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SUMMARY

The model, suggested by Ohta & Kimura, of an infinite number of
selectively neutral alleles, in which alleles can only mutate to neighbouring
alleles, has been extended to include a migratory pattern. The stepping-
stone and island models of migration have been considered. In the latter
case, it has been found that as the number of colonies becomes large, the
expected number of alleles, ne, becomes approximately equal to

[(1 + 4Nem) (1 + 4Nem + 8Nev)]i,

where m is the migration rate, v is the mutation rate and Ne is the effective
size of each population. This solution tends to that of Ohta & Kimura as
m -> 0 but one can see that for any appreciable value of Nem, a large increase
in ne is obtained. In order to check the validity of iterative results, models
with a finite number of alleles have been considered, and their solutions
have been found to converge quickly to th ose of the infinite case. The results
exemplify the great power of migratory structure and neutral alleles to
maintain a large amount of heterozygosity. Double step mutation and the
finite time solution have also been considered.

1. MODEL AND CONSTRUCTION OF EQUATIONS

Let us assume that the entire sequence of allelic states are expressed by integers,
i.e. (..., A_v Ao, Av ...) and that an allele can only mutate one step in each direction.
Consider a diploid population of N colonies each with effective population size, Ne.
Let v be the mutation rate per locus per generation and let m be the migration rate
away from a colony per locus per generation. Mutation is assumed to be eqxial in
each direction. Let xti be the frequency of the ith allele in the jth colony and let

for all j , where i = 1,2,..., and k = 1, 2, ...,§N (N even) or J(iV— 1) (N odd).
The basic equation which we shall be using is Kolmogorov's backward equation;

this particular form having been derived by Ohta & Kimura (1971) and later
expressed for this particular problem in Ohta & Kimura (1973), i.e.
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where L is a differential operator and

L = ~ S VSxij-r-£ + i>k Wtxijtxtl „
Z i,j 0Xij j>l 0Xij0XM

To set up the equations, one puts/equal in turn to x\^ ## #•£+„,,,•, XijXi+wj+s, and then
sums over all values of i and j for each value of w and 2. We are interested in the
equilibrium situation which is obtained by putting dXiti/dt = 0 for all i, j . The
solution must be such that Xti -> 0 as i -> co in the infinite allele case.

2. DOUBLE STEP MUTATION

Wehrahn (1974) has suggested that double charge changes happen, but less
frequently than single charge changes. It seems reasonable to assume that this
double step mutation rate will be a proportion of the single step mutation rate
(Kv, say). In this model, only one colony is considered and thus the second suffix of
Xu and Xit is not used.

Now MSxi = i«(^_i + xi+1) + ̂ Kvix^z + xi+i) — v(l + K) xt,

(i+j).

(1.1) thus gives
- 0 = 0 , (2.1)

= 0, (2.2)

ftMfiKXk+a = 0, (2.3)

for k ^ 2, where /? = 2Nev.
On substituting Xk = X0A

k in (2.3), one obtains

/3KA*+/3A3-(l + 2/3(l + K))A2+pA+j3K = 0. (2.4)

This is solved by substituting A + A"1 = z and then ignoring the roots of A, which
are greater than one, as Ak -» 0 as k -» 00. Thus

. l V 7
and A2 =
where 7 = 1 + 4K( 1 + 2/?+4fiK)lfi.

Then Xk = jX0Ai + 2-̂ o^2> a n d XXO and 2X0 are found by substituting in (2.1) and

' ' '* Expected heterozygosity = H = 1 — XXO — 2X0

1
and expected number of neutral alleles = ne = _

The same method can be applied if the second step mutation rate is independent of
the first. One finds that a relatively small value of K still produces a significant change
in H and ne. As K -» 0, ne ->• ̂ /(l + 8Nev) as given in Ohta & Kimura (1973).
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3. FINITE NUMBER OF AJLLELES

Later on in this paper, finite allele approximations have been used. In order to
justify their validity, the solution of the finite model has been found. A single colony
model, in which there is only single step mutation, has been considered. There are
assumed to be K possible alleles arranged on a circle, i.e. xx mutates to x2 and xK

only. (1.1) thus produces
(l + 2/?)Z0-2/?X1=l, (3.1)

fiX,+1- (1 + 2/3) X,+ 0X^ = 0 ( U j < I ) , (3.2)

2fiXl_1 - (1 + 2fi) Xi = 0, where I = K\2, - K even, (3.3)

PX1_1-{1+P)X1 = 0, where I = (K-l)j2, -Kodd (0 = 2Nev). (3.4)

On putting Xj = X0A* in (3.2) one obtains

1+2/7 + 7(1+41)
2/?

and on substituting Xj = 1X0A{ + 2X0A.{ m (3-l)> and (3.3) or (3.4), one obtains

where A =

and thus effective number of alleles = ne =
e = -—j^

This tends quickly to (1 + 4/?)* and agrees to 7d.p. by K = 18. For K = 2,
ne = (1 + 4/7/1 + 2/?), and for if = 3, ne = (1 + 3^/(1+/?). This is exemplified by
Fig. 1, where H = 1 - Xo.

4. ISLAND MODEL OF MIGRATION

The island model was examined recently by Latter (1973), who considered it to
be the best model for human populations. The model is that a proportion, TO, of each
colony migrates away and is then equally shared between each of the other colonies.
N colonies, each of effective size Ne, are considered, TO and v are considered to be of
order (Nj1) so that quadratic terms in them can be ignored.

Thus Mlxij = | (xi+u + xt_xi - 2xy) + - ^ ^ S . xik-(N-l) x

v % ( ! - % ) .
K'*0 ~ 2Ne '

=° 0"*0 for alii and L
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Fig. 1. The steady-state heterozygosity is plotted against /? (equals colony size
times twice the mutation rate) for the single colony case with a finite number, K, of
neutral alleles.

In this model, each colony migrates directly with each other, thus

Xi:j = Xtl where j ^ 1.

Thus one obtains by substituting in (1.1) and simplifying

1 + 2fiX10 - (1 + M + 2/1) Xoo + M X01 = 0,

.. = 0 (1>1),

M
N-l = 0,

= 0

(4.1)

(4.2)

(4.3)

1), (4-4)

where M = ±Nem. On putting Xa = X,Af for I = 0,1 in (4.2) and (4.4), one obtains

where /(A) = and 0' = (0,0).
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For a non-zero solution of X, |MA| = 0. This leads to four roots for A but the
condition that Ak ->- 0 as k -=• oo, implies that two roots must be rejected. Thus

(M + 2/3 + yi-J[(M + 2fi + yi)-4fi]) (i = 1,2),

, 1/ M(N2) /[/ M(N-2)Y

w h e r e yt = _ ( l - L J y ^ ^ J j
If /? -> 0, Aj -» 0 for i = 1, 2 and all values of M and N. If

and A2 -> 1.
Thus, from the matrix, tXj_ = (1-y^XJM for i = 1, 2, where

By substituting the above in the initial equations, a pair of linear equations in jX0

and 2X0 are found and thus Xo, ne (= ljX0) and the expected heterozygosity,
H(= 1 — Xo) can be found. As 1̂  ->• oo (/? 4= 0), t/x -5- 1 and y2^> — M which implies
that, for large N, ̂  ~ OandgXj ~ [(1 +M)/M]X0. Substitution in (4.1) and (4.3)
gives XZO = [(1+M) (1+ i f + 4yff)]-i and 2X0 = 0. Thus for large N,

ne~J[(l+M)(l+M + 4:fi)] (/?+0) and ne = 1 (/ff = 0).

The results are given in Fig. 2.
The above limiting conclusions were confirmed by taking very large values for

N in the set of four linear equations.
The finite allele approximation was used to form a set of matrix equations. The

results obtained from this second approach agreed exactly with the results from
above. One sees from the graph that, for fixed Nem, one obtains a large spread of
values as N varies. The effect on H of increasing N is large when N is small, but
decreases as N becomes large, so that the graph for H tends to a limiting curve. The
limiting curves are plotted for 4Nem = 1-0, 2-0, 3-0, 4-0 showing that Nem also has a
large effect on H.

5. STEPPING-STONE MODEL

In this model, N colonies are arranged on a circle and a proportion m of each
colony migrates at each generation, being equally divided between the two adjacent
colonies (Kimura & Weiss, 1964). Thus

_ ~xiixk]•or
nSxijSxij

WixijSxkl=0 foralH,& (j*l).

On substituting in (1.1), one obtains single equations and a set of general equations,
which on substitution of Xik = XkA

i (k = 0,1, ...,j where j = N/2 (N even) or
(N-1)/2(N odd)) leads to MAX = 0,
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Fig. 2. For the island model of migration, the steady-state heterozygosity in each
colony is plotted against the mutation factor, ft, for different values of the migration
factor, M (four times colony size times migration rate) and for different numbers of
colonies, N. The limiting solutions are also shown.

where X' = (XO,XU ...,Z3-) and MA =/(A)I + |JfAR1 + îWAR2 + C) where Rx is
a (j + l)x(j + l) matrix with l's in super-diagonal and zeros elsewhere, R2 is a
(j + 1) x (j + 1) matrix with 1 's in sub-diagonal and zeros elsewhere, /(A) = /?(A — 1 )2

— MA and C is zero everywhere except that (7[1,1] = — A, C[l,2] = \MX,
C[j + l,j] = \M\ if N even, C[j,j] — \MX if N is odd. For non zero solution of
X, | MA | = 0. This leads to (j +1) acceptable roots for A. Then one puts

i

< = 0

and by using j of the original equations, one finds

ne = I 2 iX0)~\

Xi and iXk are best found by using methods for evaluation of eigenvalues and
eigenvectors. For N = 2 and 3, the results are obviously the same as in the island

https://doi.org/10.1017/S0016672300015548 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300015548


Mutation and migration models of neutral alleles 151

model. However, as N increases, H increases much more slowly than in the island
model and converges quickly to a limiting curve, particularly for /? > 0-1. Thus this
migratory structure has a much smaller effect on heterozygosity for the same value
of 4:Nem as does the island model as can be seen by Fig. 3.

As before, finite allele approximation was used as a check on the above theory and
it agreed exactly.

0-9 -

0-8 -

4Nem=40 1 T0 Large
N

-N=£\ 4Ncm=l0

0-9 10

Fig. 3. For the stepping-stone model of migration, the steady-state heterozygosity
in each colony is plotted against the mutation factor, /?, for different values of the
migration factor, M and for different numbers of colonies, N.

6. TRANSIENT SOLUTION FOR THE MODEL OF
A FINITE NUMBER OF ALLELES

In the previous sections of this paper, the steady-state solution has always been
examined. I t seems appropriate that, in conclusion, the transient solution should
be examined to see how quickly the steady state solution is reached.

The simplest case is that of a single colony with one step mutation and a finite
number of alleles. From sections (1) and (3), one can see that the equations will be:

MAX=V+g,
II GRH 25
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X' = (Zo, Xl3..., Xt_lt Xt),
V' = (-1,0,0,...,0,0),

T is time measured in 2Ne generations, and
MA = - (1 + 2/7)1+/^+/9R2 + C.

I, R1; R2 and C are all (I + 1) x (I + 1) matrices where I is the identity matrix, Rj and
R2 are as defined in section 5 and C is a zero matrix except that

G[l, 2] = /?, C[l+ 1, l]=fiifKis even, C[l, 1] = p if K is odd.
If one substitutes Y = X — S, where S is the steady state solution, one obtains

MA Y = dY/dl7 whose solution is

Y = emt =
i = 0

£=10

y?=0-5

£=0-25

1 2 3 4
Time, 7" (in units of 2;Ve generations)

Fig. 4. The heterozygosity is plotted against time (where one unit is twice the colony
size number of generations) in the two-allele, one-colony case for different values
of the mutation factor, p. Initial conditions are either all of one allele (i.e. H = 0) or
half of each allele (i.e. H = 0-5).

https://doi.org/10.1017/S0016672300015548 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300015548


Mutation and migration models of neutral alleles 153

where yt and 8t are the ith column and row eigenvectors of MA, Ai is the ith eigen-
value of MA and E is a column vector of arbitrary constants. For this particular
MA, all the Ai's are real and distinct. In fact

\-g) (i=O,...,l),

and Yi = I 1, cos (2ni/K), cos (ini/K),..., cos I —=r-11.

These eigenvectors are not necessarily orthonormal. E can be found from the initial
conditions and thus Xo and II can be calculated.

The rate of convergence to steady state is determined by the A/s. The dominant
eigenvalue is — 1, i.e. is independent of K, the number of alleles. Thus, one obtains
similar convergence curves for different K. Fig. 4 shows the results for K — 2,
starting at (i) H = 0 (i.e. all of 1 allele) and (ii) H = 0-5 (half of each allele).

7. CONCLUSION

One can see from the results how powerful mutation and migration factors are in
influencing the expected steady state heterozygosity, even if they are relatively
small. It is difficult to find data to prove or disprove the above theoretical solutions
because of difficulty in the estimation of the parameters of the system. Also, the
last section provides a warning, in that one must be careful only to try to apply this
type of solution to populations where the parameters are constant over the relatively
long time needed to reach steady state. Thus this model would be quite inappro-
priate for human populations.

That selection exists is an indisputable fact, but it is my opinion that most
alleles are selectively neutral and that genetic variability is maintained by
mechanisms similar to the above models. One would expect that in practice the
heterozygosity would be slightly lower than the theoretical value, due to the
presence of a few advantageous or deleterious alleles.

I would like to acknowledge the help and encouragement of Professor M. S. Bartlett and
Dr M. G. Buhner.
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