n is even and m' is odd. In this case, from Lemma 3.9, we find: 

£ ' / f l ) ( ^ T ^ ) =a^T ( r ' w ) exp (^ (m / )« / r ) -2C(2m^ ( r ' w ) exp (^ (m>/ r ) 
ad=n " 

0<b<d 

- C(Mr("r,m) exv(A(v)n/t) + 0(1) 

where 2h = 1 (mod m'). However, if 

( 2X8 e\ 
\-2\m' \) 

is a matrix that maps 2m' to oo, ((m') = — Qxp(2iri8h/m') and also A{2m') = A(m'). So 
once again we find: 

E ' fa)(^r)= &mTM ^V{A{m')nli) - avrinr'm) exp^O*)*//) + 0(1) 
ad—n & 

0<b<d 

Combining these results we find 

tn(z)= ÇQir&ri exp(AQi)n/t) + 0(1). 

It is easy to verify that this expression is invariant under the substitution r i—» rn + m, 
m \—» mn so that t„(^ +1) — tn(-^ + £ + 0 = O(l). Hence this difference is bounded on 
Q. At infinity tn(z) = exp(—2nizri) + 0(exp(27r/z)) and so the difference is bounded at 
infinity. By the inductive hypothesis each term on the right hand side of 

az + b} 

ad=n 
0<b<d 

has no poles in the upper half plane and so neither does tn(z). Also tn(z) is an automorphic 
function for the intersection of the fixing groups of each term in the right hand side each of 
which contain a principal congruence subgroup by the inductive hypothesis and so tn(z) 
is an automorphic function of T(M) for some M. Thus t„(z) — tn(z + £) is an automorphic 
function for F(n2M)9 bounded on a fundamental domain and hence is constant. However 
from the q expansion of tn we see that the constant is zero as required. 

Finally we can use/^(z) = tn(z/ri) and 

tn(z)= C(/ir("r'w) cxp(A(fi)n/t) + 0(1) 

to verify that 

/<») ( -+*)= C,(nmTinm) exp(A(nmf)n2/t) + 0(1), 

and also that f^ is an automorphic function with no singularities on the upper half 
plane. • 

To summarise we have now shown: 
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THEOREM 1.3. Iff is a Hauptmodul with rational coefficients for a group G < 
PGL2(Q)+, of genus zero, containing a f0(N) with finite index and z \—>z + k precisely 
when k is an integer, thenf is replicable. 

Appendix. In this appendix we shall prove some useful properties of replicable 
functions. As in the rest of the paper we shall take/to have rational integer coefficients. 

LEMMA A. 1. 
1 oo 

q i=i 

PROOF. First note that any polynomial in 

f(z) = q-l+Hlq + H2q
1+H3<? + ~. 

whose ^-expansion has only positive degree terms is zero, from which we can deduce 
that the Qn(f) satisfy the recurrence relation: 

(n + !)//„ + 6B+1(/)+ £/ / ,&,_/( / ) =fQnV). 

This leads to the generating function: 

( OO x OO 1 

i -pf(z)+Y.HiPi+i ) = E T&</y. 
Comparing with equation (1.3) we see that 

1 OO 

QnV) = -n + £ nHn,mqm. 
a m=\ 

LEMMA A. 2. The function 

f(z) = q~x +Hiq + H2q
2+H3q

3 + • • • 

is replicable if and only if the coefficients Hmn given by the generating function: 

£ H^f = -log(l -pq^H?-^-) 
m,n>\ V i=\ P-q J 

satisfy the conditions Hmn = Hr,s whenever mn = rs and (m, n) = (r, s). 

PROOF. If/ satisfies Hmn = Hr^ whenever mn — rs and (/w, n) — (r, s) then set 

CO 

/*>(*) = £afV 

where 
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af = kZ v(d)Hk dki i > 0, <£> = 1, af = 0 
d\k " ' 

and \i is the Môbius function. It follows that/*1) = / . For any pair r,s eZ >0, we find, 
by Môbius inversion, that 

Hr,rs = Zy? 
d\r 

and, since/ satisfies Hm^n = Hr^ whenever mn = rs and (m, «) = (r, s) this implies that 

^•») «*.= E ^ L V 
</|(m,w) " 

which gives, using Lemma A.l (compare Serre [S], Chapter VII, Section 5.3) 

(A.2) Q„(f)= E / f l )((oz+ *)/</). 

Conversely if/ has replicates which satisfy (A.2) it follows that the Hmn satisfy (A.l) 
and so Hmn = Hr^ whenever mn — rs and (m, «) = (r, s). • 

PROPOSITION A.3. Iff= \/q + H\q + --+Hkq
k isreplicablethenf = \/q + Hxq. 

PROOF. If k = 0 or k = 1 then we are done, so assume k > 2 and Hk ^ 0. We 
consider two cases, either 

/ ^ l / g + ̂  + . - . + ^ ' + f t / 

with I <i < k and Hk-i+\ = • • • = 74_i = 0 and / 4 - / 7̂  0, or 

04.3) f=\/q + Hkq
k. 

We shall show that the former case cannot occur. Looking at the (/ + l)-st replication 
identity we have: 

04.4) Qi+m = / < " > ( ( / + 1 » + E ' f i ^ - ) 
ad=i+\ v a ' 
0<b<d 
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First note that 

f az + b 

0<b<d 

The term with second largest degree on the l.h.s. of (A.4) is (i + \)Hk-iH
i
kq

{i+X)k~'1 and 
contributions from the 2-nd term on the r.h.s. to this degree would come from they'-th 
term withya = (1 + i)k — /, but a | (/ + 1) so a \ i so a = 1 and d — i + 1. But the degree 
of this sum is bounded above by &/(/+1). So to have a contribution of degree (i+ \)k — i 

we would have to have (/ + \)k — i < k/(i + 1) which implies k < (i + l)/(z + 2) < 1 and 
so k = 0 a contradiction. So the sum on the r.h.s. has no terms of degree (/+ \)k — i. Also 
(i+X)k—i= 1 (mod / + 1) so/^+l)((/ + l)z) has no terms of degree (/' + \)k — i. So we 
must have (/ + l)/4_z/4 = 0 which is a contradiction. S o / must be as given in (A.3). 

We now show that we must have k = 1. Take n such that [n,k{k + 1)) = 1 and 
n > k + 1. Then 

,nk 

Looking at the coefficient ofq~n+k+l, we see we must have c\ = C2 = • • • = c„_£ = 0 

and c„_it_i = -«/ /*. So the coefficient of g^-*"1* is #*""*((„"*) - n\ Since « > k+ 1, 

( („"*) — w) = 0 implies k — 1. So we have to check that the coefficient of qk(<n-k~x) is 

zero on the r.h.s. of (A.4). Now # S V a of degree k(n—k— 1) implies a | k(n—k— 1) and so 

a I &(&+l)andhencea = 1 since (n,k(k+l)) = l.But again the degree of the a = 1 term 

is bounded by kjn < 1 and so this term vanishes. Finally k(n — k— 1) = — k(k + 1 ) ^ 0 

(mod «), since («, — k{k + 1)) = 1, so j^n\nz) has no terms of degree k(n — k—\). m 

We also give a proof of the fact that any replicable function is determined by the 

values of 12 of its first 23 coefficients as noted by Norton [Nl]. 

LEMMA A.4. IfN G Z>0, then there exist m, n, m', A' G Z>0 swc/z //za/ 7̂) m + n = 
N, 2) mn = ra V, Ĵ  (m, «) = (m', n') and 4) m' + nf < m + n exactly when N ^ 
1,2,3,4,5,6,8,9,10,12,18,20,24. 

PROOF. Note first that if the lemma holds for N it holds for kN, k > 1 by taking km, 
kn, km', kn'. We consider cases: 

i) N =2k except2,4and8.ForiV= 16choosem = 1, w = 15,/w' = 3 andrc' = 5. 
From the comment above we then obtain all higher powers of 2 as multiples of 
16. 
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ii) N odd of the form 2a +1, a > 4 (i.e. except 3,5 and 9) choose m = 2a - 2, n = 3, 
m' = 2a~x - l a n d ^ = 6. 

iii) TV odd, N — 1 not a power of 2. In this case choose m = N — 1, n = 1, m' = 
2_r(7V — 1) and «' = 2r, where 2r is the exact power of 2 which divides N — 1. 
Note TV-1 >2 r =>iV>2 ' "+ l => N ( 2 r - 1) > 2 2 r - 1 => W> 2~r(N- l) + 2r. 

iv) TV even, not a power of 2. Then N must be a product of 2,4 or 8 with 3,5 or 9 since 
all other possibilities are multiples of the cases considered above. For 40 choose 
m — 1, n = 39, m' = 3 and n' = 13. For 36 choose m = 1, n — 35, m' = 5 
and n' — 1 which, from the comment above, gives m = 2, « = 70, m' = 10 and 
n' — 14 as a solution for 72. 

The only remaining cases are N = 1,2,3,4,5,6,8,9,10,12,18,20,24. It is easily 
verified that there are no solutions for m, n, m\ n' in these cases. • 

PROPOSITION A.5. If 

f=q-x+Hlq+H2q
1 + -.. 

is replicable thenf is determined by the values ofH\, H2, H^f H4, H5, H-j, H%, Hg, H\\, 
H\j, H\g andHj^. 

PROOF. If/+ 1 ̂  2,3,4,5,6,8,9,10,12,18,20,24 then by Lemma A.4 we can find 
m, n, m\ n' such that m+n = i+\,Hm,n — Hmi^ znam'+n' <m+n (since/is replicable). 
The leading term ofHmn is Ht and so solving Hm^n — Hm>ni for Hi expresses Ht in terms 
of the Hj withy < /. Iterating this process we can express all the coefficients in terms of 
H\,H2,H3,7/4, Hs,H-],Hs,Hg,H\\, H\j, H\g and#23• • 
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