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On the Regularity of the Multisublinear
Maximal Functions

Feng Liu and Huoxiong Wu

Abstract. _is paper is concerned with the study of the regularity for the multisublinear maximal
operator. It is proved that the multisublinear maximal operator is bounded on ûrst-order Sobolev
spaces. Moreover, two key point-wise inequalities for the partial derivatives of the multisublinear
maximal functions are established. As an application, the quasi-continuity on the multisublinear
maximal function is also obtained.

1 Introduction

Let d be a positive integer and let Rd be the d-dimensional Euclidean spaces. For
f ∈ L1

loc(R
d), the centered Hardy-Littlewood maximal operator is deûned by

M( f )(x) = sup
r>0

1
∣B(x , r)∣ ∫B(x ,r)

∣ f (y)∣dy

for any x ∈ Rd , where B(x , r) is the ball inRd centered at x with radius r and ∣B(x , r)∣
denotes the volume of B(x , r). As is well known, the operator M is bounded on
Lp(Rd) for any 1 < p ≤ ∞ and maps L1(Rd) into L1,∞(Rd). In 1997, Kinnunen [6]
ûrst studied the regularity ofM and showed thatM is bounded on the Sobolev spaces
W 1,p(Rd) for all 1 < p ≤ ∞. Subsequently, Kinnunen and Lindqvist [7] gave a lo-
cal version of the original boundedness on W 1,p(Ω), where Ω is an open set of Rd .
_is paradigm that an Lp-bound implies aW 1,p-bound was later extended to a frac-
tional version in [8] and to a bilinear version in [2]. Later on, the continuity ofM on
W 1,p(Rd) for all 1 < p ≤ ∞ was studied by Luiro in [10] (continuity is not immediate
from boundedness because of the lack of linearity).

Since Kinnunen’s result does not hold for the case p = 1, understanding the reg-
ularity at the endpoint case seems to be a deeper issue. In this regard, one of the
main questions was posed by Hajlasz and Onninen in [5, Question 1]. Is the operator
f ↦ ∣∇(M( f ))∣ bounded from W 1,1(Rd) to L1(Rd)? Here, ∇( f ) denotes the weak
gradient of the Sobolev function f . In 2002, Tanaka [11] showed that the non-centered
maximal operator M̃ satisûes

∥(M̃( f ))′∥L1(R) ≤ 2∥ f ′∥L1(R)
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if f ∈W 1,1(R), where M̃ is given by

M̃( f )(x) = sup
x∈B

1
∣B∣ ∫B

∣ f (y)∣dy

for x ∈ Rd , where the supremum is taken over all ball B ⊂ Rd containing x. Sub-
sequently, Tanaka’s result was sharpened by Aldaz and Lázaro [1], who obtained the
sharp constant C = 1. Recently, Kurka [9] extended Tanaka’s result to M.

_is paper is devoted to studying the regularity properties of the multisublinear
maximal operator. Precisely, let m be a positive integer and

f⃗ = ( f1 , . . . , fm) ∈ L1
loc(R

d
) × ⋅ ⋅ ⋅ × L1

loc(R
d
).

For 0 ≤ α < md, the m-sublinear maximal operator Mα is deûned by

Mα( f⃗ )(x) = sup
r>0
∣B(x , r)∣α/d−m

m
∏
j=1
∫
B(x ,r)

∣ f j(y)∣dy

for any x ∈ Rd . For m = 1 and α = 0, Mα recovers the operator M. For m = 1 and
0 < α < d, the operator Mα recovers the classical fractional maximal operator Mα
deûned by

Mα( f )(x) = sup
r>0

1
∣B(x , r)∣1−α/d ∫B(x ,r)

∣ f (y)∣dy.

It is well known that the following inequalities are valid:

Mα( f⃗ ) ≤
m
∏
i=1

Mα i ( f i),

where α = ∑m
i=1 α i with α i ≥ 0 (i = 1, . . . ,m), and

(1.1) ∥Mα( f⃗ )∥Lq(Rd) ≤ c(d ,m, α)
m
∏
i=1
∥ f i∥Lpi (Rd)

for 1/q = ∑
m
i=1 1/p i − α/d, provided one of the following conditions holds: (i) α = 0,

1 ≤ q ≤ ∞ and 1 < p1 , . . . , pm ≤ ∞; (ii) 0 < α < d, 1 ≤ q < ∞ and 1 < p1 , . . . , pm ≤ ∞;
(iii) d ≤ α < md, 1 ≤ q < ∞ and 1 < p1 , . . . , pm < ∞;
Based on the facts concerning the regularity ofM and M̃, it is interesting and nat-

ural to ask whether the multisublinear maximal operator has some sort of regularity
properties. _e purpose of this paper is to address this problem. Ourmain results will
be formulated in Section 2, which is organized as follows. A�er giving some deûni-
tions, we will show the boundedness of the multisublinear maximal operator on the
ûrst-order Sobolev spaces. Subsequently, motivated byKinnunen and Saksman’swork
[8] on the one-sublinear fractional maximal operator, a key pointwise inequality for
the partial derivatives ofMα( f⃗ )will be obtained; furthermore, employing the idea in
[6], we will establish another pointwise inequality for the partial derivatives. Finally,
we will end the paper by proving the quasicontinuity of the multisublinear maximal
operator in Section 3, which is closely related to the regularity problems studied in
Section 2.

_roughout this paper, the letter c, sometimes with additional parameters, will
stand for positive constants, not necessarily the same one at each occurrence, but
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independent of the essential variables. In what follows, we use the conventions

∏
i∈∅
a i = 1 and ∑

i∈∅
a i = 0.

2 The Regularity for the Multisublinear Maximal Functions

Recall that the Sobolev spaceW 1,p(Rd), 1 ≤ p ≤ ∞, consists of functions f ∈ Lp(Rd),
whose ûrst distributional partial derivatives D i( f ), i = 1, . . . ,m, belong to Lp(Rd).
We endowW 1,p(Rd) with the norm

∥ f ∥1,p = ∥ f ∥Lp(Rd) + ∥∇( f )∥Lp(Rd) ,

where ∇( f ) = (D1( f ), . . . ,Dd( f )) is the weak gradient of f . See [4] for the basic
properties of Sobolev functions. _e following result shows that the multisublinear
maximal operator preserves ûrst-order Sobolev spaces.

_eorem 2.1 Let 0 ≤ α < md and f⃗ = ( f1 , . . . , fm) with f i ∈ W 1,p i (Rd) for i =
1, . . . ,m. Suppose that 1/q = ∑m

i=1 1/p i − α/d. _en Mα( f⃗ ) ∈W 1,q(Rd), provided one
of the following conditions holds:
(i) α = 0, 1 ≤ q ≤ ∞ and 1 < p1 , . . . , pm ≤ ∞;
(ii) 0 < α < d, 1 ≤ q < ∞ and 1 < p1 , . . . , pm ≤ ∞;
(iii) d ≤ α < md, 1 ≤ q < ∞ and 1 < p1 , . . . , pm < ∞.
More precisely, there exists a constant c = c(d , α,m, p1 , . . . , pm) > 0 such that

∥Mα( f⃗ )∥1,q ≤ cm
m
∏
i=1
∥ f i∥1,p i .

Proof By the deûnition ofMα , we have

∣Mα( f⃗ )(x + h) −Mα( f⃗ )(x)∣

≤ sup
r>0
∣B(x , r)∣

α
d −m
∣

m
∏
i=1
∫
B(x+h ,r)

∣ f i(y)∣dy −
m
∏
i=1
∫
B(x ,r)

∣ f i(y)∣dy∣

= sup
r>0
∣B(x , r)∣

α
d −m
∣

m
∏
i=1
∫
B(x ,r)

∣ f i(y + h)∣dy −
m
∏
i=1
∫
B(x ,r)

∣ f i(y)∣dy∣

≤
m−1

∑
l=0

sup
r>0
∣B(x , r)∣

α
d −m

l
∏
i=1
∫
B(x ,r)

∣ f i(y)∣dy
m
∏

i=l+2
∫
B(x ,r)

∣ f i(y + h)∣dy

× ∫
B(x ,r)

∣ f l+1(y + h) − f l+1(y)∣dy

(2.1)

for any x , h ∈ Rd . _us, we get from (2.1) that

(2.2) ∣∇(Mα( f⃗ ))(x)∣ ≤
m
∑
l=1

Mα( f⃗ l)(x)

for almost everywhere x ∈ Rd , where f⃗ l = ( f1 , . . . , f l−1 , ∣∇( f l)∣, f l+1 , . . . , fm). _eo-
rem 2.1 follows from (1.1) and (2.2).

We shall give two key inequalities for partial derivatives in the following theorem.
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_eorem 2.2 Let ℓ = 1, . . . ,m and f⃗ = ( f1 , . . . , fm) ∈ Lp1(Rd)× ⋅ ⋅ ⋅ × Lpm(Rd) with
p i > 1 for i = 1, . . . ,m. Suppose that 0 ≤ α < md. _en the weak partial derivatives
Dℓ(Mα( f⃗ )) exist almost everywhere. Precisely, there exists a constant c = c(d , α) such
that

∣Dℓ(Mα( f⃗ ))(x)∣ ≤ c
m
∑
j=1

Mα(Dℓ( f⃗ ) j)(x) a.e . x ∈ Rd ,

where Dℓ( f⃗ ) j ∶= ( f1 , . . . , f j−1 ,Dℓ( f j), f j+1 , . . . , fm).

Proof Let sk (k = 1, 2, . . . ) be an enumeration of positive rational numbers. We can
write

Mα( f⃗ )(x) = sup
k
∣B(x , sk)∣

α
d −m

m
∏
j=1
∫
B(x ,sk)

∣ f j(y)∣dy.

For k ∈ {1, 2, . . .}, we deûne the operator Tk by

Tk( f⃗ ) = max
1≤i≤k
∣B(x , s i)∣

α
d −m

m
∏
j=1
∫
B(x ,s i)

∣ f j(y)∣dy.

Obviously, {Tk( f⃗ )}k is an increasing sequence of functions and converges to Mα( f⃗ )
pointwise. On the other hand, by the same arguments used in obtaining (2.1), we have

(2.3) ∣Dℓ(Tk( f⃗ ))∣ ≤
m
∑
j=1

Mα(Dℓ( f⃗ ) j).

Since {Tk( f⃗ )}k converges to Mα( f⃗ ) pointwise, from this and (1.1) we know that
{Dℓ(Tk( f⃗ ))}k converges to Dℓ(Mα( f⃗ )) weakly in Lq(Rd), where

1/q =
m
∑
i=1

1/p i − α/d .

_is together with (2.3) implies

∣Dℓ(Mα( f⃗ ))(x)∣ ≤ c
m
∑
j=1

Mα(Dℓ( f⃗ ) j)(x) a.e . x ∈ Rd .

_is proves _eorem 2.2.

_eorem 2.3 Let ℓ = 1, . . . ,m and f⃗ = ( f1 , . . . , fm) ∈ Lp1(Rd)× ⋅ ⋅ ⋅ × Lpm(Rd) with
p i > 1 for i = 1, . . . ,m. Suppose that 1 ≤ α < ∑m

i=1 d/p i .
(i) _en the weak partial derivatives Dℓ(Mα( f⃗ )) exist almost everywhere. Precisely,

there exists a constant c = c(d , α) such that

∣Dℓ(Mα( f⃗ ))(x)∣ ≤ cMα−1( f⃗ )(x) a.e . x ∈ Rd .

(ii) Suppose that 1/q1 = ∑
m
i=1 1/p i −α/d and 1/q2 = ∑

m
i=1 1/p i −(α− 1)/d. _en there

exists a constant c = c(d , α,m, p1 , . . . , pm) such that

∥Mα( f⃗ )∥Lq1 (Rd) ≤ c
m
∏
j=1
∥ f j∥Lp j (Rd) ,

∥Dℓ(Mα( f⃗ ))∥Lq2 (Rd) ≤ c
m
∏
j=1
∥ f j∥Lp j (Rd) .
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Proof Suppose that f j ∈ C∞c (Rd) for j = 1, . . . ,m. First we shall claim that Mα( f⃗ )
is Lipschitz continuous on Rd . _us it suõces to prove that there exists a constant c
that depends only on f j ( j = 1, . . . ,m) and d ,m, α such that

(2.4) ∣Mα( f⃗ )(x + h) −Mα( f⃗ )(x)∣ ≤ c∣h∣

for any x , h ∈ Rd . To this end, by (2.1) we have

∣Mα( f⃗ )(x + h) −Mα( f⃗ )(x)∣ ≤
m

∑
l=1

sup
r>0
∣B(x , r)∣

α
d −m

∫
B(x ,r)

∣ f l(y + h) − f l(y)∣dy

×
l−1
∏
i=1
∫
B(x ,r)

∣ f i(y + h)∣dy
m
∏

j=l+1
∫
B(x ,r)

∣ f j(y)∣dy

∶=
m

∑
l=1

M l
α( f⃗ )(x , h).

For ûxed l ∈ {1, . . . ,m} and any x , h ∈ Rd , to prove (2.4), it suõces to prove that there
exists a constant c that depends only on f j ( j = 1, . . . ,m) and d , α such that

(2.5) ∣M l
α( f⃗ )(x , h)∣ ≤ c∣h∣.

Observe that

(2.6) ∣M l
α( f⃗ )(x , h)∣ ≤ (M l ,1

α ( f⃗ )(x , h) +M l ,2
α ( f⃗ )(x , h)) ,

where

M l ,1
α ( f⃗ )(x , h) ≤ sup

0<r≤2
∣B(x , r)∣

α
d

1
∣B(x , r)∣ ∫B(x ,r)

∣ f l(y + h) − f l(y)∣dy

×
l−1
∏
i=1

1
∣B(x , r)∣ ∫B(x ,r)

∣ f i(y + h)∣dy
m
∏

j=l+1

1
∣B(x , r)∣ ∫B(x ,r)

∣ f j(y)∣dy

and

M l ,2
α ( f⃗ )(x , h) ≤ sup

r>2
∣B(x , r)∣

α
d −m

∫
B(x ,r)

∣ f l(y + h) − f l(y)∣dy

×
l−1
∏
i=1
∫
B(x ,r)

∣ f i(y + h)∣dy
m
∏

j=l+1
∫
B(x ,r)

∣ f j(y)∣dy.

By our assumption and the mean value theorem for diòerentials, it is easy to see that

(2.7) ∣M l ,1
α ( f⃗ )(x , h)∣ ≤ 2αc( f⃗ )∣h∣.

It remains to estimateM l ,2
α ( f⃗ )(x , h). We consider the following two cases. If ∣h∣ > 1,

since α < md, by our assumption we have

(2.8) ∣M l ,2
α ( f⃗ )(x , h)∣ ≤ c( f⃗ ) ≤ c( f⃗ )∣h∣.

If ∣h∣ ≤ 1, we also assume that the function f l is supported in B(0, r l). _us, by the
mean value theorem for diòerentials, we obtain

∫
B(x ,r)

∣ f l(y + h) − f l(y)∣dy ≤ ∫
B(0,r l+1)

∣ f l(y + h) − f l(y)∣dy ≤ c( f l)∣h∣,

which implies

(2.9) ∣M l ,2
α ( f⃗ )(x , h)∣ ≤ c( f⃗ )∣h∣.
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_us (2.5) follows from (2.6)–(2.9). _is proves our claim. We denote

D+(Mα( f⃗ ))(x) = lim sup
∣h∣→0

Mα( f⃗ )(x + h) −Mα( f⃗ )(x)
∣h∣

for every x ∈ Rd . Below we shall prove the following claim

(2.10) D+(Mα( f⃗ ))(x) ≤ cMα−1( f⃗ )(x)
for every x ∈ Rd , where c = c(d ,m, α). Indeed, by the deûnition ofD+, we can choose
a sequence {hk}k ⊂ Rd such that

D+(Mα( f⃗ ))(x) −
1
k
≤

Mα( f⃗ )(x + hk) −Mα( f⃗ )(x)
∣hk ∣

and limk→∞ ∣hk ∣ = 0. _en we have

(2.11) (D+(Mα( f⃗ ))(x) −
1
k
) ∣hk ∣ +Mα( f⃗ )(x) ≤ Mα( f⃗ )(x + hk).

By the deûnition of Mα( f⃗ ), we can choose a sequence of positive numbers {r j} j≥1
such that

(2.12) Mα( f⃗ )(x + hk) < ∣B(x + hk , r j)∣
α
d −m

m
∏
i=1
∫
B(x+hk ,r j)

∣ f i(y)∣dy +
1
j
.

It is obvious that

(2.13) Mα( f⃗ )(x) > ∣B(x , ∣hk ∣ + r j)∣
α
d −m

m
∏
i=1
∫
B(x ,∣hk ∣+r j)

∣ f i(y)∣dy.

Note that B(x + hk , r j) ⊂ B(x , ∣hk ∣ + r j). _us we get from (2.11)–(2.13) that

(2.14) (D+(Mα( f⃗ ))(x) −
1
k
) ∣hk ∣ ≤

c(d ,m, α)(rα−md
j − (r j + ∣hk ∣)

α−md
)

m
∏
i=1
∫
B(x ,∣hk ∣+r j)

∣ f i(y)∣dy +
1
j
.

By the mean-value theorem of diòerentials, we get

(2.15) rα−md
j − (r j + ∣hk ∣)

α−md
≤ (md − α)rα−1−md

j ∣hk ∣.

It follows from (2.14) and (2.15) that

(2.16) D+(Mα( f⃗ ))(x) ≤
1
k
+ c(d ,m, α)(

r j + ∣hk ∣

r j
)

md+1−α
Mα−1( f⃗ )(x) +

1
j∣hk ∣

.

Fixing k = 1, 2, . . . , we can choose a large j such that j∣hk ∣ > k. _us (2.16) leads to

(2.17) D+(Mα( f⃗ ))(x) ≤
2
k
+ c(d ,m, α)(

r j + ∣hk ∣

r j
)

md+1−α
Mα−1( f⃗ )(x).

Letting k → ∞, (2.17) implies (2.10). Now we suppose that f i ∈ Lp i (Rd). Fixing
i ∈ {1, . . . ,m}, we choose a sequence f li ∈ C∞c (Rd) such that f li → f i in Lp i (Rd)
as l → ∞. Let g⃗k = ( f k1 , . . . , f km). Obviously {g⃗k}k converges to f⃗ pointwise. Since
Mα( f⃗ ) is Lipschitz, it is diòerentiable at almost every x ∈ Rd . Equation (2.10) yields

∣Dℓ(Mα(g⃗k))(x)∣ ≤ D+(Mα(g⃗k))(x) ≤ cMα−1(g⃗k)(x), a.e . x ∈ Rd ,
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where c = c(d , α,m). We have from (1.1) that

∥Dℓ(Mα(g⃗k))∥Lq2 (Rd) ≤ c∥Mα−1(g⃗k)∥Lq2 (Rd) ≤ c
m
∏
i=1
∥ f ki ∥Lpi (Rd) ,

which tells us that {Dℓ(Mα(g⃗k))}k is a bounded sequence in Lq2(Rd).
On the other hand, we have

Mα(g⃗k)(x) −Mα( f⃗ )(x)∣

≤ sup
r>0
∣B(x , r)∣

α
d −m
∣

m
∏
i=1
∫
B(x ,r)

∣ f ki (y)∣dy −
m
∏
i=1
∫
B(x ,r)

∣ f i(y)∣dy∣

≤
m−1
∑
l=0

sup
r>0
∣B(x , r)∣

α
d −m

l
∏
i=1
∫
B(x ,r)

∣ f i(y)∣dy
m
∏

j=l+2
∫
B(x ,r)

∣ f kj (y)∣dy

× ∫
B(x ,r)

∣ f kl+1(y) − f l+1(y)∣dy

≤
m
∑
l=1

Mα(F⃗k
l )(x)

(2.18)

for any x ∈ Rd , where F⃗k
l = ( f1 , . . . , f l−1 , f kl − f l , f

k
l+1 , . . . , f

k
m). _en, combining (1.1)

with Minkowski’s inequality implies that

∥Mα(g⃗k) −Mα( f⃗ )∥Lq1 (Rd) ≤

c(d ,m, α)
m

∑
l=1

l
∏
i=1
∥ f i∥Lpi (Rd)∥ f kl − f l∥Lpl (Rd)

m
∏

j=l+1
∥ f kj ∥Lp j (Rd) ,

which tells us that Mα(g⃗k) → Mα( f⃗ ) in Lq1(Rd) as k → ∞. _us we can claim
that Dℓ(Mα( f⃗ )) belongs to Lq2(Rd), and Dℓ(Mα(g⃗k)) → Dℓ(Mα( f⃗ )) weakly in
Lq2(Rd) as k →∞. Using this and (2.18), we conclude that

∣Dℓ(Mα( f⃗ ))(x)∣ ≤ cMα−1( f⃗ )(x) a.e . x ∈ Rd .

_is implies (i). Part (ii) follows from (i) and (1.1). _is completes the proof of _eo-
rem 2.3.

3 A Capacity Inequality and Quasicontinuity for the Multisublinear
Maximal Functions

_is section is devoted to studying the continuity of Mα . First, let us recall some
notation.

Deûnition 3.1 For 1 < p < ∞, the Sobolev p-capacity of the set E ⊂ Rd is deûned
by

Cp(E) ∶= inf
f ∈A(E)

∫
Rd
(∣ f (y)∣p + ∣∇( f )(y)∣p)dy,

where
A(E) = { f ∈W 1,p

(Rd) ∶ f ≥ 1 on a neighbourhood of E}.
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We setCp(E) = ∞ ifA(E) = ∅. It was shown in [3] that the Sobolev p-capacity is a
monotone and a contably subadditive set function. Also, it is outer measure over Rd .

Deûnition 3.2 A function f is p-quasi-continuous in Rd if for every є > 0, there
exists a set F ⊂ Rd such that Cp(F) < є and the restriction of f toRd/F is continuous
and ûnite. A property holds p-quasi-everywhere if it holds outside a set of the Sobolev
p-capacity zero.

Remark 3.3 As is well known, each Sobolev function has a quasi-continuous rep-
resentative; that is, for each u ∈ W 1,p(Rd) there is a p-quasi-continuous function
v ∈ W 1,p(Rd) such that u = v a.e . in Rd . We remark that this representative is
unique in the following sense. If v andw are p-quasi-continuous and v = w a.e ., then
w = v p-quasi-everywhere in Rd ; see [3] for more details.

In 1997, J. Kinnunen proved that M( f ) is p-quasi-continuous if f ∈W 1,p(Rd) for
any 1 < p < ∞. Motivated by J. Kinnunen’s work [6], we shall establish the following
theorem.

_eorem 3.4 Let 0 ≤ α < md and f⃗ = ( f1 , . . . , fm). Suppose that 1/q = ∑m
i=1 1/p i −

α/d and p i > 1, i = 1, . . . ,m. If f i ∈ W 1,p i (Rd), i = 1, . . . ,m, then Mα( f⃗ ) is q-quasi-
continuous.

Proof Let us begin by proving a capacity inequality that can be used in studying
the pointwise behaviour of Sobolev functions by the standard methods (see [3]). For
λ > 0, we denote

Oλ = {x ∈ Rd ∶ Mα( f⃗ )(x) > λ}.
Obviously, Oλ is an open set. We get from _eorem 2.1 that

Cq(Oλ) ≤
1
λq ∫Rd

(∣Mα( f⃗ )(x)∣q + ∣∇(Mα( f⃗ ))(x)∣q)dx

≤
∥Mα( f⃗ )∥1,q

λq ≤
Aq

λq

m
∏
i=1
∥ f i∥1,p i ,

(3.1)

where A = c(d ,m, α, p1 , . . . , pm). Suppose that g⃗ = (g1 , . . . , gm) with g j ∈ C
∞
0 (Rd),

j = 1, . . . ,m. From the claim in the proof of _eorem 2.3, we know that Mα(g⃗) is
continuous. For each f j ∈ W 1,p j(Rd), j = 1, . . . ,m, we can choose a sequence of
function { f kj }k ⊂ C∞0 (Rd) such that f kj → f j in W 1,p j(Rd). _is means that there
exists a large positive integer K0 such that

(3.2) ∥ f kj − f j∥1,p j ≤ 2−2kA−1 , j = 1, . . . ,m

whenever k ≥ K0. For k ≥ 1, we set g⃗k = ( f k1 , . . . , f km) and

Ek = {x ∈ Rd ∶ ∣Mα( f⃗ )(x) −Mα( f⃗ k)(x)∣ > 2−k
}.

Using (2.18) we have

(3.3) ∣Mα( f⃗ )(x) −Mα(g⃗k)(x)∣ ≤
m
∑
l=1

Mα(F⃗k
l )(x)
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for every x ∈ Rd , where F⃗k
l is as in (2.18). _us we obtain from (3.3) that

(3.4) Ek ⊂ {x ∈ Rd ∶
m
∑
l=1

Mα(F⃗k
l )(x) > 2−k

} .

We get from (3.1), (3.2), and (3.4) that

Cq(Ek)
1/q

≤ 2kA
m

∑
l=1

l−1
∏
i=1
∥ f i∥1,p i ∥ f

k
l − f l∥1,p l

m
∏

j=l+1
∥ f kj ∥1,p j

≤ 2−k
m

∑
l=1

m
∏
i=1
i≠l

∥ f i∥1,p i

(3.5)

for k ≥ K0. Let G i = ⋃
∞
k=i Ek with i ≥ K0. _en by subadditivity and (3.5) we have

Cq(G i)
1/q

≤
∞

∑
k=i

2−k
m

∑
l=1

m
∏
i=1
i≠l

∥ f i∥1,p i < ∞

whenever i ≥ K0, which implies

(3.6) lim
i→∞

Cq(G i) = 0.

On the other hand, we have for x ∈ Rd/G i ,

∣Mα( f⃗ )(x) −Mα(g⃗k)(x)∣ ≤ 2−k

whenever k ≥ i, which implies that the sequence of functions {Mα(g⃗k)}k converges
to Mα( f⃗ ) uniformly in Rd/G i . _eorem 3.4 follows from this and (3.6).

Remark 3.5 When m = 1 and α = 0, _eorem 3.4 implies [6, _eorem 4.1]. As
a consequence, we obtain that Mα( f ) is q-quasi-continuous if f ∈ W 1,p(Rd) and
1/q = 1/p − α/d for 1 < p < d/α.
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