ON THE ANNIHILATORS OF THE INJECTIVE HULL OF A MODULE

Kwangil Koh

In [2, page 151], J. Lambek proposes the following exercise: With any maximal right ideal M of a ring R with 1 associate the ideal $O_{M}=\{r \varepsilon R: \forall x \in R \quad \exists t \notin M, r x t=0\}$. Show that O_{M} is the right annihilator of the injective hull of the right R-module R / M. The purpose of this note is to show that the above statement is true for a much larger class of right ideals than that of maximal regular right ideals of a ring. If R is a ring, let $C(R)$ be a class of right ideals in the ring R such that $M \in C(R)$ if and only if
(i) $\quad R^{2} \nsubseteq M$ and there exists $a \varepsilon R$, $a \notin M$, such that $a M \subseteq M$;
(ii) $\left.\operatorname{Hom}_{R} \widetilde{(R / M}, \widetilde{R / M}\right)$ is a division ring where $\widetilde{R / M}$ is the quasiinjective hull of the right R-module R / M;
(iii) if N is a non-zero submodule of R / M, then there is a nonzero $f \varepsilon \operatorname{Hom}_{R}(R / M, R / M)$ such that $f(R / M) \subseteq N$.

Clearly, any maximal right ideal M of a ring R with 1 , belongs to $C(R)$. However, a member of $C(R)$ is not necessarily a maximal right ideal of the ring R. For example, if R is a commutative ring and P is a prime ideal of R such that $P \neq R$, then R / P satisfies (i) and (iii). By [1, Theorem 3.2, Lemma 3.3], one can also see that R / P satisfies (ii). Hence $P \in C(R)$. In fact if R is a semi-prime ring with a uniform right ideal U such that the (right) singular ideal of R is zero then the right annihilator of the set $\{u\}$ for $u \varepsilon U, u^{2} \neq 0$, is a member of C(R) (see [1, Theorem 2.2]).

THEOREM. Let R be an arbitrary ring with a regular element. If $M \in C(R)$ then \bar{O}_{M} is the right annihilator of the injective hull of the right R-module R / M.

LEMMA 1. $\{y \varepsilon R / M: y R=0\}=\{0\}$.
Proof. Let $\Gamma=\{y \varepsilon R / M: y R=0\}$. If Γ is a non-zero submodule of R / M then by (iii) one can find a non-zero endomorphism f of R / M such that $f(R / M) R \subseteq \Gamma R=0$ and $R^{2} \subseteq M$ since Ker $f=0$. This of course violates (i).

COROLLARY. If $a \varepsilon R$ such that $a R \subseteq M$ then $a \varepsilon M$.
Proof. If $a \notin M$ then $a+M \varepsilon \Gamma$ in Lemma 1 and Γ would be a non-zero submodule of R / M, which is absurd in view of Lemma 1.

LEMMA 2. $\mathrm{O}_{\mathrm{M}} \subseteq M$.
Proof. For if $O_{M} \ddagger M$, then $O_{M}+M / M$ is a non-zero submodule of R / M and hence, by (iii), there is a non-zero endomorphism f of R / M such that $f(R / M) \subseteq O_{M}+M / M$. Let $a \varepsilon R$ such that $a \& M$ and $a M \subseteq M$. Then $f(a+M)=b+M$ for some $b \varepsilon O_{M}$, such that $b \notin M$ since the Ker f is zeroby (ii). Since $a M \subseteq M$, $a \& M$, a induces an endomorphism of R / M, say $g_{a}: r+M \rightarrow$ ar $+M$ for all $\mathrm{r} \varepsilon \mathrm{R} . \mathrm{g}_{\mathrm{a}}$ is a non-zero endomorphism by the Corollary. Let $t \varepsilon R, t \notin M$ such that $b a t=0$. Then $f g_{a}(a t+M)=b a t+M=0$ and at $\notin M$. This means that Ker g_{a} is notzero. This is a contradiction since the Ker g_{a} is zero.

Proof of the Theorem. Let R / M be the injective hull of the right R-module R / M and let $(\widehat{R / M})^{\gamma}=\{r \varepsilon R:(\widehat{R / M}) r=0\}$. If there is $r_{0} \varepsilon(\widehat{R / M})^{\gamma}$ such that $r_{0} \& O_{M}$, then there is a εR such that r_{0} at $\neq 0$ for any $t \not \& M$. That is $\left(r_{0} a\right)^{\gamma} \subseteq M$. Let c be a regular element in R. Then $\left(\operatorname{cr}_{0} a\right)^{\gamma} \subseteq M$. Let $T=\left\{x \varepsilon \widehat{R / M}: x\left[\left(c r_{0} a\right)^{\gamma}\right]=0\right\}$. If $y \varepsilon T$, define $f:\left(\mathrm{cr}_{0} \mathrm{a}\right) \mathrm{r} \rightarrow \mathrm{yr}$. Then f is an R-homorphism from a right ideal cr_{0} aR into $\widehat{R / M}$. Let \bar{f} be an extension of f to R. Then $y=\bar{f}\left(c r_{0} a\right)=\bar{f}(c) r_{0} a$ and $y \varepsilon(R / M) r_{0} a$. That is $T \subseteq(R / M) r_{0} a=0$. $B y(i)$ there is $b \varepsilon R$, $b \not \& M$, such that $b M \subseteq M$. Let $x=b+M$. Then $x\left[\left(\mathrm{cr}_{0} a\right)^{\gamma}\right]=0$ since $\left(\mathrm{cr}_{0} a\right)^{\gamma} \subseteq M$ and $x M \subseteq M$. Therefore $x \varepsilon T$ and $b \varepsilon M$. This is impossible. Thus $(\hat{R} / M)^{\gamma} \subseteq O_{M}$. Now note that for any $r \varepsilon R$ and any $b \varepsilon O_{M}$, $r b$, br are members of O_{M}. Since $O_{M} \subseteq M$ by Lemma 2, $R O_{M} \subseteq M$ and $(R / M) O_{M}=0$. If $(\widehat{R / M}) O_{M} \neq 0$ then there exist elements $x \varepsilon(\widehat{R / M})$ and $b \varepsilon O_{M}$ such that $x b \neq 0$. Since $(\widehat{R / M})$ is an essential extension of R / M, there is $r_{0} \varepsilon R$ such that $x b r_{0} \neq 0$ and $\operatorname{xbr}_{0} \varepsilon R / M$. Now $x b r_{0} R$ is a non-zero submodule of R / M by Lemma 1. Let h be a non-zero endomorphism of R / M such that $h(R / M) \subseteq \operatorname{xbr}_{0} R$. Let $a \varepsilon R$ such that $a \notin M$ and $a M \subseteq M$. Then $h(a+M)=x b r_{0} r^{\prime}$ for some $r^{\prime} \varepsilon R$. Let $t \varepsilon R, t \notin M$ such that $b r_{0} r^{\prime} t=0$. Then $h(a t+M)=x b r_{0} r^{\prime t}=0$ and at εM. This is impossible since the induced endomorphism $g_{a}: r+M \rightarrow a r+M$ is non-zero and Ker $g_{a}=0$ by (ii). Thus $(\widehat{R / M})^{\gamma}=O_{M}$.

REFERENCES

1. K. Koh and A. C. Mewborn, A class of prime rings. Canad. Math: Bull. 9 (1966) 63-72.
2. J. Lambek, Lectures on rings and modules. (Ginn-Blaisdell, 1966.)
