
BULL. AUSTRAL. MATH. SOC. 4 O E O 5 , 4 2 A 7 6 , 6 O B I 5

VOL. I I ( 1 9 7 4 ) , 1 6 7 - 1 8 0 .

A tauberian theorem related to the
modified Hankel transform

Kusum Soni and R.P. Soni

The modified Hankel transform arises naturally in connection with

certain semigroup operations on measures in probability theory.

We give a tauberian theorem for this transform when certain

higher moments exist. The probabilistic significance of our

result is that it translates a regularity condition on the

transform into a direct condition on the measure. This

complements earlier results by Pitman and Bingham for the

trigonometric and the modified Hankel transform respectively.

1. Introduction

Let F be a probabili ty measure on [0, °°) and l e t

r(1.1) 4>v(x) = T(v+1) I (xt/2)~\(xt)dF(t) , v > -1/2 .

Recently, Bingham [4] gave some abelian and tauberian results for the

transform defined by (l.l). He proved that if L(t) is a slowly varying

function in the sense of Bojanic and Karamata [5] as t -*• °° and

0 < a < 2 , then

(1.2) 1 - F{t) ~ t~aL(t) , t •+ « ,

if and only if

(1.3) l-̂ M~

Bingham1 s resul ts are based on those given ea r l i e r by Pitman [is] for the
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cosine transform, v = -1/2 . Bingham and Pitman discuss these

implications at the boundary points, a =0 and a = 2 , also. However,

for a > 2 , they give only the abelian implication. Our object in this

paper is to give the related tauberian result .

2 . S t a t e m e n t o f t h e m a i n r e s u l t

If we integrate ( l . l ) by parts and use the relation

(2.1) £

we obtain

r(2:2) G{x) = ex | (xtVVJv+1(xt)g(t)dt , v 2 -1/2 ,

where

(2.3) G(x) = 1 - $v(a:) ,

(2.it) git) = 1 - F{t) ,

and

(2.5) a = 2Vr(v+l) .

For a > 2 , the Pi tman-Bi ngham Theorem can be stated as follows.

THEOREM A. If n > 1 , 2n < a < 2n+2 3 and

(2.6)

then

(2.7) git) ~ t'aLlt) ,

implies
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(2.8) G(x) -
r=l 2 T

2ar(l+v+a/2)

We prove the following converse.

THEOREM B. Let n 5 1 , 2n < a 5 2n+2 , and let G(x) be the

transform of git) defined by (2.2). If g(t) is bounded, decreases to

zero, and

(2.9) f tg(t)dt < » ,
J0

then, for some constants c , e , ..., a , a ,

cn+lx(2.10) G{x) - I c x2r ~ eM+nxai(l/a;) , x •* 0 ,
r=l

implies

(2.11) g(t)

0 ,

(2.12,

Furthermore,

r
-"O

t

We note that (2.9) holds if and only if v2 , defined by (2.6), is

finite. In what follows, we assume that the slowly varying function L(x)

is positive and measurable in 0 5 x < °° . Furthermore, without loss of
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generality, we may also assume that both L(x) and [L(x)]~ are locally

bounded.

3. Proof of Theorem B

We prove the theorem with the help of some lemmas. Let Q(S) and

G(s) be the Mellin transforms of g(t) and G(t) respectively, that i s ,

- r ̂
}0

(3.1) 9(s) = ts'g(t)dt , s = o + i t ,

and

(3.2) G(s) = Jo '
The integral (3-1) converges absolutely in 0 < O 5 2 . Since

0{t) , t -* 0 ,

(3.3) t~\+1(t) = •

.0(1) , *-*-<=<>, V 2 - 1 / 2 ,

t h e i n t e g r a l (2 .2 ) converges a b s o l u t e l y , and

(0{t2) , t - 0 ,

(3.10 G{t) =

[0(t) , t - co .

Hence the in tegra l (3-2) converges absolutely in -2 < O < -1 .

LEMMA 1. Under the assumptions of Theorem B., we have

where c is defined by ( 2 . 5 ) .

Proof. By the absolute convergence of the double integral in

2 < a < 3 ,

(3.6) [ x~sG(x)dx = c \ g(t)[( (xt)~vx1~8J Axt)dx\dt
Jo •'o Uo v + 1 J

r00 f tXt
= o I tS-2g{t)\\ u1-*-^ Au)du\dt .

>o ^ o ^
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The inner integral converges absolutely and by [7, p . 326, ( l ) ] ,

(3-7) j «, 0 „ _ T(v+s/2+l/2)

Hence, by the dominated convergence theorem,

,,1-s.

°) - r(v+s/2+l/2)
 9( S~1)

which proves (3.5)•

Proof of Theorem B (continued). Now we consider the integral

(3.8) Kx) = ( t&{x-t)yg(t)dt
J0

where

(3.9) e = 2n + 1 ,

(3-10) Y = 2n + k + [v] ,

[v] denotes the greatest integer function.

Since

(3.11) fQ tZ-°(x-t)^t . x^
+1"s r ( ^ ^ ^ ) . 6 > a -

by the Parseval relation for the Mellin transform [73, p. 60],

By (3.5),

(3.12) I(%) - (2irt) I x ^)(s)G(— s)ds , 1 < 6 < 2 ,

where

s r(Y+i)r(B+i-s)r(i+v+s/2)
(3 > 1 3 ) v(s> ~ 2 r(v+i)r(e+Y+2-s)r(i-s/2) '

The poles of r(l+v+s/2) lie in the half plane o < 0 . Therefore,

^(e) is analytic in a > 0 except for a finite number of simple poles at

o = 2«+3, 2n+5, .... By the well known properties of the T-function,
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= (|T|a+V) , s = a + ix , |T |

Thus

(3.15) *(s) = Od

By (3.12),

J(x) = (2TTi)"1 a:6+Y+;L~£>(s) t " 8 " 1 ^ * ) ^ ds .

By (3.15)» the double integral converges absolutely. Hence,

(3.16) I(x) = (2iri)"1a:P+Y+1 ff(i) af 'V^iHeJds \dt

J0 Ufi-ioo " J

Let

(3.17) H{x) = G(x) - I orx
2r .

Our next step is to show that I(x) remains unchanged if G is

replaced by H in (3-l6).

LEMMA 2 .

(3-18) uy u ~ S \ p ( s ) d s \ d u = 2 i r i \ p ( \ i ) , 2 < i i < 2 n + 2 ,
•"0 v f,-i<*> >

ip(2n+2) = l im
s-»-2n+2

Proof. Let

(3.19)

By (3.15) ,

(3.20) <J>(K) = O ^ " 6 " 1 ) , M + 0 , 1 < 6 < 2 .

Since ty{s) i s analytic in 6 5 Re(s) < 2n + 3 , by (3-15) again
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I 1 U _ S _ T _

u) = vT ty(s)ds , 2n + 2 < 6 < 2n + 3 ,

1

Thus the repeated in tegral in (3-18) converges for 6 < y < 6 .

Obviously,

fl r 6 +"i°°
/ —1

ij)(u)du = (y-s) t(/(s)ds
0 ' 6-i«>

A*1" -i
= j _ (v-s) i , 2 2 y 5

Also, by shifting the line of integration from Re(s) = 6 to Re(s) = 6- ,

(3.23) I 4>(u)du = I f MlJ"s"11|/(s)ds du
1 1 61-i»

/• 1 + t ° ° - 1
= - (\i-s) \p(s)ds , 2 £ y 5 2n+2 .

Hence, by (3.22) and (3.23),

<$>(u)du = 2irii|j(y) , 2 £ y s 2n+2 ,I
J0

which proves the lemma.

For later use, we note the following:

(3.2lt) t|)(2r) = 0 , v = 1, 2, .... n ,

and

( ) - Urn r2"*2

- ^ i r n 2 r(v+l)r(l-s/2)

We now r e t u r n t o t h e p r o o f of Theorem B. By Lemma 2 and (3 .21*) ,
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(3-26) JW = (2-niy1 f H(u/x)[{ u~8'\{8)ds\du ,
xp ' Jo u &-i°° >

where H i s defined by (3.17)- We are interested in the behavior of J(x)

as x •+ «> . By (2.10) and (3.1*),

(3.27) \H(u/x)\ < M(u/x)aL(x/u) , 2n < a 5 2n+2 ,

for some constant M . The dominant behavior of L{x/u) , i + • , is

given by the following lemma. This result is not new and, in a slightly

different form, was given by Pitman IS, Lemma 2]. The technique, however,

has been used quite often ([3], [5]).

LEMMA 3. If L(t) is slowly varying, £(*) and {L(t)}'1 are

locally bounded, then, for every r\ > 0 ,

(3.28) £MU ( n

L(x) ^ " t > * • - - >

uniformly in 0 < t 2 1 and

(1 ?o) Lixt) Q r .n-i

uniformly in 1 £ t < °° .

Proof. Let

i x (x ) = x " n sup { t n i ( t ) }

and

L\x) = x sup

x LAx) i s an increasing and x LAx) i s a decreasing function of x .

Also, i t i s known ( [ / ] , [ 2 ] , [5]) that LAx) ~ L(x) , x •+~ , j = 1, 2 .

I f 0 < t < 1 ,

(xt)nI(a;t) S

and, i f I S t < « ,
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The relations (3.28) and (3.29) follow immediately from the above

inequalities.

We return to the consideration of (3.26). By (3.27) and Lemma 3,

O ^ V ) , X ,
x L(x)

uniformly in 0 < u < °° . Choose r| such that S < a - n < o t + r i < S - | •

By (3.20) and (3.21), we can apply the dominated convergence theorem to the

integral in (3.26). Since, H(u/x) ~ c + (u/x)
aL[x) pointwise as x •* <=° ,

we have

C f°°
1 ~ I U

Pill
* n

or, by Lemma 2,

(3.30) J(x)

I t is known ([&, Lemma 3]) that if

rtrt

£ At) = ipE,(u)du is of i

°
index

is monotone and

, q > 0 , then i s

of index q - 1 . Since j(x) is of index 2n + 2 + y - a. , by repeated

application of the above result, we see that

(3.32)

is of index

(3.32)

h(
tCC

x) =
J0

2 - a as x -*• Let

= x2 n + 2"V(x) , x > 1 ,

so that L*(x) i s slowly varying as x -*•<". For 0 £ x < 1 , define

L*(x) to be a local ly bounded and integrable function. Then,
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Y f
>0

I (x-t)Y~1
J0

>0

where <(i. (x) = 0[x ) as x •*•<*>. To obtain the behavior of the above

integral as x •* °° , we may use a known result [3], or we may use the

"dominated convergence" technique which is justified by Lemma 3- Hence,

(x) r(v+l)r(2n+3-a) , - co

(x) *
Ilx) ~ x L * ( x )
I{x) ~ x L (x) r ( Y + 2 n + 3 _ a )

By (3-30),

(3.33)

If a = 2n + 2 , L*(x) = a l(x)<p(2n+2) , so that by (3-25),

which is (2.12). If 2n < a < 2n + 2 , by (3.13),

L*(x) = a 2a rd+v-t-q/2) ( .
L KX} Cn+ld (2n+2-a)r(v+l)r(l-a/2) V ; "

Since h{x) is of index 2n + 2 - a > 0 , t 2 n + 1g(t) is of index

2n + 1 - a as as ->• °° . We now employ reasoning similar to that used

earl ier to obtain

2n+l , , ^a r(l+v+a/2) 2n+l-ar

* ^ » ~ W r(v;i)r(i-a/2)
 x i

This proves (2.11). Finally, we want to prove that the coefficients c

must satisfy (2.13). If 2n < a < 2n + 2 , this follows directly from

Theorem A. However, for the case a = 2n + 2 , Theorem A is not applicable

since (2.12) does not imply (2.7) even when g(u) is decreasing. The

proof of this assertion depends on some results given in [77]. However,

(2.13) follows from the following lemma.
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LEMMA 4. Let n > 1 . If g(t) is bounded and decreases to zero as

t -+<*>, then (2.12) implies (2.13).

Proof. Since g(t) +0 , (2.12) implies that

(3.3U) t 2 n + 2 g ( t ) = o { X . i t ) } , t + » .

For the sake of convenience, le t

kit) = r (v+i)( t /2)"vJv + 1( t)

and

r 22r"1r(r)r(v+r+l)

so that

kit) = I at2*'1 .
r=l

Wow

rl/x
- I a/* f *^V*)* - « +/n+2 f

r=l J0 J0

= x f (k(xt) - I aJxtf'-AgWdt - a a?"*2 f t2n+1g(t)dt
'0 *• r=l ' 0

rl/x r n+1 i

= x jfc(xt) - [ a{xt)2r-X\g(t)dt
J0 "• r=l J

+ x f (fc(xt) - [
r=l r

We shall prove that I. = o{x2n+2Lil/x)} , x •* 0 , j = 1, 2 . Since

kiu) is boimded, by a known result [3],

r /r / \ V 2 r - l \ -2n-2r, , , ,

\k(u) - I a u \u L(u/x)du
+ { r=l >

~ Ul/x) f [k(u) - I auSr~1)u~Zn'Zdu , x - 0 .
J l >• r=l >
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Therefore, by (3 .3 *0 ,

J = o { C \k(u) - l a u Z r - X

u l L r=l2

= o{x2n+2L(l/x)} , x •* 0 .

Next, l e t e > 0 . Choose 0 < 6' < 1 such that

n+1
k(u) - I a u

r=l r
< eu2n+1 , 0 < u < 6 ' .

Furthermore, let

I r6'/x rl/x •) ( n+1 „„ •
ff(t)dt- J(&'/X + (1/X M x ^ a (xt)21"-1)

1 I l i l t i? I
0 o /x I*—1

f t /

f
i a;) , x •+ 0 ,

for some constant M. . The relation (2.12) indicates that i t is no loss

of generality to assume that L(t) is nondecreasing. Hence,

|J3I < * / " + 2 L ( l / x ) , x - 0 .

Finally, for some constant M^ ,

|X I SMX f (Xt ) 2 " + I
3 ( t )d t

By (2.12),

2n+2 ^1 / X

t2n+Xg(t)dt = o{L(l/x)) , x + o

Hence,
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Ik = O { X 2 M + 2 L ( 1 / X ) } , x - 0 .

This completes the proof of the assertion

I. = 0{x2n¥2L(l/x)} , x •» 0 , 3 = 1, 2 .

It follows that

C(x) ~ 5 a x2r f £r~Xgkt)dt + a x2n+2 f * tZn¥1g(t)dt , x - 0 .

Comparing th i s asymptotic relat ion with (2.10), we obtain (2.13).

REMARK 1. The assumption (2.9) i s not necessary. With the help of

some known resul ts [9 ] , [.101, i t can be shown that (2.10) i t s e l f implies

g(t) = 0\t 1\ as t -*• °° , for some, a > 0 . This i s sufficient to

just ify the Mellin transform technique used.

REMARK 2. The technique i s quite general. In par t icu la r , i t i s

applicable when K(s) , the Mellin transform of the kernel k(t) , has no

singular i t ies other than poles in the complex s-plane and, for

a < o s 0 , K(s) = 0 ( | T | P ) , | T | -*-<*>, s = a + ix .
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