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Phase-averaged and cycle-to-cycle analysis of key contributors to sound production in
phonation is examined in a scaled-up vocal-fold model. Simultaneous temporally and
spatially resolved pressure and velocity measurements permitted examination of each term
in the streamwise integral momentum equation. The relative sizes of these terms were used
to address the issue of whether transglottal pressure is a surrogate for vocal-fold drag, a
quantity directly related to sound production. Further, time traces of transglottal pressure
and volume flow rate provided insight into the role of cycle-to-cycle variations in voiced
sound production which affect voice quality. Experiments were conducted using a 10×
scaled-up model in a free-surface water tunnel. Two-dimensional vocal-fold models with
semi-circular ends inside a square duct were driven with constant opening and closing
speeds. The time from opening to closed, To, was half the oscillation period. Time-resolved
digital particle image velocimetry (DPIV) and pressure measurements along the duct
centreline were made for 3650 ≤ Re ≤ 8100 and equivalent life frequencies from 52.5
to 97.5 Hz. Results showed that transglottal pressure does serve as a surrogate for the
vocal-fold drag. However, smaller but non-negligible momentum flux and inertia terms,
caused by the jet and vocal-fold motions, may also contribute to vocal-fold drag. Further,
cycle-to-cycle variations including jet switching and modulation are inherent in flows of
this type despite their high degrees of symmetry and repeatability. The origins of these
variations and their potential role in sound production and voice quality are discussed.
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1. Introduction

Verbal communication has been a defining feature of human civilization for millennia.
Ramig & Verdolini (1998) and Roy et al. (2005) estimated from 3 % to 9 % of people in
the United States alone suffer from some type of voice abnormality. These conditions can
have powerful effects beyond a person’s physical health, impacting the ability to work and
interface with society, and ultimately affecting one’s mental and emotional well-being.
For this reason, the ability to understand, model and ultimately enable voice production
remains critically important.

The work in this paper is focused on the connection between the momentum balance in
time-varying glottal jets formed by flow through vibrating vocal folds, and the generation
of sound. The research is built from a comprehensive, first-principles dynamics approach
in which time-resolved measurements are used to compute every term in the streamwise
integral momentum equation

ρ
∂

∂t ∰ u dV + ∯ u2ρ dSx = ∯ P dSx + ∯ τ dSy + Fdrag. (1.1)

This analysis is conducted in both phase-averaged and instantaneous forms using
time-resolved DPIV and simultaneous measurement of pressure along the centreline of the
vocal-fold model. The terms in (1.1) are, in order of appearance, the time rate of change
of streamwise momentum in the control volume, the flux of streamwise momentum across
the open upstream and downstream control surfaces, the net streamwise pressure force
(i.e. transglottal pressure force) acting on the inlet and outlet faces of the control volume,
viscous drag along the vocal-fold sidewalls and net pressure drag on the vocal folds.
Because flow and pressure are measured simultaneously over multiple oscillation cycles
over a range of parameters, the full momentum balance provides a structured framework
for assessing the various dynamical hypotheses that, until now, have been based heavily on
kinematic observations. Using this approach, it is also possible to show how cycle-to-cycle
variations in the glottal jet influence phase-averaged analysis. As such, this work both
demonstrates a comprehensive, dynamics-based research paradigm for studying human
phonation as well as presents new scientific findings.

1.1. Description of the flow and key parameters
A sequence of vocal-fold motions and associated flow across one oscillation cycle is shown
schematically in figure 1. Each drawing represents a different time step in the cycle. Flow
is from bottom to top. The glottis is the gap between the vocal folds through which air
flows. By convention, the upstream side of the vocal folds is referred to as subglottal
and downstream of the folds is supraglottal. Transglottal pressure, then, refers to the
pressure difference between the higher subglottal and lower supraglottal pressures. In the
remainder of this paper, the orientation is rotated 90° to the right relative to figure 1, so
the supraglottal region and flow is to the right. The flow is defined to be in the positive
x-direction.

Figures 1(a) and 1( f ) show the vocal folds at the beginning and end of the cycle,
respectively. When the cycle begins, pressure from the lungs opens the glottis by pushing
the folds upward, figure 1(b), and then outward, figure 1(c). Once opened, a jet, shown as
dashed arrows, forms and the subglottal driving pressure decreases. As will be highlighted
in § 1.3, the glottal jet has been observed to turn to one side or the other, sometimes
switching directions across cycles and also exhibits three-dimensional behaviour as a
function of geometry and frequency.
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(a) (b) (c) (d ) (e) ( f )

Figure 1. Schematic of vocal-fold motion showing opening (a–c) and closing (d– f ) phases of one vocal-fold
vibration cycle. Dashed arrows denote airflow through the glottis when it is open.

Later in the cycle, through combined aerodynamic pressure and elastic recoil effects, the
vocal folds rock back and close, figures 1(d) and 1(e). The glottal jet pinches off and the
folds return to their original position, figure 1( f ). In human phonation the vocal folds do
not always close completely, but when they do, they can remain closed for 80 % to 120 %
of the time that the glottis is open; the time between figures 1(b) and 1(e) approximately
equals the time between figure 1( f ) back to 1(a). The time the glottis is open is defined as
To. In this work, the time open and the time closed are equal, so the total oscillation period
is 2To.

There are three characteristic non-dimensional numbers for this flow: a Reynolds
number and two dimensionless frequencies. The Reynolds number is based on maximum
glottal opening, hmax, and the steady-state bulk jet velocity when the vocal folds are held
fully open, Uss. The more commonly used non-dimensional frequency is the Strouhal
number, defined as f hmax/Uss, where the vocal-fold oscillation frequency is f = 1/2To. In
this paper, the reduced frequency introduced in Krane, Barry & Wei (2010), f* = f L/Uss,
is used. The rationale is that the vocal-fold length, L, is a more appropriate length scale for
the jet dynamics than the gap width.

There are two additional relevant frequencies referred to in this paper, fmodel and flife.
The first, fmodel, is the model vocal-fold oscillation frequency, 1/2To. This corresponds
to an equivalent life frequency, flife, that is 1500 times fmodel. This factor stems from
multiplying the ratio of kinematic air and water viscosities, νair/νwater = 15, by the volume
ratio of model to life scale (i.e. 103). Note that the velocity scale ratio, Ulife/Umodel, is then
150.

1.2. A brief review of vocal-fold models
Access to human vocal folds, due to the small size of the glottis and high vocal-fold
vibration frequencies, continues to impede attempts to directly observe and quantify the
phonation dynamics. For a comprehensive review of the literature on the fluid dynamics
of human phonation, the reader is referred to Mittal, Erath & Plesniak (2013). There have
been a variety of vocal-fold models developed, ranging from in vivo and ex vivo, to those
that include both driven and flow induced vibration.

Excised vocal folds, e.g. Jiang & Titze (1993), Alipour, Jaiswal & Finnegan (2007),
Khosla et al. (2007), Oren, Khosla & Gutmark (2014), Alipour, Finnegan & Scherer
(2009) and Alipour, Finnegan & Jaiswal (2013), and in vivo models, e.g. Dollinger, Berry
& Berke (2005), provide anatomically and physiologically correct representations of the
highly complex geometry and biomechanical behaviour of real vocal folds. This realism
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is offset by challenges to reproducibility as each model geometry is unique and material
properties of the excised folds and surrounding tissue change rapidly.

To address these issues, a variety of physical models that allow for more repeatable
experiments have been used. Erath & Plesniak (2006a,b, 2010) explored pulsatile
two-dimensional flow through static asymmetric divergent models while Scherer, Shinwari
& DeWitt (2001) developed the so-called static M5 model to study symmetric and
asymmetric glottis configurations. To overcome limitations of static models, Thomson,
Mongeau & Frankel (2005) created complementary physical and numerical models using
idealized size, shape and mechanical properties approximating those of human vocal folds.
Subsequent studies (Pickup & Thomson 2009; Murray & Thomson 2012) have produced
physical vocal folds models with complex internal structure, incorporated three layers of
different stiffness, consisting of cover, transition and body layers.

In order to focus on the source of phonatory flow variability, physical models with
phase-coherent vocal-fold motion were developed. Coker et al. (1996), and Mongeau
et al. (1997) designed a life-sized mechanical model of human vocal folds driven by two
actuating rods embedded in rubber. Barry, Krane & Wei (2004) developed a simplified
scaled up, stepper motor driven model that executed a periodic motion across a model
larynx. Peterson (2007) used the same experimental setup investigated asymmetric model
behaviour to explore conditions of paralysis and paresis. Sherman et al. (2019) built on
this design to incorporate more modes of wall motion. Triep, Brücker & Schroder (2005)
developed a driven model employing two counter-rotating elliptical cams to approximate
the changing glottal profile during an oscillation cycle. Kucinschi et al. (2006) developed
a driven mechanical model that executed two of the lower-order eigenmodes of the vocal
folds studied computationally by Berry et al. (1994) and Titze & Martin (1989).

1.3. Glottal jet kinematics
There is an overlapping body of work addressing ‘traditional’ turbulence phenomena
including coherent structures, asymmetries and three dimensionalities of the glottal jet.
Scherer et al. (2001) and Erath & Plesniak (2006a,b), for instance, addressed fundamental
questions such as the occurrence of glottal jet asymmetry. Studies like these also
raised interesting questions, such as the occurrence of asymmetric jet flows, phenomena
observed even when the physical models are symmetric, and their dynamic relevance.
Indeed, whether flows of these types actually occur in the human larynx motivated other
researchers, including Triep et al. (2005) and Kucinschi et al. (2006), to examine more
physiologically representative models.

Jet motions are, of course, important to speech sound production. This was discussed by
Stevens (1971), Shadle (1985), McGowan (1988), Hirschberg (1992), Krane (2005), Howe
& McGowan (2005, 2007, 2011) and McGowan & Howe (2007), based on the foundational
aeroacoustic theory laid by Lighthill (1952). A key point discussed in Lighthill (1952),
Curle (1955) and Crighton (1975) is that sound generated by an acoustically compact
(incompressible) flow is an integrated effect of the accelerations across the source volume.
In this context, glottal flow variability, relative to the vocal-fold motion, is associated with
the dynamics and energy fluctuations that couple to the acoustics through the equations of
motion.

Indeed, there is a growing body of experiments in which qualitative features of the
glottal jet, e.g. coherent structures, three dimensionalities, jet deflection and switching, are
examined in the context of sound production. Examples include Neubauer et al. (2007),
Drechsel & Thomson (2008) and more recently, Sidlof et al. (2011), Krebs et al. (2012),
Lodermeyer et al. (2018) and Farbos de Luzan et al. (2018, 2020). In general, these works
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focus principally on coherent structures and do not quantify the forces, i.e. dynamics,
behind those kinematic features.

It is important to note that there are a number of computational studies that focused
on sound generated during phonation, including Zheng et al. (2011), Kaltenbacher et al.
(2014), Mattheus & Brücker (2018) and Sadeghi et al. (2019). Perhaps because a body of
experimental work does not (yet) exist to examine the relationship between jet dynamics
and sound, these computational studies have a heavy focus on kinematics like their
experimental counterparts. A notable exception is found in Kaltenbacher et al. (2014)
where three-dimensional maps of acoustic source terms are plotted. They demonstrate
that these maps are highly complex and can only be extracted from full three-dimensional
data sets including velocity and pressure. In general, however, these studies did not address
the global dynamics of glottal jets, or how the aerodynamic forces imparted by it relate to
sound production.

1.4. Glottal jet dynamics
To be useful in terms of clinical measures for voice pathology and treatment, spatial and
temporal information from the more kinematics-based approaches highlighted above need
to be reframed in terms of the fluid forces that tie to acoustic source strength. Accordingly,
the detailed flow information needs to be understood concurrently from an integral
momentum perspective. This is discussed in Zhang, Mongeau & Frankel (2002a,b), Krane
(2005), Howe & McGowan (2007) and McPhail, Campo & Krane (2019). A key point is
that vocal-fold drag is a direct measure of voice aeroacoustic source strength, which is an
integral quantity.

The body of work focused on dynamics is far smaller than that focused on kinematics.
Deverge et al. (2003) directly measured pressure using two symmetric vocal folds where
one was fixed and the other moved. The flow exhausted directly to atmosphere. They
recorded time-resolved traces of sub-, supra- and transglottal pressure for three different
geometries. Since there were no flow measurements, however, they could not examine
the full dynamics of the problem. Mattheus & Brücker (2018) also presented a measured
transglottal pressure trace, but it was used only to validate their computations.

Beyond providing kinematic information, DPIV has been used to compute complex
terms in the turbulent transport equations, cf. Hsu et al. (2000) and Grega, Hsu &
Wei (2002). In addition, methods for extracting the pressure field from DPIV data have
been developed by Dabiri et al. (2014) and Lambert et al. (2018). These state-of-the-art
approaches have not yet been applied to glottal flows. A simplified inviscid momentum
equation approach was used by Oren et al. (2014) to estimate the pressure associated with
vortices generated during the closing of excised canine laryngeal vibration. This study was
neither time resolved, nor was the full force balance examined.

The open opportunity therefore exists to couple dynamics with kinematics by
concurrently conducting control-volume analyses on the same data used to extract detailed
full flow-field information. This has been shown to be an invaluable tool for understanding
complex fluid-structure interaction (FSI) dynamics. Examples include vortex-induced
vibration (VIV) of flexibly mounted cylinders, e.g. Benaroya & Wei (2000) and Voorhees
et al. (2008), and strong frequency dependence on cycle-to-cycle variations in oscillating
duct flows, Sherman et al. (2019). In the VIV work of Voorhees et al. (2008), a slight
mismatch between the vortex shedding frequency and the cylinder’s natural frequency
was shown to modulate the strength and coherence of the Kármán vortices from cycle to
cycle. This was further shown to create a modulated forcing function that led to a beating
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behaviour of the cylinder. This was incorporated into the reduced-order analytical model
developed in Benaroya & Wei (2000).

Cycle-to-cycle variations were also observed in the oscillating constriction experiments
of Sherman et al. (2019). For a nominally symmetric and highly repeatable mechanism,
the unsteady jet could vary significantly in both strength and direction from one cycle to
the next, phenomena which were found to be highly frequency dependent. Very similar
behaviours were observed in the present experiments even though the geometries and
facilities were quite different.

These FSI examples serve to motivate the present work. Time-resolved measurements of
the full flow field provide critical insights into the underlying unsteady turbulent glottal jet
kinematics and dynamics. It is the integral control-volume analysis that, in turn, links the
fluid dynamics to the acoustics. The experimental features that enable this integral analysis
are: (i) simultaneous time-resolved velocity field and pressure measurements along the
vocal-fold model and (ii) the resulting ability to directly compute all of the terms in the
integral momentum equation.

1.5. Problem statement
Mittal et al. (2013) broadly divided flow studies of glottal jets into works focusing
on coherent structures, asymmetries, and three-dimensionalities; categorizations that
still largely apply today. Much of this work has focused on kinematic analysis of a
single oscillation cycle or phase averaging of multiple cycles with or without acoustic
measurements or computations.

To place the current work in context and to demonstrate its impact on the field of
phonation, it is worthwhile to clearly identify what is known, what is not known and
issues at the boundaries which are either accepted but not fully established, or established
but not widely adopted. In terms of experimental fluid mechanics methodologies applied
to the study of phonation: (i) DPIV has become widely used in vocal-fold experiments,
(ii) phase locking and phase averaging are common techniques for examining glottal jet
flows, (iii) highly resolved time traces of sub-, supra- and transglottal pressure have been
made and (iv) acoustics measurements have been coupled to kinematic flow observations.

In terms of kinematic observations, three things are universally accepted: (i) even for
highly symmetric geometries and vocal-fold motions, the glottal jet has a high propensity
to turn away from the glottal centreline, (ii) this jet direction can change from one
cycle to the next resulting in often unpredictable jet switching and (iii) depending on
the vocal-fold geometry, jet three-dimensionalities, i.e. variations in the z-direction, are
commonly observed. Finally, two things about the relationship between flow and acoustics
are known. First, cycle-to-cycle variations in flow correlate to cycle-to-cycle variations in
sound. And second, sound generation is related to volume flow.

What is not known or understood about phonation is the dynamics; only the temporal
evolution of transglottal pressure as a function of vocal-fold motion has been well
described. Critical open questions that can only be addressed through examination of the
fluid dynamics include: (i) What causes the observed kinematic cycle-to-cycle variations,
e.g. jet switching? (ii) Which, if any, cycle-to-cycle variations in flow are actually
important to sound production, and if so, how? And (iii) what causes deviations from
quasi-steady flow when vocal folds open and just before they close, and whether this is
relevant in terms of sound production.

In addition, there are three issues warranting further examination. The first
is that acoustic source strength is directly proportional to vocal-fold drag. This
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was discussed in Hirschberg (1992) and Zhang et al. (2002a,b) and relates back
to the foundational theory of Curle (1955), Crighton (1975) and Howe (1975).
While McPhail et al. (2019) argued that the driving transglottal pressure force is nearly
equal to (or at least a surrogate for) vocal-fold drag, these types of dynamics-based studies
have yet to be widely incorporated into research in the field.

The remaining two issues deal with a consensus that glottal flows are quasi-steady
without definitive proof in the literature. Specifically, first, while it is widely accepted
that the glottal jet is quasi-steady in a phase-averaged sense, this has only been established
in the middle of the oscillation cycle and not when the vocal folds have just opened or
when they are about to close. Second, research into quasi-steadiness is largely limited to
low (adult male) frequencies.

In summary, to deepen the understanding of phonation, it is essential to understand
the interrelationship between acoustics, kinematics and dynamics, i.e. to deploy the
streamwise integral momentum equation, (1.1) to the understanding of glottal jet
dynamics with the goal of providing insight and understanding into the role of the jet
motions on sound production. Temporally resolved DPIV velocity-field measurements are
simultaneously coupled with time-resolved pressure measurements through a 10× scaled
up vocal-fold model. This builds on the work of Barry et al. (2004) and Krane, Barry &
Wei (2007), Krane et al. (2010) which presented only velocity-field measurements. These
new measurements allow both a phase-averaged examination of the integral momentum
equations as well as the consideration of cycle-to-cycle variations. Thus, it is now possible
to directly address the three questions raised above. The phase-averaged analysis makes
it possible to identify the principal contributions to the vocal-fold drag, i.e. the principal
aeroacoustic source strength. At the same time, examination of individual cycles yields
insights into phonation and potentially ways in which the flow may influence sound quality
and perception.

It should be acknowledged here that actual acoustics measurements are not possible in an
incompressible flow facility. By linking the kinematics of jet phenomena, however, in both
the phase-averaged and cycle-to-cycle senses, with the dynamics, and, in turn knowing the
relationship between the momentum and acoustics equations, a framework is created to
fully understand the role of the glottal jet variations on sound production.

Cases reported in this paper correspond to nominally normal phonation cases, in which
the vocal folds move symmetrically and close fully. Both frequency and Reynolds number
effects are examined. This work provides a baseline for ongoing studies into conditions
where the vocal folds do not fully close and vocal-fold motions are asymmetric. Specific
questions addressed in this study are:

• whether the driving transglottal pressure force from the lungs does indeed serve as
a surrogate for vocal-fold drag;

• whether the momentum flux and unsteady inertia terms contribute to voiced sound
production and quality;

• how the flow dynamics varies with Reynolds number and frequency;
• how terms in the streamwise momentum equation are affected by cycle-to-cycle

variations; and
• what causes cycle-to-cycle variations.

2. Apparatus

Experiments were conducted using a 10× scaled up vocal-fold model in a large
free-surface water tunnel. The vocal-fold models were the same as those used in Barry
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Water tunnel

test section wall

Vocal tract

Laser sheet

Inset

CV

Flow

Vocal fold

model

Pu

xu xg xd

Pg
Pd

Figure 2. Top-view installation drawing of scaled-up vocal-fold model including stepper motor (not shown)
driven vocal folds and vocal tract installed in a free-surface water tunnel. Flow is left to right. A horizontal laser
sheet is directed upstream with camera (not shown) looking up from underneath the tunnel. Locations of ten
pressure taps are indicated with arrows; the upstream, Pu, glottal, Pg, and downstream, Pd , taps are indicated.
The inset drawing shows the control volume in red and the upstream, glottal and downstream locations, xu, xg
and xd , respectively.

et al. (2004) and Krane et al. (2007, 2010). The important difference in the current
apparatus was the addition of time-resolved pressure measurements along the axis
of the glottal duct. These were made through video recording of manometers. Flow
measurements were obtained using DPIV. A top-view schematic of the experimental
apparatus is shown in figure 2.

The glottal model consisted of a 28 cm × 28 cm × 366 cm (inside measure) duct with a
square, closed cross-section, into which two vocal-fold models were inserted. The entire
assembly was constructed using 1.27 cm thick acrylic. The vocal-fold models consisted
of 12.7 cm diameter half-cylinders fixed to the ends of rectangular boxes such that the
assembly was 14 cm wide × 12.7 cm in streamwise length × 28 cm high. As shown in
figure 2, each model fit into an opening on either side of the glottal duct, 45.7 cm
downstream of the duct entrance. The geometry downstream of the vocal-fold models was
the remaining 306.7 cm of the square duct.

A 1.27 cm thick back plate with two 2.54 cm circular stainless-steel guideposts was
used to constrain the motion of each vocal fold in the cross-stream direction. Linear Teflon
bearings were used to minimize friction and eliminate vibration as the vocal folds moved
in and out on the posts. The gaps between the model and the openings in the duct wall
were less than 0.01 cm. Further, there were openings at the tops and bottoms of the back
plates so that as the vocal folds moved, fluid behind the vocal folds would be exchanged
with the fluid outside of the glottal duct; there was no measurable leakage between the
vocal folds and the duct walls.

Each vocal-fold model was driven by a Servo System® stepper motor using a worm
gear and linear stage. Both motors were controlled from a single timing signal to
ensure symmetry of motion. The pitch of the lead screw was 0.0635 cm meaning that
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approximately 17.5 motor revolutions, or 3500 individual motor steps, were required for
the vocal-fold models to go from fully closed to fully open and vice versa. For the lowest-
and highest-frequency cases, the stepper motor rotation speeds were 2.4 and 4.5 rev s−1,
respectively.

The new feature added to this model was a set of ten pressure taps drilled along the
centreline of the duct ceiling. Each tap was 0.16 cm in diameter. Defining the upstream
and downstream faces of the vocal-fold models as xu and xd, respectively, and the location
of the glottis, i.e. the point of contact of the two opposing models, as xg, the streamwise
locations of the pressure taps were (x − xu)/(xd − xu) = −0.5, −0.25, 0, 0.25, 0.5, 0.75,
1.0, 1.25, 1.5 and 2.0. Each tap was connected to an approximately 200 cm length of 0.64
cm inner diameter flexible tubing. All tubes were the same length and were each in turn
connected to a glass tube with 0.32 cm inner diameter. The tubes were affixed to form
a manometer bank which was mounted vertically outside the water tunnel test section.
A discussion of frequency response of this system is provided in § 3.4.

The full glottal duct assembly was mounted in a free-surface water tunnel built by
Rolling Hills Research. It had a custom-designed test section measuring 61 cm in width,
91.4 cm in depth and 500 cm in length. Flow was driven by a single frequency-controlled
axial flow pump that is vibration isolated from the tunnel with flexible rubber couplings.
The maximum flow rate of the pump was approximately 10 000 lpm.

The assembly was placed on a set of legs, 15.24 cm high, so that the tunnel sidewalls
and floor were equidistant from the glottal duct. The closed top of the duct was submerged
to approximately 5 cm below the free surface. This was deep enough to minimize any wave
effects at the inlet of the duct, but not so deep that the stepper motors that moved the model
vocal fold and wiring would come in contact with the water.

DPIV measurements were made using a Phantom Miro 310 high-speed video camera
and a Quantel Evergreen EVG00200 dual pulse Nd:YAG laser. The laser had a maximum
power of 200 mJ per pulse with a repetition rate of 15 Hz. Flow was seeded with 10 µm
silver-coated glass spheres from Potter Industries. The camera, vocal-fold stepper motors
and laser were synchronized by a Berkeley Nucleonics 565 Pulse Delay Generator.

Simultaneous video recordings of the time-varying manometer levels were made using
a Raspberry Pi camera. The Raspberry Pi camera framed at 30 f.p.s. driven by its
own onboard clock. The entire system, including vocal folds, laser, DPIV camera and
Raspberry Pi camera, however, were all triggered by a common pulse from the pulse delay
generator.

The two-dimensional (i.e. unit depth) integral control volume is shown in figure 2 as
an inset and appears as the red shaded region. The upstream and downstream faces are
co-located with the upstream and downstream faces of the vocal-fold models and defined
to extend across the entire width of the duct. Contributions to velocity integrals, such as
the momentum flux term in (1.1), are identically zero everywhere along the flat parts of the
vocal folds where there is no flow. The ‘lateral faces’ of the control volume are defined to
be the vocal-fold walls. As such, the area (or volume) within the control volume changes
with time. This variable geometry becomes important in the unsteady inertia term, the
calculation of which is described in § 4.4 and Appendix A.

3. Methods

3.1. Flow conditions
Building on the work of Barry et al. (2004), Krane et al. (2007, 2010) and Sherman
et al. (2019), the goal of the present research was to provide a fuller understanding the
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momentum balance in glottal jets with an eye toward direct coupling to sound production.
This study focused on symmetric vocal-fold motions over a range of Reynolds numbers
and reduced frequencies characteristic of the adult human male voice.

Two data sets were compiled, one at a fixed frequency with four different Reynolds
numbers, and the other at a fixed Reynolds number with four different frequencies.
One case was common to both sets such that a total of seven separate cases were
examined. Recalling from § 1.1 that the time from open to close was defined as To and the
total oscillation period was 2To, the vocal-fold model frequencies, fmodel = 1/2To, were
0.035 Hz, 0.045 Hz, 0.055 Hz and 0.065 Hz. Adjusting for the 10× scale of the vocal-fold
models relative to physiological scale, and the fact that the kinematic viscosity of air is 15
times that of water, these frequencies correspond to life-scale frequencies, flife, of 52.5 Hz,
67.5 Hz, 82.5 Hz and 97.5 Hz, respectively. The Reynolds numbers (based on hmax ≈ 22
mm) examined were 3560, 5350, 7200 and 8100 corresponding to steady-state jet speeds,
Uss, of 16.2, 23.8, 31.6 and 36.0 cm s−1, respectively. The four Reynolds numbers were
studied at the highest model frequency, 0.065 Hz ( flife = 97.5 Hz) and the four frequencies
were studied at Re = 7200.

For every case studied, tunnel speed was set, with the vocal folds closed, and allowed
to run for a minimum of thirty minutes before the vocal-fold motions were initiated. This
ensured that the bulk flow around the outside of the duct model was steady. Two empirical
observations verified that the flow around and downstream of the duct model was steady
and laminar. First, the tunnel free surface is extremely sensitive to vortices. Even the
smallest, weakest vortices that attach to the free surface create dimples that are clearly
visible because of the optical distortions they create. No such disturbances were observed
either along the outer edges of the duct or in the wake. Second, the free-surface mirror used
to reflect the DPIV laser sheet upstream into the measurement region was mounted to a
cantilever. Any unsteadiness in the flow hitting the mirror would cause vibrations which
would, in turn, vibrate the laser sheet. To ensure the mirror did not affect flow inside the
duct, it was placed roughly a metre downstream of the duct exit. With the duct length
downstream of the vocal folds being over three metres, the total distance from the laser
sheet to the vocal folds was more than four metres. This is a tremendous optical lever, yet
there was absolutely no vibration of the laser sheet.

In terms of the effects of vocal-fold opening on the bulk flow and in the subglottal
region of the duct, Krane et al. (2007) argued that the change in total blockage area of
the duct model caused by vocal-fold motions was very small and would therefore have
little effect on the subglottal pressure. That is, there would not be a marked decrease in
pressure at the duct entrance that would, in turn, create vortices and other disturbances of
the flow entering the glottal region. This was verified in this experiment. With the vocal
folds closed the total blockage area of the duct was 28.9 % of the cross-sectional area of
water in the test section. When the vocal folds were fully opened, the blockage area of the
duct decreased by less than 1 % to 28.1 %. As will be seen in § 4.3, specifically figures 7
and 8, the effect of vocal-fold opening on subglottal pressure could be observed but had
negligible impact on the flow.

To ensure adequate sample sizes for phase-averaging, a minimum of twenty oscillation
periods were captured for each of the seven cases. To fully assess cycle-to-cycle variability,
it would have been desirable to run the oscillations continuously and capture one complete
data set for each case; this would have ensured that start-up transients could be eliminated
or minimized. Camera storage limitations, however, prevented this. Thus, for the four cases
at 0.065 Hz, three sets of eight consecutive oscillations were captured. For the 0.035 Hz,
0.045 Hz and 0.055 Hz cases, five sets of four, six sets of four and three sets of seven
consecutive oscillations were captured, respectively.
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In addition, pressure and velocity measurements were also made for the four Reynolds
numbers under steady-state conditions where the vocal folds were fixed in the full-open
position. One thousand vector fields were captured for these steady-state full-open cases
over a span of 67 s. Pressure measurements were made when the vocal folds were in the
fully closed position and the water tunnel pump was running at settings corresponding to
the four Reynolds numbers. Since there was no flow through the vocal-fold models, flow
measurements were unnecessary for these cases.

3.2. Vocal-fold motions
One goal of this research has been to simplify the model geometry and motions enough to
identify the essential dynamics present in actual phonation. As noted earlier, the vocal-fold
motions were the same as those used in Barry et al. (2004) and Krane et al. (2007, 2010).
The vocal folds opened at a nominally constant speed to a maximum opening, hmax, closed
at the same constant speed and then remained closed for a time equal to the sum of the
opening and closing times.

Sample traces of the vocal-fold motions were presented in Krane et al. (2007); in
addition, a sequence of individual oscillation cycles is presented later in § 5.3 (figure 16).
In the previous and current studies, there were small deviations from the target motion
when the folds first started opening, when they changed direction and when they closed,
i.e. at t/2To = 0, 0.25 and 0.5, respectively. Specifically, time traces of the actual vocal-fold
motions were slightly rounded around these three time points. This was simply because the
stepper motors were incapable of instantaneous accelerations. The non-dimensional time
intervals, during which the actual vocal-fold motions differed from the start, reverse and
end of the idealized triangular trajectory, were approximately 0.05 in duration.

The position of the vocal folds was determined by the number of steps the motors turned
and was verified directly from the DPIV video images. An edge-detection algorithm was
used to locate the two vocal folds in each video frame and to track the glottal opening.
For all cases studied, the average maximum glottal opening, hmax, was 2.2 cm with an
overall standard deviation of 0.11 cm. For every individual run (of four to eight consecutive
oscillations), however, the maximum deviation in hmax was less than 0.05 cm. The greatest
variation in glottal opening was from run-to-run and not from cycle-to-cycle. And, as will
be shown, the greatest cycle-to-cycle variation in transglottal pressure and jet dynamics
actually occurred for cases where the vocal-fold motions were most repeatable. Therefore,
while there were variations in vocal-fold motions as great as ±2.5 %, these were not the
primary cause of cycle-to-cycle variations in the associated flows.

For the Re = 8100 case, however, the static friction on one of the vocal folds was higher
than the other. This resulted in a delayed start by approximately 0.04To, leading to a
slightly higher speed than the desired profile as the vocal fold overcame the starting
friction, followed by a slightly lower speed. It will be shown that the effects of this
perturbation were minimal. The most interesting effects were actually observed for the
Re = 7200 cases where the vocal-fold speeds were constant for the majority of their
motion.

3.3. DPIV measurements
Time-resolved flow-field measurements were made at the mid-height of the glottal model.
The camera field of view was 21.9 cm × 16.4 cm in the x and y-directions, respectively.
For all measurements in this study, the pixel resolution was 54.8 pixels cm−1. The
flow was illuminated with a dual pulse Nd:YAG laser which, using a cylindrical lens,
formed an approximately 0.1 cm thick light sheet, which was about 14 cm wide at the
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vocal-fold models. The laser sheet entered through the sidewall of the water tunnel test
section, far downstream of the glottal duct, and was reflected upstream along the duct
centreline at the duct mid-height using a 10 cm × 12.7 cm front-surface mirror. The laser
sheet is illustrated schematically in figure 2.

DPIV image pairs were captured with the digital video camera below the water tunnel
test section, oriented upward toward the vocal-fold models. As will be shown in § 4, the
camera was positioned so that the flow was left to right and the glottis was just inside the
left edge of the field of view. The capture rate for image pairs was 15 Hz for a minimum of
230 vector fields per oscillation cycle (at the highest frequency). For the two lower speeds
studied, the time between images in a pair, δt, was set to 3 ms, and for the two faster speeds,
δt was 1.5 ms.

The stepper motors, DPIV camera and laser were all driven and synchronized using
a master clock on the pulse delay generator. The pulse generator had multiple output
channels. One pulse was generated at the start of every vocal-fold oscillation cycle which
was used to start and synchronize the pressure measurement system. Other channels fired
the two laser heads and the camera image capture. A single computer key stroke set the
entire system in motion.

DPIV vector fields were computed using a two-stage cross-correlation algorithm
described in Hsu (2000) and Hsu et al. (2000). The program first used 128 × 128 pixel
windows to obtain coarse displacement fields. In the second, or fine, correlation stage,
smaller windows were used. In this study these windows were 32 × 32 pixels. The
correlation windows in the second image of each image pair were offset relative to its
counterpart in the first image by an integer pixel amount determined from the coarse
correlation stage. Four-times oversampling was used so that, in this case, vectors were
8 pixels apart in both directions, corresponding to 0.146 cm in physical space.

In a detailed analysis of the current DPIV algorithm, Hsu et al. (2000) showed the
measurement uncertainty for an individual velocity measurement was less than 0.03 pixels.
Willert & Gharib (1991) provided a more conservative estimate of 0.1 pixels. For a
maximum pixel displacement of approximately five pixels along the jet centreline, the
uncertainty of the velocity measurements is between 0.6 % and 2 %. The uncertainty for
maximum jet velocity, volume flow rate and the unsteady inertia term in the streamwise
integral momentum equation, presented in § 4, would then be between 0.6 and 2 % of their
respective maximum values. Since momentum flux and dynamic pressure are proportional
to streamwise velocity squared, the uncertainty of those measurements is between 1.2 %
and 4 % of their respective maxima. Of course, assuming the error is stochastic, phase
averaging and integration should reduce these uncertainties.

3.4. Pressure measurements
As noted previously, the new and unique experimental feature of this study was the
inclusion of time-resolved pressure measurements along the axis of the model glottal duct.
The locations of the ten pressure taps were described in § 2. Water heights in the glass
manometer bank were imaged and recorded using a Raspberry Pi camera at 30 f.p.s. and
a resolution of 80 pixels cm−1. Sample video images of the pressure distribution along
the glottal duct are shown in figure 3. Figures 3(a) and 3(b) show the pressure distribution
when the vocal folds are closed and opening, respectively. The ability to measure changes
in manometer column height is evident in these images.

Prior to every experimental run, a few drops of a dilute soap solution were injected into
the top of each manometer. This flattened and reduced surface tension of the meniscus,
allowing the water column to accurately track pressure changes in the flow.
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Pg Pd

(a)

(b)
Pu

Figure 3. Sample movie frames showing streamwise pressure distributions along the glottal duct (a) when the
vocal folds are closed, and (b) when they are opening. Manometers corresponding to the upstream, Pu, glottal,
Pg, and downstream, Pd , taps are indicated. To indicate measurement resolution, a dashed line was drawn along
the menisci of the water columns in (a) and replicated in (b). The solid line in (b) was drawn along the menisci
of the water columns in (b).

For each oscillation cycle in each run, the Raspberry Pi camera was triggered by a pulse
from the master clock on the Berkeley Nucleonics pulse delay generator. It was observed
that there was a very slight mismatch in the clock rates of the master clock on the pulse
delay generator and the Raspberry Pi; over the duration of the longest experimental run,
123 s, the net time differential between the master clock and the Raspberry Pi clock could
be several milliseconds. For each cycle, therefore, the master clock triggered the Raspberry
Pi which then captured images using its on-board clock until the pulse delay generator
signalled the start of another oscillation period. In this manner, the DPIV and Raspberry
Pi video capture rates for flow and pressure measurement, respectively, were synchronized
to within ±1 ms over each vocal-fold oscillation period.

At the start and end of each day, a set of images of the manometer columns was captured
with zero flow through the water tunnel. This ensured that the manometer heights were all
level in the absence of a pressure gradient and provided the reference zero gauge pressure
for each manometer. As noted in § 2, a small amount of soap solution was injected into each
manometer at the beginning of the day to eliminate surface tension effects, the dominant
source of error and damping.

For the small displacements in this study, the manometers could conservatively
be assumed to be critically damped with a natural frequency of, ωn = √

g/L,
of 2.2 rad s−1 (where g is the gravitational acceleration = 9.81 m s−1 the tube
length, L = 2 m). For a step change in pressure, then, it would take ∼1 s
for a manometer to record 90 % of that change. This was most relevant when the vocal
folds first opened, changed directions and closed. Since these are not step changes, the
primary effect on pressure measurements would be up to a ∼0.5 s time lag after changes in
vocal-fold motion; this corresponds to t/2To ≈ 0.03 for the highest-frequency case. There
would not, however, be a significant loss in accuracy, particularly for the phase-averaged
measurement. For the highest-frequency case, for instance, the vocal-fold speeds are
0.29 cm s−1 and they move in each direction for 3.85 s. Except for the passage of individual
jet vortices, the manometer response was fast enough to capture the first-order pressure
variations.

In order to quantify pressures in each manometer, the video images were converted to
binary using a threshold level that clearly and sharply defined the menisci of each water
column. Since the images of each meniscus would be several pixels thick vertically, the
centroid of each meniscus along the manometer centreline was computed. This centroid
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location was used as the column height for that manometer in that video image. Using a
series of regularly spaced markers, visible on the left of the sample images in figure 3,
these locations were converted to pressures in Pascals.

Analysis of the pressure measurement apparatus and methodology revealed that the
most significant source of uncertainty was the determination of the meniscus location.
Close examination of figure 3 shows that the meniscus is about 0.05 cm thick, or 5 Pa.
For these experiments, the maximum transglottal pressure difference was approximately
85 Pa. While the algorithm to find the centroid of the meniscus has sub-pixel resolution,
a conservative pressure measurement resolution estimate of ±5 Pa is less than 6 % of the
maximum pressure differential of this investigation.

4. Results

Simultaneous DPIV and pressure measurements were made in a scaled up vocal-fold
model in a large free-surface water tunnel. Seven separate cases were examined, across four
different frequencies and four different Reynolds numbers. The model frequencies, fmodel,
were 0.035 Hz, 0.045 Hz, 0.055 Hz and 0.065 Hz corresponding to life frequencies, flife,
of 52.5 Hz, 67.5 Hz, 82.5 Hz and 97.5 Hz, respectively. The Reynolds numbers were 3560,
5350, 7200 and 8100. These Reynolds numbers were studied at the highest frequency,
equivalent to 97.5 Hz, while the four frequencies were studied at Re = 7200. Results from
these experiments are presented in this section. For reference, measurements of pressure
and velocity were also made for the steady-state cases where the vocal folds were fixed in
their full-open position and subsequently in the fully closed position at the four different
Reynolds numbers; these are the ‘steady-state’ cases.

4.1. Velocity and pressure across a phase-averaged oscillation cycle
The interrelation between spatially and temporally resolved flow and pressure
measurements across the glottal model is highlighted in this sub-section. Figure 4 is
a sequence of six panels showing phase-averaged DPIV vector fields with associated
streamwise pressure distributions at non-dimensional times from t/2To = −0.05 to 0.45.
This spans the time just before the vocal folds begin to open to just before they close. For
comparison, instantaneous DPIV vector fields are presented later in § 5.3 (figure 15). Flow
is left-to-right with the vocal folds masked in white. The vector fields show every other
vector and have been scaled and aligned with the x-axis of the pressure plots. Observe
that a small patch of spurious vectors has been masked in the lower right corners of
figure 4(c–f ). These are artifacts from a single oscillation cycle and lie outside of where
any analysis was done.

Pressure is shown in the form of a pressure coefficient, (P(x) − Pd−closed)/
(Pu−closed − Pd−closed), where Pu−closed and Pd−closed are the steady-state pressures
at the upstream and downstream faces of the model when the folds are closed.
Non-dimensionalized positions, (x − xu)/(xd − xu) = 0, 0.5 and 1.0, correspond to the
upstream face, xu, glottis, xg, and downstream face, xd, respectively. As noted in § 3.4,
a conservative estimate of pressure uncertainty was ±5 Pa or ±0.07 using the pressure
coefficient defined above.

Before considering individual panels, observe that the non-dimensional subglottal
pressure values in figure 4 vary by less than ±0.1 over the entire phase-averaged oscillation
cycle. There is a small decrease when the vocal folds open and a recovery when they close.
This is similar to what is observed in the human airway.
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Figure 4. Sequence of six streamwise pressure distributions and corresponding phase-averaged DPIV vector
fields along the glottal model at t/2To = (a) −0.05, (b) 0.05, (c) 0.15, (d) 0.25, (e) 0.35 and ( f ) 0.45 for
Re = 7200, flife = 97.5 Hz ( f* = 0.0261). Note that (x − xu)/(xd − xu) = 0, 0.5 and 1.0 are the upstream face,
glottis and downstream face, respectively.

Turning now to the individual time steps, Figure 4(a) corresponds to t/2To = −0.05,
shortly before the vocal folds begin to open. There is no mean flow and the pressure
coefficient upstream of the glottis is unity. Downstream of the glottis, the pressure is also
constant, although at a dimensionless value of approximately −0.15. This indicates that
even though the vocal folds remain closed for a time equal to To between openings, there
is insufficient time for the pressure to fully equilibrate to the steady-state closed levels such
that the downstream pressure coefficient returns to zero. To put this in perspective, except
for the highest frequencies at the highest Reynolds numbers, the time required for the
glottal jet to traverse the 3 m duct length downstream of the vocal folds is longer than the
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time the vocal folds are closed; and this assumes the jet continues to move at its maximum
velocity.

In figure 4(b), the vocal folds have begun to move and are at 20 % of the maximum
opening. This corresponds to t/2To = 0.05. The phase-averaged starting jet is visible in the
DPIV vector field and can be seen curving to the right (downward in the figure) away from
the centreline. This is evidence of the Coanda effect, which has been discussed in multiple
studies including Triep & Brücker (2010), Mattheus & Brücker (2011, 2018) and Sherman
et al. (2019).

The direction the jet takes may be different for successive oscillations. In subsequent
time steps, the phase-averaged jet appears broad, and in some instances, bifurcated. This
is evidence of cycle-to-cycle variations similar to those presented in Sherman et al. (2019)
and will be discussed in § 5.3. Observe that at this early stage, the streamwise pressure
distribution has not yet significantly changed.

By t/2To = 0.15, shown in figure 4(c), the focal folds are at 60 % of their full
separation, hmax. It can be seen that the pressure in the upstream half of the vocal-fold
model, (x − xu)/(xd − xu) = 0.25, decreases while pressure downstream of the glottis
increases. Upstream of the model, the non-dimensional pressure also decreases slightly,
by approximately 0.07. This reflects the fact that the opening of the vocal folds releases
upstream pressure which is then carried downstream. The DPIV vector field shows that
by this time, the jet has traversed across the entire streamwise field of view. Notice that
the phase-averaged jet appears to have bifurcated with a stronger jet downward (i.e. to
the right). This indicates the range of variability of the jet direction over the twenty-four
oscillation cycles comprising the ensemble. The asymmetry of the phase-averaged jet
indicates that on average the flow turned either to the left or the right.

At t/2To = 0.25, given in figure 4(d), the vocal folds have reached their fully open
position, hmax. The pressure at (x − xu)/(xd − xu) = 0.25 is approximately 20 % less than
its value when the folds were closed, cf. figure 4(a). At the same time, the supraglottal
pressures are approximately 20 % greater than Pd−closed.

The vocal folds close over the time interval 0.25 ≤ t/2To ≤ 0.5. Figure 4(e) corresponds
to the time t/2To = 0.35 when the vocal folds are again at 60 % of hmax but are now closing.
As they close, flow accelerates through the glottis. This is due to the combined effects
of flow inertia and the additional flux, i.e. squeezing, by the closing folds. The pressure
at (x − xu)/(xd − xu) = 0.25 reaches its lowest value because of the acceleration, while
the supraglottal pressures begin to decrease. At the same time, the subglottal pressure
increases by a small amount so that the pressure drop in the upstream half of the model
reaches its local maximum.

Figure 4( f ) shows the flow and pressure just before the vocal folds close. They are now
80 % closed, i.e. h = 0.2hmax, at t/2To = 0.45. The phase-averaged velocity field indicates
that the jet has pinched off despite the fact that the folds are not yet fully closed, although
this may be due to the thinness of the jet relative to the DPIV interrogation region. One can
also see a small over-pressure upstream of the model and a significant under pressure in the
supraglottal region. This decrease in supraglottal pressure continues after the vocal folds
close, as was indicated in figure 4(a). As will be discussed in § 5.3, the residual motions
and incomplete pressure recovery may contribute to perceptually relevant cycle-to-cycle
variations.

4.2. Phase-averaged time traces of kinematic flow quantities
This sub-section contains time traces of basic kinematic flow quantities commonly used
in the literature, e.g. Mongeau et al. (1997), Triep & Brücker (2010), Mattheus &
Brücker (2018) and Krane et al. (2007, 2010), among others. They are included here for
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Figure 5. Time traces of maximum jet velocity across the vocal-fold exit plane for (a) the four oscillation
frequencies at Re = 7200, and (b) the four different flow speeds at the highest frequency corresponding to a life
frequency of 97.5 Hz. Dotted vertical lines indicate the times, t/2To = 0.25 and 0.5, when the vocal folds are
fully opened and when they return to fully closed.

completeness and are important for subsequent examination of flow dynamics presented
in § 4.4.

Figure 5 shows phase-averaged time traces of maximum jet velocity, uj, along the
vocal-fold exit plane, xd, for the four frequencies at Re = 7200 in figure 5(a) and the
four Reynolds numbers at flife = 97.5 Hz in figure 5(b). Similar plots appear in Mongeau
et al. (1997) and Krane et al. (2007). In these plots, uj has been non-dimensionalized
by the averaged glottal jet bulk velocity, Uss, measured under fully open, steady-state
conditions at the corresponding Reynolds numbers. For this and all subsequent traces, time
is non-dimensionalized by the oscillation period, 2To, where t/2To = 0 and 0.5 correspond
to when the vocal folds begin to open and when they close. In addition, vertical dashed
lines have been placed at t/2To = 0.25 and 0.5 to indicate when the vocal folds are fully
open and fully closed, respectively.

For quasi-steady flow, maximum jet velocity traces should nominally follow a top-hat
profile with a time delay equal to L/2uj, the time required for the jet to traverse from the
glottis to the exit plane. Once the vocal folds close, the maximum velocity will diminish
to zero after an equivalent delay.

One can observe, however, humps around t/2To = 0.35 in every trace in figure 5. These
are due to acceleration in the jet as the vocal folds begin to close. The height of the
humps above the initial plateau are more pronounced with increasing frequency. Side
peaks around t/2To = 0.05 and 0.45 are caused by the starting and pinch-off vortices that
form as the vocal folds open and shut, respectively. Smaller spikes spaced along the traces,
most noticeable at the lowest frequency in figure 5(a), are likely caused by individual
vortices in the glottal jet passing the exit plane.

Deviations from the top-hat profile are also apparent for the different Reynolds numbers
in figure 5(b). The lowest Reynolds number case appears most similar to a top hat.
However, the maximum dimensionless jet velocity, uj/Uss, is significantly smaller than
for the higher Reynolds numbers. Based on review of subsequent results, it is believed
that this is primarily a frequency effect. Recall that reduced frequency, f *, is inversely
proportional to velocity; the lowest Reynolds number case also happens to be the highest
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Figure 6. Time traces of volume flow rate across the vocal-fold exit plate for (a) the four oscillation frequencies
at Re = 7200, and (b) the four different flow speeds at flife = 97.5 Hz. Dotted vertical lines indicate the times,
t/2To = 0.25 and 0.5, when the vocal folds are fully opened and when they return to fully closed.

reduced frequency. With that in mind, if the lowest Reynolds number curve (which is the
highest reduced frequency) in figure 5(b) were plotted on figure 5(a), that curve would
continue the observed frequency dependence trend.

Phase-averaged traces of volume flow rate (per unit depth) across the vocal-fold exit
plane are given in figure 6. The volume flow rate was computed by integrating the
phase-averaged streamwise velocity across the vocal-fold exit plane at each time step.
Following the convention of Krane et al. (2007, 2010) and Triep & Brücker (2010),
data were non-dimensionalized by steady-state bulk velocity, Uss, and maximum glottal
opening, hmax. Time was scaled by 2To.

Dependence on frequency at Re = 7200 is shown in figure 6(a). The lowest-frequency
trace is an isosceles triangle centred at t/2To = 0.25 corresponding to when the vocal folds
are fully opened. In addition, the maximum non-dimensional flow rate is slightly greater
than 0.9. These two observations are consistent with the quasi-steady flow assumption.

With increasing frequency, however, the traces increasingly tilt to the right and the peak
value of Q(t)/Uss hmax decreases. The smaller flow rates indicate that the glottis has started
closing before the jet reaches steady-state conditions. The tilt is a manifestation of the jet
being pinched off by the closing vocal folds. Both the tilting and reduced non-dimensional
flow rate are visible for the two lowest Reynolds number cases in figure 6(b). Recalling that
these two cases are also the highest f* cases studied, this again appears to be a frequency
effect versus a Reynolds number effect.

It is worth noting the presence of weak flow reversals after the vocal folds close. Since
the measurement plane is located at the vocal-fold exit plane, xd, the measured reversal is
caused by residual recirculation after the jet pinches off. It is conjectured that residual
motions explain why the supraglottal pressure does not fully recover, see figure 4(a).
As will be discussed in § 5.3, these residual motions are also likely responsible for jet
switching.

4.3. Phase-averaged pressure traces
Time traces of phase-averaged pressure coefficients are shown for the four different
frequencies at Re = 7200 in figure 7, and the four Reynolds numbers at flife = 97.5 Hz in
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Figure 7. Time traces of (a) upstream, (b) glottal and (c) downstream pressure coefficients for the four
oscillation frequencies at Re = 7200. Dotted vertical lines indicate the times, t/2To = 0.25 and 0.5, when the
vocal folds are fully opened and when they return to fully closed.

figure 8. In both figures, the phase-averaged pressure at the upstream face of the vocal-fold
model, Pu, figures 7(a) and 8(a), at the glottis, Pg, figures 7(b) and 8(b), and at the exit
plane, Pd, figures 7(c) and 8(c), are referenced to the mean downstream exit pressure when
the vocal folds are closed, Pdo, and normalized by the mean transglottal pressure difference
when the folds are closed, Puo − Pdo. For these and subsequent pressure plots, Puo and Pdo
were the time-averaged values of the phase-averaged pressure signals at the upstream face,
Pu, and downstream face, Pd, over the time interval, 0.85 ≤ t/2To ≤ 0.95. This interval was
chosen to best represent the supraglottal and subglottal pressures when the vocal folds were
closed; recall from figure 4 that the supraglottal pressure does not reach the steady-state
closed value, Pd−closed. Time is again non-dimensionalized by the full oscillation period,
2To. While direct comparison is not possible, data shown here qualitatively agree with
those reported in Deverge et al. (2003) and Mattheus & Brücker (2018).

It can be seen in figure 7(a) that as the vocal folds open the upstream pressure
decreases by approximately 10 %. When the folds reach their maximum open position
and begin to close, t/2To ≈ 0.25, the subglottal pressure begins to increase and overshoots
by approximately 10 % when the folds close. The decrease is due to the release of pressure
as the folds open while the increase is a result of restricting flow on the upstream, or
subglottal, side when the folds start to close. Shortly after closure, Pu quickly settles back
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Figure 8. Time traces of (a) upstream, (b) glottal and (c) downstream pressure coefficients for the four different
Reynolds numbers at flife = 97.5 Hz. Dotted vertical lines indicate the times, t/2To = 0.25 and 0.5, when the
vocal folds are fully opened and when they return to fully closed.

to Puo, although for the highest frequency, the return to Puo takes a comparatively longer
non-dimensional time.

The glottal and supraglottal pressures, figures 7(b) and 7(c), increase as the vocal folds
open and subglottal pressure is released. As the folds close, downstream pressure decreases
due to the jet acceleration. After closure, the glottal and supraglottal pressures return
toward, but never reach, the steady-state downstream pressure. The maximum variations in
pressure are approximately 70 % of the pressure drop for the closed vocal folds, Puo − Pdo.
Similar patterns can be seen in figure 8.

The interesting features in figures 7 and 8 are the distinct trends in frequency and
Reynolds number. In figure 7(c), non-dimensional subglottal pressure levels increase with
increasing frequency. For the highest-frequency case corresponding to flife = 97.5 Hz, the
maximum dimensionless pressure is approximately five times that at flife = 52.5 Hz. The
maximum pressure occurs later in the cycle, for successively higher frequencies. This is
consistent with the increased acceleration of the jet as the vocal folds close and causes a
relatively large pressure, (Pd − Pdo)/(Puo − Pdo) = 0.25, at the highest frequency.

The glottal pressures, figure 7(b), show similar frequency dependences as the
supraglottal pressures, figure 7(c). The distinct difference is for the highest-frequency
case, flife = 97.5 Hz. During opening, the maximum pressure is actually lower than the
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next two lower frequencies. It is not clear why this is the case. It is conjectured that the
flow separation point may move relative to the three lower frequencies. This is a region
where the pressure measurement could be very sensitive to the pressure tap location. Recall
that the shape of the maximum jet velocity trace for the highest-frequency was decidedly
different than for the lower three frequencies as seen in figure 5(a); the jet acceleration was
delayed at the highest frequency. This is a question for further study.

There are consistent Reynolds number trends for both glottal and supraglottal pressures
in figure 8. At face value, peak-to-peak pressure differences were greatest for the lowest
Reynolds number which would seem counter-intuitive. Recalling, however, that the lowest
Reynolds number is also the highest reduced frequency, the trends align with those
observed in figure 7. As such, frequency effects may be more important than Reynolds
number effects at least with respect to pressure and within the parameter range of this
study. This is explored in § 4.4 below.

Finally, the waviness of the pressure traces particularly in figure 8(a) for the upstream
pressure trace in the lowest Reynolds number case is worth noting. This is believed to
be a manifestation of cycle-to-cycle variations which are most prevalent at the highest
frequency. This will be discussed in greater detail in § 5.3.

4.4. Phase-averaged dynamics; terms in the streamwise integral momentum equation
The five terms comprising the integral streamwise momentum equation

Cinertia + Cm = Cp + Cf shear + CD(vf ), (4.1)

are presented in this section. This is written in dimensionless form where terms in
(1.1) are non-dimensionalized by (Puo − Pdo)Sduct. Starting with the right-hand side,
the driving pressure force is the transglottal pressure multiplied by the cross-sectional
area of the glottal duct. Non-dimensionalization identically results in the transglottal
pressure coefficient shown in figures 9(a) and 9(b) for constant frequency and Reynolds
number, respectively. Since the subglottal pressure, Pu, does not vary greatly across the
oscillation cycle, phase-averaged traces of transglottal pressure coefficient look similar to
the downstream pressure traces in figures 7(c) and 8(c). Data in figure 9 are in agreement
with similar measurements by Deverge et al. (2003) and computations by Mihaescu et al.
(2010). As discussed previously, the peak-to-peak amplitude increases and the maximum
pressure occurs later with increasing f*. This includes the lowest Reynolds number case,
figure 9(b), which is also the highest f*.

It is interesting to observe that the maxima in the transglottal pressure peak occur before
the vocal folds close. If one were to assume that the pressure increase, nominally between
when the vocal folds start to close, t/2To = 0.25, and when they fully close, t/2To = 0.5,
is due to the inertial of the flow pushing past the glottis and the increasing blockage
of the closing folds, then the peak should occur roughly when the folds close and not
before. As can be seen in figure 9(a), the maximum transglottal pressure occurs as early as
t/2To ≈ 0.4. As such, the effect of increasing blockage is not sufficient to fully understand
the dynamics of glottal closure.

The phase-averaged supraglottal pressure difference, that is, the pressure difference
between the glottis and downstream exit plane, (Pg − Pd), for constant flow speed and
constant oscillation frequency, are shown in figures 9(c) and 9(d), respectively. It is
interesting to observe that in figure 9(d), this supraglottal pressure difference is essentially
zero when the vocal folds are open for the two lowest and the highest tunnel speeds at the
highest oscillation frequency. In figure 9(c), however, the supraglottal pressure difference
appears to be slightly positive for the three lowest oscillation frequencies. For Re = 7200
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Figure 9. Phase-averaged transglottal pressure time traces for (a) the four oscillation frequencies at Re = 7200,
and (b) the four different flow speeds at flife = 97.5 Hz. The corresponding non-dimensional supraglottal
pressure differences for the same cases are shown in (c) and (d), respectively. Dotted vertical lines indicate
the times, t/2To = 0.25 and 0.5, when the vocal folds are fully opened and when they return to fully closed.

and the highest frequency, the pressure difference is slightly negative when the folds are
open. For all cases there is a positive peak when the folds close and a small positive
pressure.

One must be very careful in drawing conclusions about figures 9(c) and 9(d) because
of the sensitivity to location and size of the pressure tap at the glottis. There is a single
contact point (vertical line to be precise) at which the vocal folds make contact. But the
pressure tap at the glottis is 0.16 cm in diameter. Therefore, it is likely that there was
some degree of spatial averaging both upstream and downstream of that point of contact.
Further, measurements of Pg will be highly sensitive to the jet separation point. With
these things in mind, the key feature of these plots that can be extracted is that (Pg − Pd)
is small in comparison with the transglottal pressure. The pressure gradient along the jet,
then, appears to play a negligible dynamic role in phonatory airflow.

Time traces of vocal-fold drag for the four frequencies at Re = 7200 and for the
four Reynolds numbers at flife = 97.5 Hz. are shown in figures 10(a) and 10(b),
respectively. Vocal-fold drag was estimated using the pressure measurements at the
upstream and downstream faces of the vocal-fold models as well as the two stations
located one quarter and three quarters along the streamwise vocal-fold model length,
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Figure 10. Time traces of vocal-fold drag for: (a) the four oscillation frequencies at Re = 7200, and (b) the
four different flow speeds at flife = 97.5 Hz. Dotted vertical lines indicate the times, t/2To = 0.25 and 0.5, when
the vocal folds are fully opened and when they return to fully closed.

i.e. (x − xu)/(xd − xu) = 0.25 and 0.75. The drag was computed as the difference of the
upstream and downstream pressures multiplied by the area of the flat part of the model
protruding into the duct, plus the difference of the pressures at (x − xu)/(xd − xu) = 0.25
and 0.75 multiplied by the projected area of the curved portion of the models, i.e. the
radius of the cylindrical section times the duct height. The force coefficients were defined
using the transglottal pressure when the vocal folds were closed, Puo − Pdo, and the glottal
duct cross-sectional area.

It can be seen that the driving pressure force, figure 9 and vocal-fold drag, figure 10
are both qualitatively and quantitatively similar. The peak-to-peak differences in the drag
force are smaller than for the transglottal pressure force, and the drag force traces do not
necessarily start and end at unity. In addition, the shape of the drag force traces in the range,
0 ≤ t/2To ≤ 0.4, are rounder than for the driving pressure force. This is most noticeable in
comparing figures 9(b) and 10(b).

Similarities between figures 9 and 10 are not surprising. The primary differences
between the drag and driving pressure force are the pressure distribution around the
cylindrical parts of the vocal-fold models and the fact that the projected frontal area of
the folds decrease and increase as the folds open and close, respectively. The salient point
is that the transglottal pressure force does indeed serve as a surrogate for vocal-fold drag,
as discussed by McPhail et al. (2019).

The third term on the right-hand side of the streamwise momentum equation is the
viscous drag term. Work by Sherman et al. (2019) demonstrated that this is negligibly
small for these flows. This can also be seen using scaling arguments. Starting with the
formula for wall shear stress in a two-dimensional planar Poiseuille flow, one can write a
shear force coefficient consistent with the non-dimensionalization used in figures 9 and 10

C fshear =
h
2

∂P
∂x Swall

(Puo − Pdo)Sduct
. (4.2)

Setting h to hmax and conservatively setting ∂P/∂x = (Puo − Pdo)/L, as the largest pressure
gradient in the glottis and Swall to be the entire length of the vocal-fold model, L (i.e. area
per unit depth), then the maximum value of C fshear reduces to hmax/2W where W is the
width of the duct. For this model, the maximum possible shear force coefficient would be
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Figure 11. Traces of integral streamwise momentum flux across the vocal-fold exit plane for: (a) the four
frequencies at Re = 7200, and (b) the four flow speeds at flife = 97.5 Hz. Note the net momentum flux into the
control volume is an order of magnitude smaller than the outward flux. Dotted vertical lines indicate the times,
t/2To = 0.25 and 0.5, when the vocal folds are fully opened and when they return to fully closed.

0.04. This is an over-prediction because the maximum shear force does not act over the
entire model length and the transglottal pressure is at least 20 % less than Puo − Pdo when
the flow is at its fastest. As such, a more realistic estimate of the maximum shear coefficient
would be 0.01. This value is consistent with turbulent channel flow measurements of
Schultz & Flack (2013) for a channel width of 2.2 cm and a bulk velocity of 36 cm/sec,
the highest jet speed in this study. This all supports the assertion that shear forces in this
flow are negligible.

Turning next to the left-hand side of (1.1), or (4.1) in dimensionless form, traces of
momentum flux coefficient for the four frequencies at Re = 7200 are shown in figure 11(a)
while traces for the four Reynolds numbers at the highest frequency appear in figure 11(b).
In the plots, momentum flux, non-dimensionalized by (Puo − Pdo)Sduct, is plotted as a
function of t/2To. Momentum flux values were calculated integrating the local streamwise
velocity squared across the width of the model exit plane.

Note that the momentum flux across the vocal-fold inlet plane of the was not included
because velocity measurements were not made in the upstream half of the model. A simple
order of magnitude estimate from continuity, however, shows that the momentum flux
into the control volume is ∼10 % of the outflow momentum flux. Define the streamwise
velocity at the vocal-fold model inlet to be Uu and recall that for this model the width of the
duct width is approximately ten times the maximum glottal width, hmax. From continuity,
neglecting effects of the vocal-fold wall motions, the glottal velocity is 10Uu. Because
of viscosity, the flow separates from the vocal-fold walls immediately downstream of the
glottis and forms a coherent jet. Assume, to first order, that the jet width at the exit plane
remains h, and the velocity remains 10Uu within the jet and zero everywhere on the exit
plane outside of the jet. The momentum flux across the vocal-fold exit plane will then be
100U2

uh while it will be U2
u(10h) across the inlet plane. Thus, the momentum flux entering

the vocal-fold model is an order of magnitude smaller than the flux leaving the model.
The key point of figure 11 is that, although small, momentum flux is not negligible.

Over the range, 0.1 ≤ t/2To ≤ 0.4, the maximum value of the momentum flux coefficient
is around 0.24. This occurs nominally when the vocal folds are fully open. Examination
of figure 11(a) reveals that for the lowest-frequency case, the momentum flux trace is
symmetric about t/2To ≈ 0.24. For increasing frequencies, the maximum values decrease
and the traces lean to the right. That these trends in f* continue in figure 11(b) is consistent
with the volume flow traces shown in figure 6.
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Figure 12. Time traces of the unsteady inertia term in the streamwise integral momentum equation for:
(a) the four oscillation frequencies at Re = 7200, and (b) the four different flow speeds at the highest frequency
corresponding to a life frequency of 97.5 Hz. Dotted vertical lines indicate the times, t/2To = 0.25 and 0.5,
when the vocal folds are fully opened and when they return to fully closed.

The final term to be examined is the unsteady inertia term, Cinertia, or ρ(∂/∂t)∰ u dV
in dimensional form. Time traces of this term are shown in figure 12. As with previous
plots, the four frequencies at Re = 7200 appear in figure 12(a) while the four Reynolds
number cases at f = 0.065 Hz are in figure 12(b). A description of how the quantity was
computed is provided in Appendix A. The non-dimensionalization was the same as that
used for other terms in the momentum equation.

The main feature of figure 12 is that the unsteady inertia term is in general even smaller
than the momentum flux term. Observe also that the unsteady term is largest in magnitude
when the folds first open and when they close. The acceleration is positive when the vocal
folds are opening and the glottal jet is forming. Conversely, it is negative when the vocal
folds are closing and the jet is getting pinched off. In figure 12(b), it can be seen that
the largest magnitudes of the non-dimensional inertia term occur at the lowest Reynolds
number, i.e. the highest reduced frequency, f *. In this regard, it is not surprising that the
unsteady acceleration would be most pronounced for the lowest Reynolds number.

5. Discussion

5.1. Frequency and Reynolds number dependence
At the outset, it is worth commenting on the frequency range covered in this study. The
actual range of frequencies examined was just under a factor of two, 52.5 Hz ≤ flife ≤
97.5 Hz. Since the maximum frequency, flife = 97.5 Hz lies within the fundamental
frequency range of adult males, this study has physiological relevance in its own right.
Note, however, that the lowest Reynolds number case corresponds to f* = 0.0511, which is
almost twice the f* = 0.0261 value of the highest-frequency case at Re = 7200. As such,
this study provides insights into frequencies beyond the nominal range examined.

Frequency dependencies of phase-averaged kinematic and dynamic quantities have been
highlighted throughout the preceding section. It was shown in § 4.2 that as frequency
increases, flow accelerates through the glottis after the vocal folds start to close. This
acceleration appears as an increasingly pronounced hump in the maximum jet velocity
around t/2To = 0.3 in figure 5, and a leaning of the volumetric flow time traces to the right
with increasing f* in figure 6. In the phase-averaged pressure traces in § 4.3, figures 7
and 8, supraglottal pressure minima decrease in magnitude with increasing frequency and
the location of the peaks shifts toward t/2To = 0.5, i.e. when the vocal folds close.
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In terms of the dynamics, it was shown in figures 9 and 10 in § 4.4 that the transglottal
pressure force and the vocal-fold drag increases in magnitude with increasing frequency.
The maximum streamwise momentum flux, presented in figure 11, decreased and occurred
later in the cycle with increasing frequency; this was correlated with maxima in volume
flow rate. Finally, inertia effects became more pronounced with increasing f*, specifically
when the vocal folds first started opening and when they shut. However, even at the
highest f*, the magnitude of the inertia forces was an order of magnitude smaller than
the vocal-fold drag.

Discerning Reynolds number effects in this study is less straightforward because varying
flow speed affects both Re and f* even when the oscillation frequency is held constant.
From a phase-averaged perspective, frequency effects appear to dominate Reynolds
number effects. For example, for a fixed f*, one would expect that transglottal pressure
would increase with increasing Reynolds number because transglottal pressure increases
with flow speed. However, figure 9(b) shows the opposite; the effects of increasing flow
speed are much more consistent with f* trends observed in figure 9(a) than they are with
what one would expect to see if Reynolds number were truly an independent variable. Still,
Reynolds number effects become more evident when looking at cycle-to-cycle variations
and will be examined in greater detail in § 5.3.

5.2. The dynamics of glottal jets
A key contribution of this paper to the human phonation literature is the ability to examine
the entire momentum balance across the complete oscillation cycle. In this section, focus
is on the phase-averaged balance. Cycle-to-cycle variations are addressed in the following
sub-section.

To begin, it is important to revisit the foundational premise of this paper. As discussed in
§ 1, the goal of this study is to identify the flow features that contribute most to phonatory
sound production. Because vocal-fold drag has been identified as the source of sound,
these features may be ranked in terms of how they contribute to vocal-fold drag. For this,
the reader is referred back to the control volume shown in figure 2 containing the fluid
moving between the vocal folds.

For this analysis, the first term in (1.1) is reformulated using mass conservation, to break
out the bulk unsteady acceleration and acceleration due to wall motion, and the pressure
force integral into driving pressure force and vocal-fold drag, yielding

ρ0
d
dt

∫ xd

xu

ujSj dx − ρ0
d
dt

∫ xd

xu

V̇xd dx + ∯S
u2 dSx = (pu − pd)S − D + ∯Swall

τw dSy.

(5.1)

Here, Vxj is the glottal volume between axial location x and xd, the axial location of the
control-volume outflow face. The orders of magnitude of these terms are

ρ0
d
dt

∫ xd

xu

ujSj dx ∼ ρ0
ujhmaxLG

Ta
L, (5.2a)

ρ0
d
dt

∫ xd

xu

V̇xd dx ∼ ρ0L2LG
hmax

T2
o

, (5.2b)

ρ0 ∯
·

S
u2 dSx ∼ ρ0u2

j hmaxLG, (5.2c)
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(Pu − P)S ∼ �PS ∼ ρ0u2
j S, (5.2d)

∯Swall

τw dSy ∼ ρ0u2
j

(
ujL
υ

)−1/2

LGL, (5.2e)

where Ta is a time scale describing the duration of the sharp rise at the beginning of the
cycle, and the rapid fall of jet velocity, uj, at the control-volume exit, as seen in figure 5.
In addition, L is the streamwise extent of the laryngeal control volume, LG is the depth
into the page of the glottis, hmax is the maximum glottal width and Sj ∼ hmaxLG is the
cross-sectional area of the jet at the control-volume exit face. Following Krane & Wei
(2006)

τij ∼ ρ0u2
j

(
ujL
ν

)−1/2

. (5.3)

Note that a scaling for vocal-fold drag, D, has not been chosen. Rather, this is to be a result
from this analysis. From Krane & Wei (2006) and Krane et al. (2010), the Bernoulli’s
equation may be scaled using �PS ∼ rou2

j S.
These estimates then yield ratios of the terms in (5.1)

ρ0
d
dt

∫ xd

xu

V̇xd dx

ρ0
d
dt

∫ xd

xu

ujSj dx
∼ f ∗ Ta

To
∼ Qw

Qj

Ta

To
, (5.4a)

ρ0
d
dt

∫ xd

xu

ujSj dx

ρ0 ∯S
u2 dSx

∼ f ∗ To

Ta
∼ Qw

Qj

To

Ta
, (5.4b)

ρ0
d
dt

∫ xd

xu

V̇xd dx

ρ0 ∯S
u2 dSx

∼ f ∗2 � 1, (5.4c)

ρ0 ∯S
u2 dSx

(pu − pd)S
∼ Sj

S
∼ hmaxLG

S
� 1, (5.4d)

∯Swall

τw dSy

ρ0 ∯S
u2 dSx

∼
(

ujL
υ

)−1/2 (
L

hmax

)
, (5.4e)

ρ0
d
dt

∫ xd

xu

ujSj dx

∯Swall

τw dSy

∼ f ∗ Ta

To

(
ujL
υ

)1/2

, (5.4f )

where vW ∼ h/To is the vocal-fold wall velocity scale. The most important takeaway from
this analysis is that the acceleration terms are at least an order of magnitude smaller
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than the driving pressure force. From (5.4b) and (5.4c), it is clear that the bulk unsteady
acceleration and wall acceleration terms are smaller than the convective acceleration by
factors of f *To/Ta and f *2, respectively. From figure 5, Ta/2To ≈ 0.15, so To/Ta ≈ 3.3.
This analysis, (5.4a)–(5.4c) also shows that the ratio of Qw, the volume flow displaced by
vocal-fold motion, to Qj, the glottal volume throughflow, is proportional to the reduced
frequency of vibration, f *, consistent with the results of Deverge et al. (2003) and Krane
& Wei (2006), where Qw ∼ vWLGL was used. The convective acceleration is smaller than
the driving pressure force by a factor of Sj/S ∼ O(10−1), as shown in (5.4d).

The friction force is also smaller than convective acceleration by a factor of
Re−1/2

L (L/hmax). Thus, while Re−1/2
L ∼ O(10−1) for the flows studied here, the friction

force is in general much smaller than the convective acceleration, but can exceed it for
small h, i.e. when the glottis is nearly closed. Thus, when the glottis is open, the leading
term after the driving pressure force appears to be the convective acceleration, followed
by the unsteady acceleration, and the friction force, in descending order. When the vocal
folds are nearly closed, however, the convective acceleration is smaller, and the unsteady
acceleration and friction can compete with it for predominance among the second-order
terms, as shown by (5.4 f ). As a result, the integral momentum equation reduces to

D ≈ (pu − pd)S. (5.5)

This is consistent with estimates from measurement shown in figure 13. More about the
relative sizes of the unsteady and convective acceleration terms is discussed in § 5.4.

Traces of four of the five terms in (1.1), transglottal pressure force, vocal-fold drag,
unsteady inertia force and net momentum flux, are shown in figure 13 for three cases: the
lowest frequency, Re = 7200 and flife = 52.5 Hz, lowest Reynolds number, Re = 3650 and
flife = 97.5 Hz, and the case common to the variable frequency and variable flow speed
studies, Re = 7200 and flife = 97.5 Hz. Based on the discussion in § 5.1, these three cases
were selected because they include the extremes of the f* parameter range of this study.
It was shown in § 4.4 that the viscous shear forces are negligible. Also note that the signs
of each term are consistent with the convention that a positive force points in the positive
x-direction.

One of the most prominent and important features of figure 13 is the correlation between
the transglottal driving pressure force and vocal-fold drag, already highlighted in the
presentation of figures 9 and 10, and (5.5). The salient point is that transglottal pressure
force can indeed serve as a surrogate for the vocal-fold drag. This directly supports the
foundational work of Zhang et al. (2002a,b), Krane (2005), Howe & McGowan (2007) and
McPhail et al. (2019). Closer examination of those two particular terms, however, reveals
subtle differences. For example, the magnitudes of vocal-fold drag tend to be smaller than
the driving pressure force. Indeed, (5.5) suggests that the driving pressure force is equal to
the drag plus small corrections, due to the acceleration terms, which do not exceed order
of magnitude �PSj � �PS. In addition, the vocal-fold drag traces seem to be slightly
more rounded than the pressure force traces. This will be explored further in subsequent
paragraphs.

The dependence of the momentum balance on reduced frequency, highlighted in (5.4),
is evident in the three plots comprising figure 13. As shown earlier, with increasing f*, the
jet accelerates after the vocal folds reverse motion and start to close. This gives rise to an
increasing transglottal pressure force accompanied by increasing vocal-fold drag. In the
highest f* case, figure 13(c), the transglottal pressure and vocal-fold drag waveforms have
much more defined peaks and much larger amplitudes, reaching their largest magnitudes
around t/2To = 0.5, corresponding to when the vocal folds close.
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Figure 13. Time traces of the phase-averaged integral streamwise integral momentum balance for
(a) Re = 7200; f* = 0.0141, (b) Re = 7200; f* = 0.0261 and (c) Re = 3650; f * = 0.0511. Dotted vertical lines
indicate the times, t/2To = 0.25 and 0.5, when the vocal folds are fully opened and when they return to fully
closed.

It was pointed out in § 1.3 that it is problematic to attempt to extrapolate an entire
dynamic model around the observation of a single kinematic phenomenon. This is where
the simultaneous measures of kinematics, e.g. figures 4–6, and dynamics, figure 13 are
so important. From this comprehensive perspective, it can be seen that the effect of f* on
transglottal pressure force is due to the acceleration of the jet as the vocal folds begin to
close; this has already been proposed in § 4.3. This would become more pronounced at
f* increases because there would be comparatively less time for a quasi-steady jet to form
after the folds open and before they begin to close. This is supported by the fact that the
unsteady inertia term, although still small, becomes more significant with increasing f*
while the momentum flux term decreases with increasing f*.

It is interesting to observe that the inertia term adds to the momentum flux while the
vocal folds are opening and subtracts while the vocal folds close. This is simply because the
flow accelerates when the vocal folds open and decelerates when they close. The important
point is that the unsteady inertia does not cancel the momentum flux. That is, the current
experiments show that the left-hand side of the integral momentum equation is not, in fact,
zero for glottal jet flows.

To examine this point further, time traces of the total acceleration (i.e. left-hand side
of the streamwise integral momentum equation, or the sum of the unsteady inertia and
momentum flux terms) were plotted along with the net force acting on the control volume
(i.e. the sum of the driving transglottal pressure force and vocal-fold drag, or the right-hand
side of the momentum equation). A sample plot for the Re = 7200 and lowest-frequency,

918 A44-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.365


H. Ringenberg, D. Rogers, N. Wei, M. Krane and T. Wei

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

C
oe

ff
ic

ie
nt

s 
of

 te
rm

s 
in

 th
e 

m
om

en
tu

m
eq

ua
tio

n

Inertia + Flux
Pressure + Drag

t/2To

Figure 14. Comparison of total acceleration (unsteady inertia plus momentum flux) with the net streamwise
force (driving pressure plus vocal-fold drag) for Re = 7200 and f* = 0.0141. Dotted vertical lines indicate the
times, t/2To = 0.25 and 0.5, when the vocal folds are fully opened and when they return to fully closed.

flife = 52.5 Hz, case is shown in figure 14; this was computed from the data shown in
figure 13(a).

Before exploring the implications of this plot, it is important to recognize the dc
difference of 0.1 between the driving transglottal pressure force and the vocal-fold
drag. From a broader perspective, this difference is actually relatively small as the two
terms have maximum magnitudes of the order of 1.5. Further note that there are only
two pressure taps positioned within the curved portion of the vocal-fold models, at
(x − xu)/(xd − xu) = 0.25 and 0.75. As such, one can expect that the contribution to drag in
that part of the model may not be fully resolved; this can account for the failure of the two
force terms to cancel when the vocal folds are completely closed.

The key point of figure 14, then, is the alignment of total acceleration and net force.
Both curves reach a maximum around the time when the vocal folds are fully opened
and both have a maximum value above 0.2. Because these values are comparatively
small, the conclusion that the vocal-fold drag serves as a surrogate for the transglottal
pressure force remains unchanged. This is, however, a new and interesting finding in
the context of understanding the detailed dynamics, which includes both pressure and
momentum. Because the source of voiced sound, i.e. vocal-fold drag, is the sum of the
transglottal pressure force, momentum flux and unsteady inertia, the current measurements
indicate that momentum flux and inertia may be large enough to affect sound quality and
perception. While subjective parameters such as quality and perception lie beyond the
scope and capability of the current work, a fluid dynamics framework for examining these
ideas is developed further in the following sub-section.

5.3. Cycle-to-cycle variations
In an earlier work, Sherman et al. (2019) examined cycle-to-cycle variations in a duct with
an oscillating constriction over a range, 0.012 ≤ f* ≤ 0.048 at Re = 8000. In that study,
cycle-to-cycle variations in jet direction, volume flow rate as well as integral momentum
equation terms were observed. Variations were most pronounced for f* = 0.036 where
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(a)

L/2

(b)

(c)

(d)

(e)

( f )

(g)

(h)

Figure 15. Instantaneous velocity vector fields from eight consecutive oscillation cycles at t/2To ≈ 0.22 for
Re = 7200, flife = 97.5 Hz. Flow is left to right with the full vector resolution shown. Observe the strong
cycle-to-cycle variation in the glottal jet.

the jet switched directions almost every cycle. Further, it appeared that every time the jet
turned to the left, the volume flow rate was approximately twice that as when the jet turned
to the right.

Informed by this previous study and the seemingly bifurcating phase-averaged glottal
jet in figure 4, was clear that cycle-to-cycle variations were likely prominent in this flow as
well. That this is the case is seen in figure 15 which contains instantaneous DPIV vector
fields from successive oscillation cycles at t/2To = 0.22. This time corresponds to when the
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Figure 16. Time traces of (a) gap opening, (b) transglottal pressure (–·–) and momentum flux (—) and
(c) volume flow rate for eight successive oscillations for the Re = 7200; flife = 97.5 Hz; f* = 0.0261 case.
Observe the cycle-to-cycle variations and the correlation between transglottal pressure and corresponding
phase-locked vector fields in figure 15.

vocal folds are still opening and the gap is almost fully open, h = 0.88hmax. Vector fields
were taken for the last eight (of twenty-four) oscillations for Re = 7200 and flife = 97.5 Hz.
As in figure 4, flow is left to right, but the full vector resolution is shown. The vocal-fold
models are again masked in white.

Figure 15 clearly shows cycle-to-cycle variations in terms of both jet strength as well as
direction. Note that the jets either deflected to the right of the centreline or were straight.
In other runs (that were not shown), the jet deflected to the left of the centreline, accounting
for the seeming jet bifurcation observed in the phase-averaged vector fields shown in
figure 4. As discussed in § 1, this type of behaviour has been observed for many different
vocal-fold geometries and oscillation frequencies. Further, based on the work of Sherman
et al. (2019), it appears that this switching phenomenon becomes established in one to two
oscillation cycles. As such, this appears to be an inherent feature of flows of this type and
not a start-up transient. That this degree of variability occurs in a simple model geometry
like this is interesting in its own right and warrants further investigation.

The critical question, however, is whether these variations are meaningful in terms of
voiced sound generation. Here again the power of dynamic analysis comes to the fore.
Time traces of volume flow rate, transglottal pressure and net streamwise momentum flux
are shown in figure 16 for the eight oscillation cycles shown in figure 15.

Figure 16(b) shows time traces of transglottal pressure and net momentum flux for
the eight consecutive oscillations. Strong cycle-to-cycle variations are clearly visible
particularly in the transglottal pressure traces. A notable example is that the cycle-to-cycle
variations in transglottal pressure exactly correlate to the jet strength observed in the vector
fields comprising figure 15. The first oscillation in this sequence has the strongest jet,
figure 15(a), as well as the largest transglottal pressure. Over the next four cycles, the
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transglottal pressure peak values successively decrease, figure 16(b), while the jet strength
correspondingly diminishes, as seen in figures 15(b)–15(e). Figure 15( f ) shows that the
sixth oscillation has a stronger jet which correlates with the increased transglottal pressure.

The jets are successively weaker in the final two oscillations, figures 15(g) and 15(h), as
are the corresponding transglottal pressures, figure 16(b). Examination of the time trace
of net momentum flux for the eight oscillation cycles shows the same correlation although
the traces are noisier and the magnitudes of the flux term are approximately 20 % of the
transglottal pressure.

While there does not appear to be a strong correlation between jet direction and
transglottal pressure or momentum flux, there does appear to be a relationship between
jet direction and volume flow rate. Four of the cycles with the highest volume flow rates,
i.e. the second, third, seventh and eighth in figure 15, are also the oscillations where the jet
deflects to the right of the centreline. For the three middle cycles with the lowest volume
flow rate, i.e. the fourth, fifth and sixth, the jet is straight. Irrespective of whether jet
direction and volume flow rate are correlated, cycle-to-cycle variation in volume flow rate
is clearly visible.

The significance of this observation lies in the fact that transglottal pressure (as a
surrogate for the vocal-fold drag) and volume flow rate are both directly related to acoustic
source strength, cf. Fant (1970), McGowan (1988) and Hirschberg (1992). Since the
cycle-to-cycle variations are quite significant in these two quantities, they will likely
directly influence the sound produced. Further, it seems that some form of cycle-to-cycle
variation is broadly present in flows of this type; the work of Sherman et al. (2019) and
a number of studies described in Mittal et al. (2013) covering a range of geometries
and oscillatory motions all report what Mittal et al. (2013) refer to as ‘cycle-to-cycle
asymmetries’. While voice quality and colour are perceptual measures, and beyond the
scope of this work, it is nevertheless hypothesized that these inherent variations could be
unique to each individual and play a role in identifying her/his voice. From these results, it
appears that both jet strength and direction may play a role in the acoustics of phonation.

The relative influence of Reynolds number and reduced frequency on cycle-to-cycle
variations can be seen in sample time traces of transglottal pressure shown in figure 17.
Two cases are shown including the lowest Reynolds number case, Re = 3650 and
f* = 0.0511, in figure 17(a), and the highest Reynolds number case, Re = 8100 and
f* = 0.0129, in figure 17(b). These represent the highest and lowest reduced frequency
cases, respectively.

The obvious difference between the two plots comprising figure 17 is the pressure
values. These are dimensional plots with pressure in units of Pascals. It is intuitively
obvious that the mean pressure level and amplitude of the fluctuations should be smaller
at the lower Reynolds number. Recall, however, that the lowest Reynolds number case,
i.e. the case with the highest reduced frequency case, showed the largest non-dimensional
amplitude, as seen in figure 8(c).

It appears therefore that Reynolds number effects are most noticeable in dimensional
data whereas non-dimensionalization appears to draw out frequency effects. The
dimensional plots in figure 17 show that increasing the flow speed is necessarily
accompanied by increasing transglottal pressures, both in the mean and fluctuation
amplitudes. It follows further that the overall energy levels are higher at higher speeds,
implying that the acoustic energy levels are correspondingly higher. This is consistent
with the idea that one requires greater energy to speak louder.

While not all of the individual oscillation traces are shown in this paper, cycle-to-cycle
variations occur over the entire parameter space covered in this study. However, the

918 A44-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.365


H. Ringenberg, D. Rogers, N. Wei, M. Krane and T. Wei

1 2 3 4 5 6 7 80

10

20

30

40

50

60

70
(a) (b)

P
re

ss
u
re

 (
P

a)

0 1 2 3 4 5 6 7 8
30

40

50

60

70

80

90

100

t/2To t/2To

Figure 17. Time traces of transglottal pressure for successive oscillations at (a) Re = 3650; f* = 0.0511 and
(b) Re = 8100; f* = 0.0129. Note that the physical frequency for both cases is identical, flife = 97.5 Hz and the
ordinates of the two plots are displaced but both cover 70 Pa.

degree of variation is not the same for every case. If the envelope of maximum peaks
is considered, assuming for the sake of illustration that there is some sort of beating
behaviour, the number of oscillations in a ‘beat period’ seems to vary from one case
to another. It is longest in the Re = 3650 and f* = 0.0511 case, figure 17(a) and shortest
in the Re = 7200 and f* = 0.0261 case, figure 16(b). The highest Reynolds number case,
figure 17(b), appears to have an intermediate ‘beat period’. Similarly, if one looks at the
envelope of minimum peaks, those minima in figure 17(a) are essentially constant. In
contrast, the minima for the transglottal pressure trace in figure 16(b) are the most variable
and even irregular. Whether there is, in fact, some sort of dynamic resonance behaviour is
an interesting subject for future investigation.

It is perhaps of interest to consider the duct as a bluff body in the water tunnel with
a characteristic transverse dimension of 28 cm. For the Re = 7200 cases, the flow speed
outside the duct (on either side and underneath) is ∼20 cm s−1. Assuming a Strouhal
number of around 0.2, the corresponding vortex shedding period for the duct would be
around 7 s. Recalling that the oscillation period is 15 s ≤ 2To ≤ 28 s, vortex shedding
from the duct, if it were to occur and if it were strong enough, would fall in the range
of harmonics of the vocal-fold oscillation frequency. It is therefore within the realm of
possibility that there may be some sort of resonance between the duct shedding frequency
and the glottal jet. It is noted, however, that there was no evidence of any such vortex
shedding from the duct. Further, it would be extremely difficult to imagine that the
cycle-to-cycle variations at the Reynolds numbers could be caused by duct vortex shedding
where the flow speed outside the duct is only ∼11 cm s−1.

Unfortunately, given that experimental runs were restricted by camera memory
limitations, it is not possible to explore this variability at this time. However, this frequency
and Reynolds number interdependence is consistent with observations in Sherman et al.
(2019). In that study, up to sixteen cycles were captured in a single run as there was no
delay time between each oscillation. For that study, cycle-to-cycle variations were most
prominent at the third highest of the four frequencies examined. In this study, the strongest
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(a) (b)

L/2

Figure 18. Instantaneous DPVI vector fields taken during the first oscillation in a sequence at:
(a) t/2To = 0.004 and (b) t/2To = 0.95 for Re = 7200; flife = 97.5 Hz. Note that the vector lengths in both fields
are five times longer than in figure 15.

and most frequent variations appear to occur at the highest frequency but at the third
highest Reynolds number.

The final questions to address involve the source of the cycle-to-cycle variations and
the reason for the dependence on Reynolds number and frequency. Before beginning this
discussion, it is important to note that cycle-to-cycle variations have been observed by
numerous researchers in a wide variety of facilities, air and water, and with very different
vocal-fold models. So at the outset, one can rule out pump or model vibrations, bulk flow
around the glottal duct model or other apparatus induced disturbances. For this specific
study, all of these were addressed in § 2.

Returning to the previously posed questions about source and dependencies of the
cycle-to-cycle variations, then, it is possible that these questions might actually be
addressed by a single explanation. A clue can be extracted from the two instantaneous
velocity-field plots shown in figure 18. Both vector fields are taken from the Re = 7200,
flife = 97.5 Hz case for the first oscillation presented in figures 15 and 16. The vector field
in figure 18(a) was captured at time, t/2To = 0.004, at the very beginning of the entire
experimental run. The second velocity field in figure 18(b) shows the flow at t/2To = 0.95
just before the start of the second cycle of the sequence. Every other vector is shown in
these fields and the vector lengths have been magnified five times relative to those shown
in figure 15. In addition, spurious vectors generated inside the vocal folds have not been
masked.

The key point of these two vector fields is that the flow downstream of the vocal folds is
quiescent only at the very beginning of each experimental run before the vocal folds ever
move. It can be seen in figure 18(a), then, that before they open for the first time, there is
no flow downstream of the vocal folds. After that first oscillation, however, after the vocal
folds have opened, closed, and remained closed for almost half the oscillation period,
the flow has not fully returned to quiescence. There appears to be a large, albeit weak,
clockwise circulation centred downstream of the field of view. This appears as a coherent
field of vectors pointed down and to the left in the upper right quadrant of figure 18(b).
This weak circulation is believed to have been responsible for deflecting the jet in the
subsequent oscillation, cf. figure 15(b), to the right. In general, it is hypothesized that the
residual motions after the vocal folds closed are the perturbations that cause cycle-to-cycle
variations.

It is likely that each successive glottal jet will be highly sensitive to initial conditions.
As such, it would be difficult to predict a priori the strength and direction of each jet.
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With that in mind, however, there are some general comments that can be made regarding
frequency and Reynolds number dependence of cycle-to-cycle variations.

The first is that cycle-to-cycle variations should become less pronounced with increasing
delay time between the close of the vocal folds and their next opening. This is simply
because the longer delay provides more time for the supraglottal flow to dissipate.
Consequently, it would be expected that the variations would occur more often and grow
stronger with increasing oscillation frequency at a fixed Reynolds number. Similarly, a
shorter delay time between the closing and successive opening of the vocal folds, e.g.
80 % versus 120 % of To, would enhance these variations.

Increasing the Reynolds number could also increase cycle-to-cycle variations. The
rationale for this hypothesis is that the increased momentum of the glottal jet induces
greater mixing in the supraglottal region which, in turn, creates a more unsteady
environment for the formation of the successive jet. At the same time, pressure
levels increase with increasing Reynolds number. For example, while the percentage
cycle-to-cycle variations in transglottal pressure are the same in figures 17(a) and 17(b),
there would obviously be far greater acoustic energy produced at the higher Reynolds
number.

But there is a counter-effect. For a fixed dimensional frequency, increasing the Reynolds
number simultaneously decreases the reduced frequency. As such, there is a competition of
effects as increased mixing from the higher momentum jet is counterbalanced by relatively
longer settling times afforded by the lower reduced frequency. This may explain why
cycle-to-cycle variations for the highest, Re = 8100, case are not as strong as for the next
lowest, Re = 7200, case.

5.4. Revisiting the quasi-steady flow assumption
As noted in § 1.5, the quasi-steady character of glottal jets is widely accepted but has not
yet been fully demonstrated. First, it is not clear that the jets are quasi-steady when the
vocal folds begin to open and when they shut. Second, the bulk of the work on this subject
has been done at lower frequencies equivalent to the adult male voice. In this sub-section,
quasi-steadiness will be revisited in the context of both the integral momentum equation
and the unsteady Bernoulli equation, using estimates for terms of these equations and data
presented earlier.

As discussed in Krane et al. (2010), in the context of the Bernoulli equation, a
time-varying flow can be considered quasi-steady when

ρo

∫ xd

xu

∂u
∂t

dx

ρo

2
(u2

d − u2
u)

� 1. (5.6)

The analogous comparison for the integral momentum equation is given by

ρ0
d
dt ∰V

u dV

ρ0 ∯S
u2 dSx

� 1. (5.7)

A comparison of the numerator and denominator of (5.7) is given in figures 11–13, and
these terms of the integral momentum equation are estimated in (5.4). What is noticeable,
especially in figure 13, is that, as f * increases, the unsteady acceleration increases in
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size, relative to the convective acceleration. This is especially true during the early part
of the opening phase (0 < t/2To < 0.15), where the convective acceleration is identically
zero, because the glottal jet has not yet pierced the control-volume exit plane. During the
closing phase, when the convective acceleration is non-zero, the unsteady acceleration can
be nearly as large, especially at larger f *. The unsteady acceleration reaches its peak just
after the convective acceleration, at t/2To ≈ 0.35. In figure 13, the unsteady acceleration
is non-negligible for the remainder of the time the glottis is open, for the larger two f *
cases shown. The combination of developing jet flow early in the cycle and large unsteady
deceleration late in the cycle suggests the flow is quasi-steady, at most, for the interval
0.15 < t/2To < 0.35.

Another way to address the question of whether time-varying glottal flow is quasi-steady
is to use the present data to compute terms of the Bernoulli equation. The unsteady
Bernoulli equation contains the traditional balance of static and dynamic pressures with an
additional temporal derivative term on the left-hand side of the equation, as well as a term
representing the effect of friction (Deverge et al. (2003), Vilain et al. (2004), Krane & Wei
(2006), Krane et al. (2010). Therefore, if glottal flows are quasi-steady, the unsteady term
should be negligible and the static and dynamic pressures should balance, to within the
magnitude of the friction term. On a phase diagram, with transglottal pressure plotted as
a function of dynamic pressure, a quasi-steady glottal jet should appear on a straight line
with slope equal to unity. The exceptions would be when the folds just begin to open, when
the jet pinches off at closure and, of course, when the vocal folds are closed. According
to the works of Mongeau et al. (1997), Deverge et al. (2003), Vilain et al. (2004), Krane
& Wei (2006) and Krane et al. (2010), it is expected that unsteadiness is relevant for some
interval after glottal opening, and just prior to glottal closure, and that friction is likely
relevant during these same intervals.

To test this hypothesis, phase plots were generated showing the transglottal pressure
plotted as a function of dynamic pressure. These are shown in figure 19 for the four
different frequencies at Re = 7200, figure 19(a), and for the different flow speeds at
flife = 97.5 Hz, figure 19(b). The dynamic pressure coefficient was calculated as one
half the square the maximum exit plane jet velocity, uj, multiplied by the fluid density
and non-dimensionalized by (Puo − Pdo). For reference, time traces of the dynamics
pressure, non-dimensionalized consistent with all other plots, are presented in figure 20
and corresponding plots of transglottal pressure appear in figure 9. Every point on each
plot in figure 19, then, shows the phase-averaged transglottal and dynamic pressures at
a particular instant in time. Red lines with unity slope have been added to represent the
idealized quasi-steady flow condition.

A cursory look at figure 19 clearly shows that significant portions of the plots are not
coincident with the red lines. In fact, there are only relatively small parts of the plots where
the transglottal pressure and dynamic pressure are even close to being equal.

One should keep in mind that time is not evenly distributed around a phase plot. For
ease of reference, time stamps have been superimposed on figure 19(b) for the Re = 7200
case. The start of the cycle, t/2To = 0, appears on the left edge of the plots where the
transglottal pressure is unity, (Pu − Pd)/(Puo − Pdo) = 1, and dynamic pressure is zero. The
moment when the vocal folds close, t/2To = 0.5, again appears on the left edge of the plots
where the dynamic pressure is zero. But at that time, (Pu − Pd)/(Puo − Pdo) ≈ 1.5. Thus,
the first half of the phase-averaged oscillation cycle, in which the vocal folds open and
close, 0 ≤ t/2To ≤ 0.5, appears as a counter-clockwise circuit starting and ending on the
ordinate. The second half of the cycle, 0.5 ≤ t/2To ≤ 1.0, resides along the vertical axis
from (Pu − Pd)/(Puo − Pdo) = 1.5 down to (Pu − Pd)/(Puo − Pdo) = 1. This is the part of
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Figure 19. Phase plots of transglottal pressure vs. dynamic pressure for (a) the four oscillation frequencies
at Re = 7200, and (b) the four different flow speeds at flife = 97.5 Hz. For reference, time stamps have been
included for the overlapping case, Re = 7200; f* = 0.261, in both (a,b).
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Figure 20. Time traces of the dynamic pressure coefficient across the vocal-fold exit plate for: (a) the
four oscillation frequencies at Re = 7200, and (b) the four different flow speeds at the highest frequency,
flife = 105 Hz.

the cycle where the vocal folds remain closed and the transglottal pressure returns back
toward steady state, without fully reaching it.

With the exception of the lowest Reynolds number case, i.e. where f* is the largest,
the portions of the phase plots in which the transglottal and dynamic pressures lie in the
vicinity of the red lines occur between the time just before the vocal folds are fully open
to when they are approximately 40 % closed, on 0.24 ≤ t/2To ≤ ∼0.34. This represents
approximately 20 % of the time the vocal folds are open and corresponds to the vector
fields shown in figures 4(d) and 4(e). Observe that this time period corresponds to the part
of the oscillation cycle where the momentum flux is largest, as seen in figure 11, and is
consistent with the observations given the relative size of integral momentum equation
acceleration terms seen in figures 11–13, and the results of Krane et al. (2010).
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It should be pointed out that extrapolating the degree of quasi-steadiness in the present
rigid vocal-fold model, to real phonation should be done with care. The shape of the real
vocal fold is more channel-like in that the contact between the folds takes place over a
much longer streamwise extent than in our model. The shape of the glottis in the current
model might, then, understate the importance of unsteady and friction effects when the
folds are just open and are just about to close. Evidence can be drawn from the direct
empirical comparison of flow through the gap between semicircle model vocal folds
with flow through a more channel-like glottis formed by rectangular-shaped vocal folds
(Deverge et al. (2003).

Having said that, it was previously noted regarding figure 19, that even for the current
model in which unsteadiness might be attenuated, the phase plot only touches the red
line for an instant at the highest reduced frequency. This observation, taken together with
the clear trends shown in figure 11 and (5.4) imply that the phonatory airflow in adult
female or child voices, or for soprano singing, may less quasi-steady than the adult male
voice. Accordingly, the quasi-steady assumption might be worth revisiting in general.
Additionally, most of the sound produced during phonation is generated just before the
folds close, at which time the quasi-steady assumption does not apply. In this regard, the
relevance of this assumption is also an open question.

6. Conclusions

Simultaneous DPIV and pressure measurements were made in a 10× scaled-up vocal-fold
model. Seven separate cases were examined spanning four Reynolds numbers, 3560,
5350, 7200 and 8100 and four model frequencies, 0.035 Hz, 0.045 Hz, 0.055 Hz and
0.065 Hz. These frequencies corresponded to life frequencies of 52.5 Hz, 67.5 Hz,
82.5 Hz and 97.5 Hz, respectively. They also spanned a reduced frequency range of
0.0129 ≤ f* ≤ 0.0511. The goal of this research was to use a comprehensive approach based
on the integral momentum equation to understand phonation by coupling kinematic and
dynamic perspectives of the mean, phase-averaged flow as well as taking cycle-to-cycle
variations into account. The issues addressed were: (i) whether the driving transglottal
pressure force serves a surrogate for vocal-fold drag, (ii) whether the momentum flux
and unsteady inertia terms contribute to voiced sound production and quality, (iii) how
vocal-fold dynamics varies with Reynolds number and frequency, (iv) the importance
of cycle-to-cycle variations on terms in the streamwise momentum equation and (v) the
source of cycle-to-cycle variations. In light of these questions, specific conclusions drawn
from the results presented in this study were:

• to first order, the driving pressure force from the lungs serves as a surrogate for the
vocal-fold drag (which, in turn, is related to sound production);

• while the momentum flux and unsteady inertia terms are small, they are not
negligible and may therefore meaningfully contribute to voiced sound production
and quality;

• Reynolds number effects manifest in terms of the dimensional pressure and velocity
magnitudes; higher Reynolds numbers imply higher transglottal pressures resulting
in increased sound production;

• increasing frequency results in a stronger jet acceleration prior to vocal-fold closing;
the transglottal pressure peak increases and occurs later in the cycle;

• significant cycle-to-cycle variations in transglottal pressure and volume flow rate
(key acoustic source strength parameters) may provide richness to each individual’s
voice; and
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• residual circulations observed after the vocal folds close are hypothesized to be the
initial conditions responsible for producing variations in the next oscillation.
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Appendix A. Unsteady acceleration in upstream half of glottis

Figure 12 showed phase-averaged time traces of the unsteady inertia term computed from
the DPIV data in this study. As was seen, this quantity is generally small throughout the
cycle. But with increasing reduced frequency, its relevance appeared to increase. As such,
it is important to describe how this term was calculated.

For the downstream half of the vocal-fold model, i.e. from the glottis to the downstream
exit plane, the unsteady inertia term was computed directly from the DPIV velocity
measurements. That is, for each phase-averaged vector field, corresponding to one time
step in the oscillation cycle, the kernel, U(x,y) dx dy, was summed in the region between
the two vocal-fold walls. Since this was a direct measurement, both variations in velocity
within the control volume as well as time-varying changes in the control volume itself (due
to the wall motions) were included.

There were no velocity measurements, however, in the upstream half of the model, from
the upstream inlet plane to the glottis. And since the contribution of wall motion is not
intuitively obvious, the unsteady inertia term in the upstream region was calculated using
the expression

ρ
∂

∂t ∰ u dV = 1
2
ρL

dQexit

dt
− 3

4
ρL2 d2h

dt2
, (A1)

where L is the streamwise length of the vocal-fold model, Qexit is the volumetric flow rate
at the vocal-fold exit plane and h is the glottal gap opening.

The derivation of this expression begins by noting that the inertia term may be written
as

ρ
∂

∂t ∰ u dV = ρ
∂

∂t

∫
Q(x) dx. (A2)

Here, Q(x) is the volume flow rate at any arbitrary station, x. The definition of Q(x)
allows for moving control-volume walls. Defining Qexit as the volume flow rate at the
model exit plane (which can be computed from DPIV measurements), continuity states
that the flow rate at x is Qexit minus the rate of change of volume due to the moving
sidewalls. For this experiment, the sidewalls do not change shape, so the change in volume
is related to the minimum gap opening, h(t). Q(x) is then

Q(x) = Qexit − x
dh
dt

. (A3)

Integrating from an arbitrary streamwise location, x, to the exit plane, xexit, yields a general
expression for the rate of change of momentum in that portion of the control volume based
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only on knowledge of the volume flow rate across the model exit plane (as a function of
time) and the vocal-fold motion

ρ
∂

∂t ∰ u dV = ρ
∂Qexit

∂t
(xexit − x) − ρ

(xexit − x)2

2
d2h
dt2

. (A4)

Finally, defining the length of the vocal-fold models as ‘L’ it is possible to use (A4)
to compute the unsteady inertia term across the entire control volume as well as across
just the downstream half. The rate of change of momentum in the upstream half of
the vocal-fold model, then is the total unsteady inertia minus the contribution from the
downstream half of the control volume expressed in (A1). It should be noted that to get the
final form of (A1), one has to integrate between the exit and inlet planes and then subtract
the integral from the exit plane to the glottis. This gives rise to the ‘3/4’ in the last term in
(A1).

Before closing, it is worth adding a comment about the upstream, i.e. subglottal, flow.
The preceding analysis by definition integrates across control surfaces and the control
volume. It does not, therefore, incorporate details embedded within the flow. For example,
if there were any upstream disturbances, such as unsteadiness in the vortices at the duct
entrance or the corner vortices immediately upstream of the vocal-fold models, the integral
approach would not be ideal for identifying those. Thus, the power of the time-resolved
full flow-field measurements coupled with the integral control-volume dynamics analysis
is not carried upstream of the vocal-fold models and would be of value in future studies.
Note, however, that given the low speeds at the entrance to the duct, reaching a maximum
of ∼2.8 cm s−1 when the vocal folds fully open in the highest Reynolds number case and
∼1.3 cm s−1 for the lowest Reynolds number case, it is highly unlikely that there would be
sufficient time for vortices of any appreciable strength to form during the time, To, while
the vocal folds open and close.
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